新型深度除氟改性树脂的制备、表征及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高氟地下水分布很广,遍布27个省、市、自治区,致使华北、西北等干旱半干旱地区饮用高氟水的人较多,危害严重。同时,橡胶、肥料、半导体、玻璃、陶瓷、电镀、矿山开采、制药等行业排放出的含氟废水对生态环境带来明显的污染破坏。因此,除氟技术研究一直是国内外环保领域的热点课题之一。本论文采用自主合成的改性树脂作为除氟材料,并利用红外光谱、比表面积、孔结构、电子能谱等方法对其理化结构进行分析表征,并系统研究了其对低浓度氟离子的吸附特性及作用机理,从而为含氟废水的深度处理探索新途径。
     选择苯乙烯-二乙烯苯共聚物(NDA-1800、XAD-4、NDA-150)为母体,采用硝化-胺化、磺化-载金属及硝化-磺化-胺化-载金属等反应制得系列不同功能基的除氟树脂,通过静态吸附实验筛选出吸附容量大的氨基改性树脂、氨基改性及金属负载树脂进行结构分析,改性前NDA-1800和XAD-4树脂以中孔为主,NDA-150树脂以微孔为主,改性后树脂孔径均有所降低。
     系统考察了不同改性树脂对低浓度氟离子的吸附特性。氨基改性树脂(NDA-1800-NH2、XAD-4-NH2、NDA-150-NH2)的静态吸附等温线能用R-P方程进行较好的描述,热力学结果表明该反应是自发进行的放热反应。动力学实验结果符合二级动力学方程,三种改性树脂对氟离子的Qe顺序为NDA-1800-NH2 >XAD-4-NH2>NDA-150-NH2。动态穿透吸附曲线符合Thomas模型和Y-N模型,以出水为1mg/L为穿透点,NDA-1800-NH2、XAD-4-NH2、NDA-150-NH2的穿透时间分别为11h、9h、4h,进一步证明了NDA-1800-NH2的优越性。
     将氨基改性后的树脂负载金属制得系列复合功能除氟材料(NDA-1800-N-S-Fe、XAD-4-N-S-Fe、NDA-150-N-S-Fe),静态吸附等温线能用Langmuir方程进行拟合,热力学结果表明该反应是自发进行的吸热反应。动力学实验结果符合二级动力学方程,三种改性树脂对氟离子的吸附量顺序为NDA-1800-N-S-Fe     通过对改性树脂吸附氟离子前后的FT-IR及XPS分析可知,氨基改性树脂对氟离子的吸附主要是物理作用,即质子化的氨基与氟离子之间的静电作用。孔结构也对吸附性能有一定的影响,孔径越大,负载的氨基含量越多,从而引起吸附量的增加。同时粒径在动态吸附过程中发挥了重要作用,粒径越小,传质速率越快,吸附容量越大。氨基改性及金属负载树脂对氟离子的吸附主要以化学作用为主,即铁离子与氟离子之间的络合作用,同时NDA-1800上氨基与氟离子之间的物理作用表观较明显。
In our country, ground water with high concentration of fluoride is widely distributed in 27 provinces, municipalities or autonomous regions. In arid or semiarid areas of north and northwest China, a large number of people drink water containing high concentrated fluoride which poses a significant health hazard. At the same time, high-concentrated fluoride effluent from rubber, fertilizer, semiconductor factories, glass, ceramics, electroplating industries, mine or pharmaceutical industries has caused serious impact on ecological environment. Therefore, research on available techniques for the removal of fluoride has been a very hot topic in the realm of environmental protection at home and abroad. In this paper, several kinds of resins synthesized by using new methods were used to remove fluoride in the aqueous media. IR-FT, SEM, Pore Structure and XPS were used to characterize the structure and properties of the resins. The mechanism for the removal of fluoride has also been discussed. The object of current study aims at exploring a new way to the deep removal of fluoride.
