薄壁结构轴向冲击能量吸收性能分析与改进设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击能量吸收性能对于结构在冲击、爆炸等极端载荷工况下的安全性能至关重要。薄壁结构由于具有较高的能量吸收效率,已经成为工程中广泛应用的和重要的冲击能量吸收结构形式。薄壁结构的能量吸收行为与结构形式,材料特性以及载荷工况等因素存在复杂而敏感的关系。理解薄壁结构在冲击载荷下的能量吸收机理与变形模式,提出具有高能量吸收性能的新型结构形式,一直是科研工作者及工程师关心的问题,尤其是汽车工业领域。基于该需求,本论文研究了薄壁结构在低速冲击下的能量吸收行为,建立了改进能量吸收性能的薄壁结构横截面非凸化方法,并提出了具有高能量吸收性能的非凸截面薄壁管和非凸多胞管;提出了基于仿生的非凸薄壁管能量吸收性能改进设计的方法,给出了具有高能量吸收性能的含分段增强板的非凸薄壁结构;采用多胞化性能改进机理,研究了圆柱夹层多胞管。具体研究内容和成果如下。
     (1)提高薄壁结构能量吸收性能的截面非凸化设计方法以及非凸薄壁结构轴向冲击能量吸收性能研究。通过对高性能薄壁能量吸收结构所具有的特点的分析,发现了传统凸多边形薄壁管在能量吸收性能方面的局限性,提出了突破这一局限性并提高薄壁结构能量吸收性能的截面非凸化设计方法。根据该方法设计了一类非凸薄壁结构,并采用数值模拟考察了其在轴向冲击下的能量吸收性能。数值模拟结果表明非凸薄壁管在轴向冲击下的能量吸收性能显著优于传统的方管。采用超折叠单元理论推导了非凸截面薄壁管在轴向冲击下的平均载荷理论预测公式,并指出了简化的超折叠单元方法的局限性。采用有限元分析对基于超折叠单元方法所推导的平均力理论预测公式进行了验证。同时还讨论了非凸截面薄壁管在壁厚较大情况下的膨胀—收缩非紧凑变形模式问题。
     (2)非凸薄壁管与多胞方管轴向冲击的能量吸收对比研究。对比研究了方管,多胞方管和非凸管在轴向冲击下的能量吸收性能。并且,开展了这三类薄壁管在等材料用量,等能量吸收及等最大初始峰值力三种特定性能需求情况下的能量吸收性能研究。发现多胞方管和非凸截面管无论是能量吸收效率和载荷一致性方面都明显优于传统方管。多胞方管和非凸截面管在轴向压缩下的折叠波长都明显小于方管,因此,在相同的结构长度内能形成更多皱褶,从而提高能量吸收。与多胞方管比,非凸截面管在能量吸收效率上也有明显优势。更重要的是非凸截面管结构形式简单,具有可制造性好的优势。
     (3)非凸多胞管轴向冲击能量吸收性能研究。结合截面多胞化和截面非凸化这两种提高薄壁管能量吸收性能的方法,提出了一类非凸截面多胞管。非凸截面多胞管同时从截面外轮廓及截面内部增加了截面折角数目,并且保持折角处相邻壁板夹角保持在最优范围内。使得分布在变形剧烈的折角附近的材料比例大幅度增加从而提高结构的能量吸收效率。将超折叠单元方法推广到截面的四板交叉的十字形部分,推导了非凸多胞管轴向压缩能量吸收性能理论预测公式。理论公式与采用有限元数值模拟结果相一致。研究表明,非凸截面多胞管能量吸收性能优于方管、多胞方管及非凸截面管,还可在一定程度上避免非凸截面管潜在的整体膨胀—收缩非紧凑变形问题。
     (4)基于仿生的非凸薄壁管能量吸收性能改进设计方法与含分段增强板的非凸薄壁结构冲击能量吸收性能研究。根据竹子具有节及节隔膜的构型特征,探讨了竹节及节隔膜对于提高竹子结构的承载力的作用。受竹节及节隔膜大幅度提高竹横向强度的启发,提出了一种仿生横隔板加强的非凸薄管。比较了这类仿生结构与方管及非凸截面管在轴向冲击时的能量吸收性能,发现这类新型仿生结构不仅能保持非凸薄壁管能力吸收性能高的特点,也能有效抑制其截面整体膨胀—收缩非紧凑变形。研究了这类结构的横隔板数及壁厚对能量吸收的影响,发现能使仿生非凸薄壁管产生渐进稳定变形的最少横隔板数时的结构具有最佳的能量吸收效率。研究表明,含有类似竹节的横向隔板的仿生非凸薄壁管在轴向冲击下,能量吸收能力强,变形模式稳定,是一类高性能的薄壁能量吸收结构。
     (5)薄壁圆柱夹层多胞管轴向冲击下的能量吸收性能研究。根据方管和圆管在轴向冲击下能量吸收的结构有效率公式,发现圆管的结构有效率明显高于方管,并分析了其原因。引入截面面积系数,改进了结构密实度的定义,使得几何等效结构具有相同的密实度值。受圆管能量吸收性能高的启发,研究了一类圆柱夹层多胞管。通过数值模拟发现圆柱夹层多胞管与类似参数的方形多胞管比,其能量吸收能力提高约一半。对圆柱夹层多胞管的几何构形进行了参数分析,发现其结构壁厚、环向胞元数目和胞元层数都对能量吸收性能有显著的影响。
     本文工作得到国家自然科学基金项目90816025、国家重点基础研究(973)计划课题2011CB610304、国家重大科技专项2009ZX04014-034的资助,在此表示感谢。
Energy absorption of structures is essential for security service of structures if extreme load conditions such as explosion and impact occure. Thin-walled structures are used widely as kinetic energy absorbers as they are high energy absorption and weight efficient. Numerious investigations are carried out to explore energy absorption of thin-walled structures to meet the strong demand of the automotive industry. Howerer, the energy absorption behavior for most type of thin-walled structures under impact load is still not clear, due to the complexity of this problem. The energy absorption