几种高效除氟吸附剂的颗粒化方法与吸附效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以实用化的颗粒除氟吸附剂制备为目的,以吸附剂的吸附容量与机械强度为研究目标,通过颗粒海藻酸镧、颗粒铁-镧复合氧化物吸附剂的制备,研究了不同吸附材料与颗粒化方法制备的颗粒吸附剂的除氟作用效果,并对颗粒吸附剂的作用机理进行了系统研究。
     通过滴球-交联法制备颗粒海藻酸镧吸附剂,并应用其进行除氟研究,结果显示,颗粒吸附剂的吸附速率快,动力学过程符合拟二级反应方程;其吸附等温线符合Langmuir模型,吸附过程受pH值及SO42-离子干扰较大,最佳吸附pH值为4.0,最大吸附容量可达197.2 mg/g;机理研究显示,该颗粒吸附剂的除氟机理为离子交换作用。该颗粒吸附剂具有很好的机械强度,同时存在较严重的溶胀现象。
     对铁镧复合氧化物吸附剂进行了两种颗粒化方法研究。采用挤出法制备的铁镧复合氧化物颗粒吸附剂呈柱状,该颗粒吸附速率较快,动力学过程符合拟一级反应方程;其吸附等温线符合Langmuir模型;pH优化范围5-7;HCO3-与HPO4-对吸附除氟的干扰较大;优化条件下最大吸附量12.1mg/g。连续试验表明,其吸附穿透时间大大高于活性氧化铝,动态吸附量为活性氧化铝的3倍以上。该颗粒吸附剂在水中浸泡后机械强度较差。
     采用滴球-交联法制备的铁镧复合氧化物颗粒吸附剂呈球形,颗粒吸附剂的吸附速率快,动力学过程符合拟二级反应方程;其吸附等温线符合Freundlich模型,吸附过程受pH及HPO42-离子干扰较大,最佳吸附pH=4,优化条件下最大吸附容量达30.1mg/g。该吸附剂连续动态吸附效果佳,穿透体积达2326倍,是颗粒活性氧化铝的8-10倍;间歇再生效果较好;同时该吸附剂具有较好的机械强度。
     比较研究发现,尽管颗粒海藻酸镧具有很高的吸附容量,但镧元素的含量高,因价格昂贵而应用受到限制;挤出法制备的柱状铁-镧复合氧化物吸附剂,吸附能力尚可,但机械强度较差;而滴球法制备的球形铁-镧复合氧化物颗粒吸附剂,在吸附性能及机械性能等方面均有较好的表现,并通过连续试验运行考核,证明了该吸附剂的有效性。
This paper focuses on the production of practical granular adsorbents for fluoride removal. Adsorption capacity and mechanical strength of granular adsorbent were taken into objective function. Granulation methods, fluoride removal performance as well as the adsorption mechanism of the adsorbent were researched for granular lanthanum alginate and granular iron-lanthanum complex hydroxides adsorbent.
     Granular lanthanum alginate was prepared by cross-link method. It was applied in fluoride removal and the results showed that the adsorption rate is fast and the adsorption kinetics was in accordance with second order reaction rate equation; the adsorption isotherm fitted Langmuir equation well; the adsorption process was mainly affected by pH and SO42-; the optimal pH was 4.0 and the maximum adsorption capacity was 197.2 mg/g. The adsorption mechanism of lanthanum alginate was ion exchange as seen from the studies. These adsorbents had good mechanical strength but could cause significant swelling.
     Granular iron-lanthanum complex hydroxides adsorbent was prepared using two methods, namely:extrusion and dropping method. Granular iron-lanthanum complex hydroxides adsorbent prepared by extrusion method was in bar shape. It adsorption rate was fast and the adsorption kinetics was in accordance with first order reaction rate equation; the adsorption isotherm fitted Langmuir equation well; the optimal pH range was 5-7, the maximum adsorption capacity was 12.1 mg/g at the optimal conditions. HCO3- and HPO42-affected the adsorption process largely. In column test the breakthrough volume of our adsorbent was much higher than that of activated alumina; the dynamic adsorption capacity was over 3 times of that of activated alumina. But the adsorbent's mechanical strength reduced a lot when soaked in water for a long time.