     Series of differently functional resins were synthesized by nitration-amination, sulfonation-metal supporting, and nitration-sulfonation-amination-metal supporting, using styrene-divinylbenzene polymer (NDA-1800, XAD-4, NDA-150) as matrix. Amino modified resins and amino modified-metal ion supported resins, which had large adsorption capacities, were chosen by adsorption isotherms to study the structure. The result shows that mesopores were dominant for NDA-1800 and XAD-4 modified resins, while micropores for NDA-150.
     The adsorption performance of the modified resins was also studied. Adsorption isotherms of the amino modified resins indicated that R-P model fitted better with the experimental data than Langmuir and Freundlich isotherm. The values of thermodynamic parameters confirmed that the fluoride sorption was spontaneous and exothermic. The kinetic curves and obtained adsorption rate followed the pseudo-second-order better and Qe followed NDA-1800-NH2>XAD-4-NH2> NDA-150-NH2. Thomas and Y-N model could be used to predict the breakthrough point in the column adsorption. The breakthrough time of NDA-1800-NH2, XAD-4-NH2 and NDA-150-NH2 were 11h,9h and 5h, respectively, when using 1mg/L as the effluent concentration.
     Series of compound functional materials (NDA-1800-N-S-Fe、XAD-4-N-S-Fe、NDA-150-N-S-Fe) to remove fluoride were synthesized by supporting metal to the amino modified resins. Static adsorption isotherms fitted Langmuir model better. Thermodynamic parameters showed that the reaction was also spontaneous and exothermic. The date of dynamic experiment also followed the pseudo-second-order The adsorption capacity of the above three resins followed the order: NDA-1800-N-S-Fe     FT-IR and XPS indicated the physic-sorption such as electrostatic attraction between the protonated amine and fluoride. Pore structure and granularity played important part in the adsorption of fluoride. As for amino modified-metal ion supported reins and fluoride, chemical adsorption was dominant. Fluoride was adsorbed by complexion formation of iron. The physical interaction between fluoride and the amino groups on NDA-1800 was also distinct.
引文
[1]杨红晓,周爱东.治理氟污染,实现可持续发展.有色矿治,2005,(S1):46-47.
    [2]刘丽.新型氟离子吸附剂的除氟研究.成都理工大学,2009.
    [3]刘艳萍,刘建,谢丰.氨基磷酸树脂载铁性能及其应用.山西建筑,2006,(01):194-195.
    [4]徐莉英,邢光熹.土壤中的氟Ⅰ.土壤中氟的分布.土壤,1995,(04):191-194.
    [5]WHO. Fluorine and fluorides. Geneva, Switzerland:Environmental health criteria,2004:36.
    [6]杨林锋,彭明霞,文琛,黄精明,余锦龙.氟污染现状及其治理技术研究进展.江西科学,2010,28(5):641-645,665.
    [7]Wajima, T.,Umeta, Y.,Narita, S.,Sugawara, K. Adsorption behavior of fluoride ions using a titanium hydroxide-derived adsorbent. Desalination,2009, 249(1):323-330.
    [8]李超平.氟化物污染来源、治理技术及其源强.钢铁技术2007,(3):51-54.
    [9]李国平,邱阳,夏明芳,王志良,张利民.氟苯生产废水处理及资源化技术.化工环保,2007,27(5):437-441.
    [10]许宁.磷肥工业废气中氟资源的综合利用.江苏化工,2006,(15):17-19.
    [11]童浩.半导体行业含氟废水处理的研究.环境科学与管理,2009,34(7):75-77,82.
    [12]张强国,谢果.氟危害及重庆氟污染的对策.重庆科技学院学报,2005,(04):17-19+27.
    [13]杨国洲,姜丽娟,郑明凯.高氟区地下水水质处理工艺研究.环境科学与管理,2009,34(11):90-92,100.
    [14]徐明钻,许永胜.地方性氟中毒研究——以贵州省为例.安徽农业科学,2008,36(11):4660-4661,4665.
    [15]朱其顺,许光泉.中国地下水氟污染的现状及研究进展.环境科学与管理,2009,34(1):42-44,51.
    [16]郝阳,孙殿军,等.中国大陆地方性氟中毒防治动态与现状分析.中国地方病 学杂志,2002,21(1):63-68.