of thin-walled structures is closely relate to factors such as structural configuration, material properties and load conditions. It is still a major goal for scientists and engineers to understand the energy absorption mechnism and deformation mode of thin-walled structures and guide their industrial applications. In this thesis, the following aspects to the energy absorption behavior of thin-walled structures under low velocity impact are investigated. A strategy named non-convexity of cross-section is proposed and two types of thin-walled structures named as non-convex multi-corner columns (abbr. NCMC) and non-convex multi-cell columns (abbr. NCMCELL) are developed. A type of bio-inspired bulkhead reinforced non-convex multi-corner columns (abbr. BI-NCMC) and A type of cylindrical multi-cell columns (abbr. CMC)are proposed. The main contents and conclusions of this dissertation are as follows:
     (1) Cross-section non-convexity and energy absorption of non-convex multi-corner thin-walled columns subjected to axial crushing. A strategy to improve energy absorption efficiency of thin-walled columns by introducing extra non-convex corners on the cross section is proposed. Several profiles of NCMC obtained through this strategy are presented and their energy absorption capacities under axial crush are investigated analytically and numerically. Explicit formulations for predicting the mean crushing force of NCMC are derived based on the theory of Super Folding Element (abbr.SFE) method, and the predicting results of these formulations have good agreement with the numerical simulation performed by explicit non-linear finite element method. The comparisons of the NCMC and square column show that the former behaves better energy absorption performance.
     (2) Comparative study of energy absorption performance of NCMC and multi-cell square columns (abbr. SMC)subject to axial crushing. Energy absorption of NCMC subject to axial crush is investigated, and their performance is compared with square and SMC. First, the three type of columns with the same wall thickness is investigated using explicit non-linear finite element software ANSYS/LS-DYNA. And then, investigation of their energy absorption performance under three different requirements is carried out, which are the same amount of material usage, the same energy absorption and the same maximum peak crushing force. The results show, NCMC are superior to square column as energy absorber no matter in specific energy absorption or crush force efficiency. NCMC performance better than SMC except for crush force efficiency in some cases.