     Granular iron-lanthanum complex hydroxides adsorbent prepared by dropping method was in ball shape. Its adsorption rate was fast and the adsorption kinetics was in accordance with second order reaction rate equation; the adsorption isotherm fitted Langmuir equation well; adsorption process was maily affected by pH and SO42-, the optimal pH was 4, the maximum adsorption capacity was 30.1 mg/g on the optimal conditions. In column test breakthrough volume was 2326, which is 8-10 times of that of activated alumina. The adsorbent had good mechanical strength.
     Studies showed that granular lanthanum alginate had high adsorption capacity, but with high lanthanum element content, which lead to high application price. Granular iron-lanthanum complex hydroxides adsorbent prepared by extrusion method wasn't suitable for application because of its poor mechanical strength. Granular iron-lanthanum complex hydroxides adsorbent prepared by dropping method had good adsorption capacity and mechanical strength, so it had the potential of application.
引文
[1]吴沈春.环境与健康[M].北京:人民卫生出版社,1990.367~368
    [2]刘昌汉.地方性氟中毒[M].北京:人民卫生出版社.1988,118-135
    [3]Maheshwari, Meenakshi, R.C. Fluoride in drinking water and its removal[J]. J. Hazard. Mater.,2006,137:456-463
    [4]孙玉富,孙殿军.地方性氟中毒防治研究进展及今后工作意见[J].中国地方病防治杂志,2004,19(5):277-280
    [5]GB5479-2006.中国饮用水卫生标准[S].2007
    [6]白卯娟,娄性义,王珂.含氟水治理方法的分析[J].青岛建筑工程学院学报,2002,23(1):83-86
    [7]刘裴文,肖举强.含氟水处理过程的“吸附交换”机理[J].离子交换与与吸附,1991,7(5):378-382
    [8]Daifullah A. A. M, Yakout S. M, Elreefy S. A. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw [J]. J. Hazard. Mater.,2007,147:633-643
    [9]Shihabudheen M. M, Atul K. S, Ligy P, Manganese-oxide-coated alumina:A promising sorbent for defluoridation of water[J]. Water Res.,2006,40:3497-3506
    [10]Aldaco R, Garea A, Irabien A. Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor [J]. Water Res.,2007,41:810-818
    [11]Akbar E, Maurice S. O, Aoyi O, et al. Removal of fluoride ions from aqueous solution at low pH using schwertmannite [J]. J. Hazard. Mater.,2008,152:571-579
    [12]凌波.铝盐混凝沉淀除氟[J].水处理技术,1993,16(6):418-421
    [13]Meenakshi S, Viswanathan N. Identification of selective ion-exchange resin for fluoride Sorption [J]. J. Colloid Interface Sci.,2007,308:438-450
    [14]Lahnid S, Tahaikt M, Elaroui K, et al. Economic evaluation of fluoride removal by electrodialysis [J]. Desalination,2008,230:213-219
    [15]Sehn P. Fluoride removal with extra low energy reverse osmosis membranes:three years of large scale field experience in Finland. Desalination,2008,223:73-84
    [16]金德江,傅黄浦.氢氧化铝脱水制备氟离子吸附剂的研究.武汉工业大学学报[J].1995,17(1):34-37.