    [17]李江平,黎昌健,罗莉.氟与人体健康.牙膏工业,2004,(4):33-34.
    [18]杨林锋,彭明霞,文琛,黄精明,余锦龙.氟污染现状及其治理技术研究进展.江西科学,2010,(05):641-645+665.
    [19]黎昌健,蒙.,蒋才武.地氟病在中国大陆的流行现状.实用预防医学,2008,15(4):1295-1298.
    [20]Sujana, M. G.,Soma, G.,Vasumathi, N.,Anand, S. Studies on fluoride adsorption capacities of amorphous Fe/Al mixed hydroxides from aqueous solutions. Journal of Fluorine Chemistry,2009,130(8):749-754.
    [21]张超杰,周.含氟治理研究进展.给水排水,2002,28(12):26-29.
    [22]Amor, Z.,Bariou, B.,Mameri, N.,Taky, M.,Nicolas, S.,Elmidaoui, A. Fluoride removal from brackish water by electrodialysis. Desalination,2001,133(3):215-223.
    [23]刘庆斌.无机含氟废水处理的研究进展.黄石理工学院学报,2009,25(4):7-10.
    [24]王丽敏,李佳丽,李秋荣.电絮凝法去除工业废水中的f^-实验分析.大庆石油学院学报,2005,29(3):36-38,122.
    [25]魏平方,许春田.双极铝电极电凝聚除氟研究.油气田环境保护,2000,10(1):20-23.
    [26]范建伟,张杰.钙盐-电凝聚法处理含氟工业废水.工业用水与废水,2006,37(1):48-51.
    [27]吕建国,张明霞,索超.电渗析技术的研究进展.甘肃科技,2010,(18):85-88.
    [28]涂丛慧,王晓琳.电渗析法去除水体中无机盐的研究进展.水处理技术,2009,35(2):14-18,42.
    [29]Lahnid, S.,Tahaikt, M.,Elaroui, K.,Idrissi, I.,Hafsi, M.,Laaziz, I.,Amor, Z.,Tiyal, F.,Elmidaoui, A. Economic evaluation of fluoride removal by electrodialysis. Desalination,2008,230(1-3):213-219.
    [30]Tahaikt, M.,Achary, I.,Menkouchi Sahli, M. A.,Amor, Z.,Taky, M.,Alami, A.,Boughriba, A.,Hafsi, M.,Elmidaoui, A. Defluoridation of Moroccan groundwater by electrodialysis:continuous operation. Desalination,2006,189(1-3):215-220.
    [31]Ndiaye, P. I.,Moulin, P.,Dominguez, L.,Millet, J. C.,Charbit, F. Removal of fluoride from electronic industrial effluentby RO membrane separation. Desalination, 2005,173(1):25-32.
    [32]张威,杨胜科,等.反渗透技术去除地下水中氟的方法.长安大学学报:自然科学版,2002,22(6):116-118.
    [33]王玉坤,王翠华,顾宝群,王福田,刘俊龙,王後生.电渗析与反渗透技术在沧州农村分质供水中的除盐降氟效果分析.南水北调与水利科技,2010,8(4):48-52.
    [34]王淑娜,侯素霞,陈建军,万敬敏.反渗透淡化高氟苦咸水试验研究.河北建筑工程学院学报,2007,25(1):49-51.
    [35]Meenakshi, S.,Viswanathan, N. Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science,2007,308(2):438-450.
    [36]曹秀菊.负载三价金属离子的Amberlite 200CT阳离子交换树脂去除氟和砷的研究.东北师范大学,2009.
    [37]刘庆斌.无机含氟废水处理的研究进展.黄石理工学院学报,2009,(04):7-10.
    [38]李春青,普红平.含氟废水的吸附处理.化工时刊,2006,(04):64-68.
    [39]王国建,王东田,陈霞,尹方平.吸附法除氟技术的原理与方法.环境科学与管理,2008,(08):121-124+165.
    [40]王国建,王东田,陈霞,尹方平.吸附法除氟技术的原理与方法.环境科学与管理,2008,33(8):121-124,165.