     (3) Axial crushing of non-convex multi-cell columns. A strategy to improve energy absorption efficiency of thin-walled columns is proposed, which is by introducing extra non-convex corners as well as introducing internal webs in the cross section. Both the two ways increases the material distribution proportion near severe deformation corners, which can improve energy absorption efficiency of structure. Several NCMCELL obtained through this strategy are presented and their energy absorption capacities under axial crush are investigated analytically and numerically. Explicit formulations for predicting the mean crushing force of NCMCELL are derived based on the theory of Super Folding Element method. Numerical simulation performed by explicit non-linear finite element method shows that the NCMCELL subjected to axial crash deforms progressively and absorbs a large amount of energy. The comparisons of the NCMCELL with square, NCMC and SMC show that the NCMCELL behaves better in energy absorption.
     (4) Energy absorption of boi-inspired bulkhead reinforced non-convex multi-corner columns. A type of BI-NCMC is proposed to improve energy absorption performance. First, the non-compact expansion-contraction deformation mode of NCMC subjected to axial crush is discussed. And then, transverse bulkheads are introduced to restrain the non-compact expansion-contract deformation mode, which is inspired by the phenomenon of bamboo node and nodal diaphragm enhanced the transverse strength of bamboo. Energy absorption of this type of BI-NCMC is investigated numerically. Progressive deformation mode is achieved and this structure shows high energy absorption performance. The role of the transverse bulkheads is to change the deformation mode from expansion-contract mode to progressive mode, while the energy absorption of the bulkheads is little. Finally, a parametric analysis of the column is carried out, and it is found that the column with highest energy absorption efficiency is the one with least transverse bulkheads and still maintain progressive deformation mode.
     (5) Energy absorption of cylindrical multi-cell columns. The structural effectiveness of circular tube and square tube is compared and the forner peforms better than the latter. A modified solidity ratio based on the cross-section area coefficient is difined to ensure the geometric equivalent structure with the same value of solidity ratio. A type of CMC is proposed to improve energy absorption performance, which is inspired by the high energy absorption performance of circular tube. Numerical examples illustrate that CMC is more efficient than square column and SMC in energy absorption. In addition, a parametric study is conducted to investigate the influence of geometrical parameters on crashworthiness. And it is found that the wall thickness, the number of cells alone the radial and circumferential directions have a distinct effect on the energy absorption.
     This research is supported by National Natural Science Foundation of China (No.90816025), National Basic Research Program (973Program) of China (No.2011CB610304) and National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2009ZX04014-034).The financial supports are greatly acknowledged.
引文
[1]牛顿,王克迪.自然哲学之数学原理[M].西安:陕西人民出版社,2001.
    [2]JOHNSON W. Impact strength of materials [M]. London:Edward Arnold,1983.
    [3]余同希,卢国兴,华云龙.材料与结构的能量吸收:耐撞性·包装·安全防护[M].北京:化学工业出版社,2006.
    [4]SCHWEIZERHOF K, NILSSON L, HALLQUIST J. Crashworthiness analysis in the automotive industry [J]. International journal of computer applications in technology,1992,5(2): 134-156.
    [5]WANG L, YANG L, HUANG D. An impact dynamics analysis on a new crashworthy device against ship-bridge collision [J]. International Journal of Impact Engineering,2008,35(8): 895-904.
    [6]雷正保.大变形结构的耐撞性[D].长沙:中南大学,2004.
    [7]BISAGNI C. Crashworthiness of helicopter subfloor structures [J]. International Journal of Impact Engineering,2002,27(10):1067-1082.
    [8]HEIMBS S. Computational methods for bird strike simulations:A review [J]. Computers & Structures,2011,89(23-24):2093-2112.
    [9]葛树文,崔国华,马若丁.基于能量吸收控制的工程车辆倾翻保护结构设计方法[J].煤炭学报,2008,33(1):111-115.
    [10]雷正保,钟志华.磨床砂轮破裂后防护罩变形过程的有限元分析[J].机械科学与技术,1999,18(4):80-83.
    [11]宣海军,陆晓,洪伟荣.航空发动机机匣包容性研究综述[J].航空动力学报,2010,25(8):1860-1870.