    [17]马云杰,黄高山.活性氧化铝制备及改性[J].广东化工,2010,37(11):77-83
    [18]饶拴民,朱建军,杜海荣.大孔容活性氧化铝的用途和制备方法[J].轻金属,2002,3:17-19
    [19]时海平,王东田,田美玲.活性氧化铝的制备及除氟性能研究[J].苏州科技学院学报(工程技术版),2010,23(3):23-26
    [20]王东田,尹方平,杨兰.改性活性氧化铝的除氟效能及再生方法研究[J].工业水处理,2010,30(6):55-58
    [21]Tripathy S S, Bersillon J L, Gopal K. Removal offluoride from drinking water by adsorption onto alum-impregnated activated alumina [J]. Sep. Purif. Technol.,2006,50: 310-317
    [22]凌铃,黄肖容,隋贤栋.改性天然沸石的除氟性能研究[J].生态环境学报,2009,18(5): 1727-1731
    [23]Onyango M.S, Kojima Y, Aoyi O. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9[J]. J. Colloid Interface Sci.,2004,279:341-350
    [24]杨磊,赵文岩,马静静.萨仁其其格粉煤灰负载铈吸附剂的制备研究[J].稀土,2009,30(6):83-86
    [25]Chaturvedi A.K, Yadava K.P, Pathak K.C. Defluorination of water by adsorption on fly ash[J]. Water, Air, Soil Pollut.,1990,49:41-69
    [26]陈涛,韩卓育,贾旭,等.改性粘十除氟剂处理高氟地下水研究[J].环境污染与防治,2009,3 1(9):40-44
    [27]Hisarli G. The effects of acid and alkali modification on the adsorption performance of fuller's earth for basic dye [J]. J. Colloid Interface Sci.,2005,181:18-26
    [28]党丹,丁文明,霍亚坤.几种改性活性氧化铝颗粒吸附剂除氟试验研究[J].北京化工大学学报(自自然科学版),2010,37(4):113-116
    [29]杨维,孙浩然,孙炳双,等.沸石改性处理高氟地下水的适宜工艺试验研究[J].中国地质,2010,37(3):640-644
    [30]李凤刚,李长海,贾冬梅,等.大孔离子交换树脂应用的研究进展[J].广州化工,2010,38(3):7-9
    [31]蔡连国,许永权,陈建峰,等.NaY分子筛合成工艺[J].化工进展,2006,25(12):1415-1418
    [32]Bruckner A, Lohse U, Mehner H. The incorporation of iron ions in AlPOd-5 molecular sieves after microwave synthesis studied by EPR and M ssbauer spectroscopy【J]. Microporous Mesoporous Mater.,1998,20(1/3):207-215
    [33]Huang X D, Wang L J, Kong L D, et al. Improvement of catalytic properties of SAPO-11 molecular sieves synthesized in H2O CTAB butanol system[J]. Appl. Catal., A,2003, 253(2):461-467
    [34]Cooper E R, Andrews C D, Wheafley P S, et al. Ionic liquids and euteetic mixtures as solvem and template in synthesis of zeolite analogues[J]. Nature,2004,430(26):1012-1016
    [35]侯蕾,王少君,马英冲,等.磷酸铝分子筛合成研究的新进展[J],天然气化工,2007,32:68-71
    [36]陈扬.壳聚糖的制备工艺及作为吸附剂在水处理中的应用[J].西北纺织工学院学报,1999,13(3):294-298
    [37]陶庭先.茶叶质铁对氟离子的吸附性能[J].安徽机电学院学报,1998,13(2):32-34
    [38]邓昌亮,徐海宁,王鲁敏.龙口褐煤对氟离子吸附的研究[J],工业水处理,1999,11(2):199-202
    [39]周钮明,余春香.吸附法处理含氟废水的研究进展[J].离子交换与吸附,2001,17(5):369-376
    [40]宁平,黄小凤,朱文杰,等.一种稀土吸附剂成型的方法[P].中国专利,CN101607192.2009-12-23
    [41]宁平,黄小凤,朱文杰,等.一种微波合成稀土吸附剂的方法[P].中国专利,CN101607193.2009-12-23
    [42]邓勃.应用原子吸收与原子荧光光谱分析[M].北京:化学工业出版社,2003
    [43]林守麟.仪器分析[M].北京:地质出版社,1985
    [44]牟世芬,刘克纳,丁晓静.离子色谱方法及应用[M].北京:化学工业出社,2005
    [45]牟世芬,刘开录.离子色谱[M].北京:科学出版社,1986
    [46]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003
    [47]晋勇,孙小松,薛屺.X射线衍射分析技术编著[M].北京:国防工业出版社,2008
    [48]李霞,滕晓云.X射线衍射原理及在材料分析中的应用[J].物理通报,2008(9):58-59
    [49]吴建鹏,曹丽云,黄剑锋,等.无机材料中24种组分x射线衍射物相定量分析外标法标准曲线库的建立[J].岩矿测试,2007,26(5):398-400
    [50]陆婉珍,袁洪福,褚小立,等.当代中国近红外光谱技术[M].北京:中国石化出版社,2006