    [41]周钰明,余春香.吸附法处理含氟废水的研究进展.离子交换与吸附,2001,17(5):369-376.
    [42]刘斐文,肖举强.含氟水处理过程的“吸附交换”机理.离子交换与吸附,1991,7(5):378-382.
    [43]李新云,应波,等.羟基磷灰石降氟剂合成方法降氟机理研究进展.卫生研究,2002,31(2):136-138.
    [44]王萍,李国昌.羟基磷灰石的制备及除氟性能研究.环境工程学报,2009,3(3):564-568.
    [45]Biswas, K.,Gupta, K.,Ghosh, U. C. Adsorption of fluoride by hydrous iron(Ⅲ)-tin(Ⅳ) bimetal mixed oxide from the aqueous solutions. Chemical Engineering Journal,2009,149(1-3):196-206.
    [46]Biswas, K.,Gupta, K.,Goswami, A.,Ghosh, U. C. Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum(III)-chromium(III) ternary mixed oxide. Desalination,2010,255(1-3):44-51.
    [47]Teng, S.-X.,Wang, S.-G,Gong, W.-X.,Liu, X.-W.,Gao, B.-Y. Removal of fluoride by hydrous manganese oxide-coated alumina:Performance and mechanism. Journal of Hazardous Materials,2009,168(2-3):1004-1011.
    [48]Dou, X.,Zhang, Y.,Wang, H.,Wang, T.,Wang, Y. Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water. Water Research, In Press, Accepted Manuscript.
    [49]霍亚坤,黄霞,丁文明,党丹.铁-镧复合氧化物颗粒吸附剂除氟性能研究.现代化工,2010,(2):57-59,61.
    [50]吕亚娟,白林,严子春.活性氧化镁除氟条件的研究.甘肃高师学报,2010,15(5):22-24.
    [51]Liu, H.,Deng, S.,Li, Z.,Yu, G.,Huang, J. Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water. Journal of Hazardous Materials,2010,179(1-3):424-430.
    [52]Kamble, S. P.,Jagtap, S.,Labhsetwar, N. K.,Thakare, D.,Godfrey, S.,Devotta, S.,Rayalu, S. S. Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chemical Engineering Journal,2007, 129(1-3):173-180.
    [53]Zhao, Y.,Li, X.,Liu, L.,Chen, F. Fluoride removal by Fe(III)-loaded ligand exchange cotton cellulose adsorbent from drinking water. Carbohydrate Polymers, 2008,72(1):144-150.
    [54]Viswanathan, N.,Meenakshi, S. Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads. Journal of Fluorine Chemistry,2008,129(6):503-509.
    [55]Viswanathan, N.,Meenakshi, S. Development of chitosan supported zirconium(IV) tungstophosphate composite for fluoride removal. Journal of Hazardous Materials, 2010,176(1-3):459-465.
    [56]Viswanathan, N.,Meenakshi, S. Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials,2010, 178(1-3):226-232.
    [57]李春青,普红平.含氟废水的吸附处理.化工时刊,2006,20(4):64-68.
    [58]董岁明,闰英桃,董延芳.载铁改性沸石吸附剂去除含氟水中氟离子的研究.汉中师范学院学报,2004,22(3):57-60.
    [59]王曙光,李延辉,等.碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究.高等学校化学学报,2003,24(1):95-99.
    [60]杨磊,赵文岩,马静静,萨仁其其格.粉煤灰负载铈吸附剂的制备研究.稀土,2009,(06):83-86.
    [61]杨磊.稀土负载粉煤灰吸附剂的制备及其对地下水中氟的去除研究.硕士,内蒙古大学,2009.
    [62]詹予忠,朱小丽,李玲玲,刘家永,徐军,陈宜很.硅胶负载氧化锆的吸附除氟研究.郑州大学学报(工学版),2007,(04):20-23.
    [63]陈培榕,吴耀国,刘保超,谭英.重金属吸附剂壳聚糖的改性研究进展.化工环保,2009,(02):126-130.
    [64]姚瑞华,孟范平,张龙军,马冬冬.负载金属镧的壳聚糖对氟离子的吸附动力学.离子交换与吸附,2009,(04):319-326.