    [12]LI Q M, REID S R, WEN H M. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering,2005,32(1-4):224-284.
    [13]余同希,华云龙.核电站中管道破裂后的甩动及其防护[J].压力容器,1986,3(1):70-76.
    [14]戴葆青,孟娜,黄玉果.摩擦式矿井提升防过卷缓冲装置的优越性分析[J].煤矿机械,2009,30(4):149-150.
    [15]HUI S K, YU T X. Modelling of the effectiveness of bicycle helmets under impact [J]. International Journal of Mechanical Sciences,2002,44(6):1081-1100.
    [16]秦福德,童明波,何思渊.航空航天返回过程的轻质能量吸收器[J].东南大学学报(自然科学版),2009,39(4):790-794.
    [17]张伟,庞宝君,张泽华.航天器波纹防护屏高速撞击实验研究[J].宇航学报,2000,21(1):79-84.
    [18]WALKER J D. From Columbia to Discovery:Understanding the impact threat to the space shuttle [J]. International Journal of Impact Engineering,2009,36(2):303-317.
    [19]于成果,李良春.空投安全着陆的实现途径[J].包装工程,2007,28(10):135-137.
    [20]TENG X, WIERZBICKI T, HUANG M. Ballistic resistance of double-layered armor plates [J]. International Journal of Impact Engineering,2008,35(8):870-884.
    [21]MAITI S, GIBSON L, ASHBY M. Deformation and energy absorption diagrams for cellular solids [J]. Acta Metallurgica,1984,32(11):1963-1975.
    [22]苏远,汤伯森.缓冲包装理论基础与应用[M].北京:化学工业出版社,2006.
    [23]DU BOIS P, CHOU C C, FILETA B. Vehicle crashworthiness and occupant protection [M]. Michigan:2004.
    [24]WANG H, MEREDITH D. The crush analysis of vehicle structures [J]. International Journal of Impact Engineering,1983,1(3):199-225.
    [25]钟志华.汽车碰撞安全技术[M].北京:机械工业出版社,2003.
    [26]黄世霖,张金换,王晓冬.汽车碰撞与安全[M].北京:清华大学出版社,2000.
    [27]OLABI A G, MORRIS E, HASHMI M S J. Metallic tube type energy absorbers:A synopsis [J]. Thin-Walled Structures,2007,45(7-8):706-726.
    [28]AMERATUNGA S, HI JAR M, NORTON R. Road-traffic injuries:confronting disparities to address a global-health problem [J]. The Lancet,2006,367:1533-1540.
    [29]马春生,黄世霖,张金换.汽车正面碰撞法规中乘员保护指标探讨[J].公路交通科技,2004,21(1):94-97.
    [30]夏秀岳.汽车正面碰撞结构耐撞性与乘员保护关系研究[D].重庆:重庆大学,2008.
    [31]CRAWFORD H. Survivable Impact Forces on Human Body Constrained by Full Body Harness, HSL, Docket No. [R]. Health and Safety Executive,2003.
    [32]HUTCHINSON J, KAISER M J, LANKARANI H M. The head injury criterion (HIC) functional [J]. Applied mathematics and computation,1998,96:1-16.
    [33]YUEN S C K, NURICK G. The energy-absorbing characteristics of tubular structures with geometric and material modifications:an overview [J]. Applied Mechanics Reviews,2008, 61:020802.
    [34]LEE D W. An innovative inflatable morphing body structure for crashworthiness of military and commercial vehicles [D]. Michigan:University of Michigan,2008.
    [35]PEDEN M. World Health Organization Geneva. World report on road traffic injury prevention, Docket No. [R].2004.
    [36]陈秉智,张向海,马纪军.高速动车组被动安全性和耐撞性研究[J].计算力学学报,2011,28(S1):152-158.
    [37]江建,张文明,段广洪.百吨级工程车辆FOPS落锤冲击的动态仿真[J].振动与冲击,2011,30(10):241-244.
    [38]钱立新.世界重载铁路运输技术的最新进展[J].机车电传动,2010,(1):3-7.