    [51]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010
    [52]Mariey L, Signolle J P, Amiel C, et al. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics[J]. Vib. Spectrosc,2001, 26(2):151-159
    [53]林沝,吴平平,周文德,王俊德.实用付里叶变换红外光谱学[M].中国环境科学出版社,1991
    [54]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005,32:137-144
    [55]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989,144-146
    [56]Gregg S J, Sing K S, Adsorption W. surface area and Porosity[M]. London:Academic Press,1982,111-118
    [57]孙维民,廉舒,徐菁华.大学物理试验[M].2010
    [58]张大同.扫描电镜与能谱仪分析技术[M].广州:华南理工大学出版社,2009
    [59]张新言,李荣玉.扫描电镜的原理及TFT-LCD生产中的应用[J].现代显示,2010,1:10-15
    [60]Qi J, Zhao T B, Xu X, et al. Hydrothermal Synthesis and Mechanism for Formation of Novel Micro-Micro-Mesoporous Aluminosilicate Composite Zeolite[J].中国炼油与石油 化工:英文版,2010,12(3):36-42
    [61]曹鹏,孙黎波,邵月华.扫描电镜对金属材料失效及表面缺陷的研究[J].现代制造技术与装备,2010,1:24-26
    [62]梁建烈.《材料分析方法》的试验教学探讨[J].广西民族大学学报:自然科学版,2010,16(2):97-100
    [63]潘承璜,赵良仲.电子能谱基础[M].北京:科学出版社,1981
    [64]周清.电子能谱学[M].天津:南开大学出版社,1995
    [65]叶振华.化工吸附分离过程[M].北京:中国石化出版社,1992
    [66]Lowell S, Shields J E, Thomas M A. Matthias Thomas Characterization of Porous Solids and Powders:Surface Area, Pore Size and Density (Particle Technology Series)[M]. Springer,2004
    [67]天津大学物理化学教研室编.物理化学[M].北京:高等教育出版社,2001
    [68]Fan X, Parker D J, Smith M D. Adsorption kinetics of fluoride on low cost materials[J]. Water Res.,2003,37:4929-4937
    [69]Tripathy S S, Ashok M. Raichur Abatement of fluoride from water using manganesedioxide-coated activated alumina[J]. J. Hazard Mater.,2008,15:1043-1051.
    [70]Raichur A.M, Basu M J, Adsorption of fluoride onto mixed rare earth oxides[J]. Sep. Purif. Technol.,2001,24:121-127
    [71]Tang Y L, Guan X H, Wang J M, et al. Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions[J]. J. Hazard. Mater.,2009,171(1/3):774-779
    [72]霍亚坤,黄霞,丁文明等.铁—镧复合氧化物颗粒吸附剂除氟性能研究[J].现代化工,2010,30(2):57-59
    [73]潘能婷,苏展军,蔡显英,等.微波辐射强化再生技术:一种环保节能型吸附剂再生技术[J],广东化工,2010,4:3-5
    [74]陈孟林,林香凤,黄智,等.吸附剂的氧化法再生及其在废水处理中的应用[J].广西师范大学学报:自然科学版,2006,24(2):68-71
    [75]Silke K, Anja K C, Ma rtin J. Anio n exchange resins for removal o f reactive dyes from textile wastewater [J]. Water Res,2002,36:4717-4724
    [76]Azizian S. Kinetic models of sorption:a theoretical analysis[J]. J. Colloid Interface Sci., 2004,19(4):345-348
    [77]Mohapatra, M, Anand, S, Mishra, B.K, et al. Review of fluoride removal from drinking water[J]. J. Environ. Manage.,2009,91(1):67-77
    [78]Bansiwal, A, Thakrea, D, Labhshetwara, N, et al, Fluoride removal using lanthanum incorporated chitosan beads[J]. Colloids Surf., B:Biointerfaces,2009,74(1):216-224
    [79]秦益民.海藻酸[M].北京:中国轻工业出版社,2008
    [80]张燕,谢虹,贾文波,等.活性氧化铝除氟剂的再生性能研究[J].武汉大学学报(理学版),2005,51(4):457-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700