    [65]Yao, R.,Meng, F.,Zhang, L.,Ma, D.,Wang, M. Defluoridation of water using neodymium-modified chitosan. Journal of Hazardous Materials,2009, 165(1-3):454-460.
    [66]李海静,魏俊富,赵孔银,郑建,袁峰.含季铵基离子交换纤维的制备研究.离子交换与吸附,2009,(06):542-549.
    [67]邓慧,廖学品,石碧.胶原纤维负载铈(CeCF)吸附水体中氟的研究.皮革科学与工程,2006,(06):9-14.
    [68]刘瑞霞,汤鸿霄.负载镧纤维吸附剂对氟离子的吸附性能.环劈科学,2000,(04):34-37.
    [69]刘晓超,马丽丽.大孔吸附树脂在有机废水处理中的应用的研究进展.交通环保,2004,(04):35-38.
    [70]邓丛林.窄分布微孔树脂的绿色合成及其吸附性能研究.南京大学环境工程2008.
    [71]李华,孔令东.改性阳离子交换树脂的制备及其除氟性能研究.中北大学学报 (自然科学版),2008,(04):352-355.
    [72]Solangi, I. B.,Memon, S.,Bhanger, M. I. An excellent fluoride sorption behavior of modified amberlite resin. Journal of Hazardous Materials,2010, 176(1-3):186-192.
    [73]Solangi, I. B.,Memon, S.,Bhanger, M. I. Removal of fluoride from aqueous environment by modified Amberlite resin. Journal of Hazardous Materials,2009, 171(1-3):815-819.
    [74]石太宏,陈坚,邹书剑.负载型吸附剂在废水处理中的研究进展.安全与环境工程2008,15(4):34-38.
    [75]杨天明,葛建团,韩菲.铁铝复合氧化物吸附砷氟性能实验研究.广东化工,2010,37(6):29-31.
    [76]Mohapatra, M.,Rout, K.,Singh, P.,Anand, S.,Layek, S.,Verma, H. C.,Mishra, B. K. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique. Journal of Hazardous Materials,2011, 186(2-3):1751-1757.
    [77]Zhao, X.,Wang, J.,Wu, F.,Wang, T.,Cai, Y.,Shi, Y.,Jiang, G. Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. Journal of Hazardous Materials,2010,173(1-3):102-109.
    [78]Viswanathan, N.,Sairam Sundaram, C.,Meenakshi, S. Development of multifunctional chitosan beads for fluoride removal. Journal of Hazardous Materials, 2009,167(1-3):325-331.
    [79]郝一莼,孙小单,徐桐,席淑华.氟离子检测分析方法研究进展.中国地方病防治杂志,2010,(06):412-415.
    [80]陈丹红.用氟离子选择电极测定水中的氟.磷肥与复肥,2009,(03):70.
    [81]GB-T7484-1987.水质氟化物的测定.离子选择性电极法.
    [82]Kousalya, G. N.,Rajiv Gandhi, M.,Sairam Sundaram, C.,Meenakshi, S. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III). Carbohydrate Polymers,2010,82(3):594-599.
    [83]Wang, M.,Xu, L.,Zhai, M.,Peng, J.,Li, J.,Wei, G. [gamma]-ray radiation-induced synthesis and Fe(III) ion adsorption of carboxymethylated chitosan hydrogels. Carbohydrate Polymers,2008,74(3):498-503.
    [84]Passos, C. G.,Ribaski, F. S.,Simon, N. M.,dos Santos Jr, A. A.,Vaghetti, J. C. P.,Benvenutti, E. V.,Lima, E. C. Use of statistical design of experiments to evaluate the sorption capacity of 7-amine-4-azaheptylsilica and 10-amine- 4-azadecylsilica for Cu(II), Pb(II), and Fe(III) adsorption. Journal of Colloid and Interface Science,2006, 302(2):396-407.
    [85]Smith, B. Infrared Spectral Interpretation—A Systematic Approach. CRC Press, 1998.