    [39]朱西产.汽车正面碰撞试验法规及其发展趋势的分析[J].汽车工程,2002,24(1):1-5+14.
    [40]徐业平,陶绪强,张宏波.中美欧汽车碰撞安全法规解析[J].合肥工业大学学报(自然科学版),2010,33(11):1612-1617.
    [41]中国汽车技术研究中心、东方汽车公司技术公司、清华大学.GB 11551-2003乘用车正面碰撞的乘员保护[S].北京:中国标准出版社,2003.
    [42]中国汽车技术研究中心.GB 20071-2006汽车侧面碰撞的乘员保护[S].北京:中国标准出版社,2006.
    [43]付锐,陈荫三,高延令.中国汽车被动安全性研究现状分析[J].中国公路学报,1996,(4):95-99.
    [44]刘荣强,罗昌杰,王闯.腿式着陆器用缓冲器缓冲性能及其评价方法研究[J].宇航学报,2009,30(3):1179-1188.
    [45]张伟.基于简化模型的汽车防撞梁仿真优化研究[D].大连:大连理工大学,2010.
    [46]胡志强,崔维成.船舶碰撞机理与耐撞性结构设计研究综述[J].船舶力学,2005,9(2):131-142.
    [47]ABRAMOWICZ W. Thin-walled structures as impact energy absorbers [J]. Thin-Walled Structures,2003,41(2-3):91-107.
    [48]卢天健,何德坪,陈常青.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535.
    [49]GIBSON L J, ASHBY M F. Cellular solids:structure and properties [M].Cambridge:Cambridge University Press,1999.
    [50]蒂吉斯切HP,克雷兹特B,左孝青.多孔泡沫金属[M].北京:化学工业出版社,2005.
    [51]刘培生,李铁藩,傅超.多孔金属材料的应用[J].功能材料,2001,32(1):12-15.
    [52]杨亚政,杨嘉陵,曾涛.轻质多孔材料研究进展[J].力学季刊,2007,28(4):503-516.
    [53]孟黎清.飞机蜂窝结构动态冲击下的破坏机理及吸收能量分配机制[D].太原:太原理工大学,2011.
    [54]钱令希,程耿东,隋允康.结构优化设计理论与方法的某些进展[J].自然科学进展,1995,5(1):66-72.
    [55]JANSSON T, NILSSON L, REDHE M. Using surrogate models and response surfaces in structural optimization-with application to crashworthiness design and sheet metal forming [J]. Structural and Multidisciplinary Optimization,2003,25(2):129-140.
    [56]YANG R J, WANG N, THO C H. Metamodeling Development for Vehicle Frontal Impact Simulation [J]. Journal of Mechanical Design,2005,127(5):1014.
    [57]王朝营.薄壁管堆积轻质结构的力学性能研究[D].大连:大连理工大学,2008.
    [58]周金将.冷弯薄壁多孔开口构件的受力性能研究[D].上海:同济大学,2009.
    [59]张立玲,高峰.金属薄壁吸能结构耐撞性研究进展[J].机械工人.热处理,2006,(1):76-78.
    [60]LI Z, YU J, GUO L. Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading [J]. International Journal of Mechanical Sciences,2012, 54(1):48-56.
    [61]KARAGIOZOVA D, ALVES M, JONES N. Inertia effects in axisymmetrically deformed cylindrical shells under axial impact [J]. International Journal of Impact Engineering,2000,24(10): 1083-1115.
    [62]LU G, CALLADINE C. On the cutting of a plate by a wedge [J]. International Journal of Mechanical Sciences,1990,32(4):293-313.
    [63]RAMAKRISHNA S, HAMADA H. Energy absorption characteristics of crash worthy structural composite materials [J]. Key Engineering Materials,1997,141:585-622.
    [64]余同希,邱信明.冲击动力学[M].北京:清华大学出版社,2011.
    [65]候淑娟.薄壁构件的抗撞性优化设计[D].长沙:湖南大学,2007.
    [66]ALEXANDER J. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. The Quarterly Journal of Mechanics and Applied Mathematics,1960,13: 10-15.
    [67]WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics,1983,50(4a):727-734.