    [86]Viswanathan, N.,Sundaram, C. S.,Meenakshi, S. Removal of fluoride from aqueous solution using protonated chitosan beads. Journal of Hazardous Materials, 2009,161(1):423-430.
    [87]Xie, Y.,Li, S.,Wang, F.,Liu, G. Removal of perchlorate from aqueous solution using protonated cross-linked chitosan. Chemical Engineering Journal,2010, 156(1):56-63.
    [88]王幸宜主编.催化剂表征.华东理工大学出版社,2008.
    [89]近藤精一、石川达雄、安部郁夫著.吸附化学.北京:化学工业出版社,2005.
    [90]Maliyekkal, S. M.,Anshup,Antony, K. R.,Pradeep, T. High yield combustion synthesis of nanomagnesia and its application for fluoride removal. Science of The Total Environment,2010,408(10):2273-2282.
    [91]Oguz, E. Equilibrium isotherms and kinetics studies for the sorption of fluoride on light weight concrete materials. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,295(1-3):258-263.
    [92]Maliyekkal, S. M.,Shukla, S.,Philip, L.,Nambi, I. M. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chemical Engineering Journal,2008,140(1-3):183-192.
    [93]Redlich O, P. D. L. A useful adsorption isotherm. journal of Physocal chemistry, 1959, (63):1024.
    [94]荆晓生.新型亚胺基二乙酸螯合树脂的合成及其对二价重金属离子的吸附分离性能研究.南京大学环境工程,2009.
    [95]von Oepen, B.,Kordel, W.,Klein, W. Sorption of nonpolar and polar compounds to soils:Processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere,1991,22(3-4):285-304.
    [96]Das, D. P.,Das, J.,Parida, K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. Journal of Colloid and Interface Science,2003, 261(2):213-220.
    [97]Jimenez-Reyes, M.,Solache-Rios, M. Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite. Journal of Hazardous Materials,2010, 180(1-3):297-302.
    [98]Solangi, I. B.,Bhatti, A. A.,Kamboh, M. A.,Memon, S.,Bhanger, M. I. Comparative fluoride sorption study of new calix[4]arene-based resins. Desalination, 2011,272(1-3):98-106.
    [99]Meenakshi, S.,Sundaram, C. S.,Sukumar, R. Enhanced fluoride sorption by mechanochemically activated kaolinites. Journal of Hazardous Materials,2008, 153(1-2):164-172.
    [100]刘鹏,龙超,李莹,李爱民,张全兴.超高交联吸附树脂对气体中三氯乙烯的吸附研究.离子交换与吸附,2009,(05):411-418.
    [101]Hamdaoui, O. Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns:Modeling. Journal of Hazardous Materials,2009,161(2-3):737-746.
    [102]Liu, F.-Q.,Xia, M.-F.,Yao, S.-L.,Li, A.-M.,Wu, H.-S.,Chen, J.-L. Adsorption equilibria and kinetics for phenol and cresol onto polymeric adsorbents:Effects of adsorbents/adsorbates structure and interface. Journal of Hazardous Materials,2008, 152(2):715-720.
    [103]谢虹,贾文波,吴志刚.活性氧化铝除氟剂的除氟性能研究.华中科技大学学报(医学版),2005,(05):644-646.
    [104]Boudou, J. P.,Parent, P.,Suarez-Garcia, F.,Villar-Rodil, S.,Martinez-Alonso, A.,Tascon, J. M. D. Nitrogen in aramid-based activated carbon fibers by TPD, XPS and XANES. Carbon,2006,44(12):2452-2462.
    [105]黄贱苟,徐满才,李海涛,史作清,何炳林.非水体系中大孔交联酰胺基树脂的吸附热力学.物理化学学报,2003,(03):208-211.
    [106]赵雅萍,王军锋,陈甫华.载Fe(Ⅲ)配位体交换棉纤维吸附剂在去除饮用水中氟离子的应用.环劈化学,2003,(01):64-68.
    [107]李亚峰,李亭亭,秦亚敏.铁改性沸石对含氟饮用水的吸附试验.沈阳建筑大学学报(自然科学版),2010,(05):962-965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700