    [68]ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering,1984,2(2):179-208.
    [69]ABRAMOWICZ W, WIERZBICKI T. Axial Crushing of Multicorner Sheet Metal Columns [J]. Journal of Applied Mechanics,1989,56:113-120.
    [70]张巍.轻质薄壁金属结构冲击吸能性与数值研究[D].大连:大连理工大学,2008.
    [71]TABIEI A, WU J. Roadmap for crashworthiness finite element simulation of roadside safety structures [J]. Finite Elements in Analysis and Design,2000,34(2):145-157.
    [72]BELYTSCHKO T, WELCH E, BRUCE R. Finite Element Analysis of Automotive Sheet Metal Under Impact Loading [C]. Proceedings of 3rd International Conference on Vehicle Systems Dynamics, ed. Amsterdam,1974:232-252.
    [73]BENSON D, HALLQUIST J, IGARASHI M. Lawrence Livermore National Lab., CA (USA); Suzuki Motor Co. Ltd., Shizuoka (Japan). The application of DYNA3D in large scale crashworthiness calculations, Docket No. [R].1986.
    [74]KAZANC1 Z, BATHE K-J. Crushing and crashing of tubes with implicit time integration [J]. International Journal of Impact Engineering,2012,42(1):80-88.
    [75]JR N F K, JAUNKY N, LAWSON R E. Penetration simulation for uncontained engine debris impact on fuselage-like panels using LS-DYNA [J]. Finite Elements in Analysis and Design,2000, 36(2):99-133.
    [76]OTUBUSHIN A. Detailed validation of a non-linear finite element code using dynamic axial crushing of a square tube [J]. International Journal of Impact Engineering,1998,21(5): 349-368.
    [77]LEE S, HAHN C, RHEE M. Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes [J]. Materials & Design,1999,20(1):31-40.
    [78]SONG H-W, WAN Z-M, XIE Z-M. Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes [J]. International Journal of Impact Engineering,2000, 24(4):385-401.
    [79]宋璐.轴压金属管的失效模式和吸能特性[D].杭州:浙江大学,2006.
    [80]ANDREWS K, ENGLAND G, GHANI E. Classification of the axial collapse of cylindrical tubes under quasi-static loading [J]. International Journal of Mechanical Sciences,1983,25(9): 687-696.
    [81]GUILLOW S, LU G, GRZEBIETA R. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences,2001,43(9): 2103-2123.
    [82]ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes [J]. International Journal of Impact Engineering,1984,2(3):263-281.
    [83]ABRAMOWICZ W, JONES N. Dynamic progressive buckling of circular and square tubes [J]. International Journal of Impact Engineering,1986,4(4):243-270.
    [84]GRZEBIETA R H. An alternative method for determining the behaviour of round stocky tubes subjected to an axial crush load [J]. Thin-Walled Structures,1990,9(1-4):61-89.
    [85]WIERZBICKI T, BHAT S U, ABRAMOWICZ W. Alexander revisited-a two folding elements model of progressive crushing of tubes [J]. International Journal of Solids and Structures, 1992,29(24):3269-3288.
    [86]SINGACE A A, ELSOBKY H, REDDY T Y. On the eccentricity factor in the progressive crushing of tubes [J]. International Journal of Solids and Structures,1995,32(24):3589-3602.
    [87]PUGSLEY A. The large-scale crumpling of thin cylindrical columns [J]. The Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):1-9.
    [88]JOHNSON W, SODEN P, AL-HASSANI S. Inextensional collapse of thin-walled tubes under axial compression [J]. The Journal of Strain Analysis for Engineering Design,1977,12(4):317.
    [89]SINGACE A A. Axial crushing analysis of tubes deforming in the multi-lobe mode [J]. International Journal of Mechanical Sciences,1999,41(7):865-890.
    [90]GRZEBIETA R. On the equilibrium approach for predicting the crush response of thin-walled mild steel tubes [D]. Ph. D. thesis Department of Civil Engineering, Monash University, 1990.
    [91]SUN J. Optimization using sequential approach for triangular tube structure in crashworthiness [D]. Lubbock:Texas Tech University,2005.
    [92]DIPAOLO B P, MONTEIRO P J M, GRONSKY R. Quasi-static axial crush response of a thin-wall, stainless steel box component [J]. International Journal of Solids and Structures,2004, 41(14):3707-3733.
    [93]PIRMOHAMMAD S, HOSSEINI-TEHRANI P. Collapse study of thin-walled polygonal section columns subjected to oblique loads [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2007,221(7):801-810.
    [94]MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section [J]. Thin-Walled Structures, 2003,41(10):891-900.
    [95]WHITE M D, JONES N. Experimental quasi-static axial crushing of top-hat and double-hat thin-walled sections [J]. International Journal of Mechanical Sciences,1999,41(2): 179-208.
    [96]CHA C, CHUNG J, YANG I. An experimental study on the axial collapse characteristics of hat and double hat shaped section members at various velocities [J]. Journal of Mechanical Science and Technology,2004,18(6):924-932.
    [97]YANG C C. Dynamic Progressive Buckling of Square Tubes [J]. Kao Yuan Institute of Technology (Taiwan, Republic of China),2003:
    [98]JENSEN 0. Experimental investigations on the behaviour of short to long square aluminium tubes subjected to axial loading [J]. International Journal of Impact Engineering,2004, 30(8-9):973-1003.
    [99]REID S R. Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers [J]. International Journal of Mechanical Sciences,1993,35(12): 1035-1052.
    [100]ABRAMOWICZ W, JONES N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically [J]. International Journal of Impact Engineering,1997,19(5-6):415-437.
    [101]ZHAO H, ABDENNADHER, SALIM. On the strength enhancement under impact loading of square tubes made from rate insensitive metals [J]. International Journal of Solids and Structures,2004,41(24-25):6677-6697.
    [102]WHITE M, JONES N, ABRAMOWICZ W. A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections [J]. International Journal of Mechanical Sciences,1999,41 (2):209-233.
    [103]GUMRUK R, KARADENIZ S. A numerical study of the influence of bump type triggers on the axial crushing of top hat thin-walled sections [J]. Thin-Walled Structures,2008,46(10): 1094-1106.
    [104]NAGEL G. A numerical study on the impact response and energy absorption of tapered thin-walled tubes [J]. International Journal of Mechanical Sciences,2004,46(2): 201-216.
    [105]NAGEL G, THAMBIRATNAM D. Computer simulation and energy absorption of tapered thin-walled rectangular tubes [J]. Thin-Walled Structures,2005,43(8):1225-1242.
    [106]NAGEL G, THAMBIRATNAM D. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading [J]. International Journal of Impact Engineering,2006, 32(10):1595-1620.
    [107]HOU S, HAN X, SUN G. Multiobjective optimization for tapered circular tubes [J]. Thin-Walled Structures,2011,49(7):855-863.
    [108]ACAR E, GULER M A, GER EKER B. Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations [J]. Thin-Walled Structures,2011,49(1): 94-105.
    [109]MAMALIS A, MANOLAKOS D, BALDOUKAS A. Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders [J]. Thin-Walled Structures,1991,12(1): 17-34.
    [110]SINGACE A A, EL-SOBKY H. Behaviour of axially crushed corrugated tubes [J]. International Journal of Mechanical Sciences,1997,39(3):249-268.
    [111]CHEN D H, OZAKI S. Circumferential strain concentration in axial crushing of cylindrical and square tubes with corrugated surfaces [J]. Thin-Walled Structures,2009,47(5): 547-554.
    [112]HANEFI E H, WIERZBICKI T. Axial resistance and energy absorption of externally reinforced metal tubes [J]. Composites Part B:Engineering,1996,27(5):387-394.
    [113]BIRCH R, JONES N. Dynamic and static axial crushing of axially stiffened cylindrical shells [J]. Thin-Walled Structures,1990,9(1-4):29-60.
    [114]SALEHGHAFFARI S, RAIS-ROHANI M, NAJAFI A. Analysis and optimization of externally stiffened crush tubes [J]. Thin-Walled Structures,2011,49(3):397-408.
    [115]ZHANG A, SUZUKI K. A study on the effect of stiffeners on quasi-static crushing of stiffened square tube with non-linear finite element method [J]. International Journal of Impact Engineering,2007,34(3):544-555.
    [116]JONES N, BIRCH R. Dynamic and static axial crushing of axially stiffened square tubes [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,1990,204(5):293-310.
    [117]SONG J, CHEN Y, LU G. Axial crushing of thin-walled structures with origami patterns [J]. Thin-Walled Structures,2012,54:65-71.
    [118]MARSOLEK J, REIMERDES H. Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns [J]. International Journal of Impact Engineering,2004, 30(8-9):1209-1223.
    [119]QURESHI O M, BERTOCCHI E. Crash behavior of thin-Walled box beams with complex sinusoidal relief patterns [J]. Thin-Walled Structures,2012,53:217-223.
    [120]ZHANG X, CHENG G, YOU Z. Energy absorption of axially compressed thin-walled square tubes with patterns [J]. Thin-Walled Structures,2007,45(9):737-746.
    [121]LIU Y, DAY M L. Bending collapse of thin-walled circular tubes and computational application [J]. Thin-Walled Structures,2008,46(4):442-450.
    [122]POONAYA S, TEEBOONMA U, THINVONGPITUK C. Plastic collapse analysis of thin-walled circular tubes subjected to bending [J]. Thin-Walled Structures,2009,47(6-7):637-645.
    [123]ALGHAMDI A. Reinversion of aluminium frustra [J]. Thin-Walled Structures,2002,40(12): 1037-1049.
    [124]ZHANG X, CHENG G, ZHANG H. Numerical investigations on a new type of energy-absorbing structure based on free inversion of tubes [J]. International Journal of Mechanical Sciences,2009,51(1):64-76.
    [125]AL-HASSANI S, JOHNSON W, LOWE W. Characteristics of inversion tubes under axial loading [J]. Journal of Mechanical Engineering Science,1972,14(6):370-381.
    [126]SEKHON G, GUPTA N, GUPTA P. An analysis of external inversion of round tubes [J]. Journal of Materials Processing Technology,2003,133(3):243-256.
    [127]HUANG X. On the axial splitting and curling of circular metal tubes [J]. International Journal of Mechanical Sciences,2002,44(11):2369-2391.
    [128]SHAKERI M, SALEHGHAFFARI S, MIRZAEIFAR R. Expansion of circular tubes by rigid tubes as impact energy absorbers:experimental and theoretical investigation [J]. International Journal of Crashworthiness,2007,12(5):493-501.
    [129]王蕊,秦庆华,程国强.壁厚对金属圆管撕裂卷曲耗能影响的研究[J].力学学报,2005,37(2):244-248.
    [130]张涛,吴英友,朱显明.多边形截面薄壁管撕裂卷曲吸能研究[J].爆炸与冲击,2007,27(3):223-229.
    [131]余同希.利用金属塑性变形原理的碰撞能量吸收装置[J].力学进展,1986,16(1):28-39.
    [132]THORNTON P. Energy absorption by foam filled structures, Docket No. [R].1980.
    [133]REID S. Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers [J]. International Journal of Mechanical Sciences,1993,35(12): 1035-1052.
    [134]REDDY T, WALL R. Axial compression of foam-filled thin-walled circular tubes [J]. International Journal of Impact Engineering,1988,7(2):151-166.
    [135]KAVI H, TOKSOY A K, GUDEN M. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient [J]. Materials & Design,2006,27(4):263-269.
    [136]SEITZBERGER M, RAMMERSTORFER F G, DEGISCHER H P. Crushing of axially compressed steel tubes filled with aluminium foam [J]. Acta mechanica,1997,125(1):93-105.
    [137]SEITZBERGER M, RAMMERSTORFER F G, GRADINGER R. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam [J]. International Journal of Solids and Structures,2000,37(30):4125-4147.
    [138]HANSSEN A, LANGSETH M, HOPPERSTAD 0. Static crushing of square aluminium extrusions with aluminium foam filler [J]. International Journal of Mechanical Sciences,1999,41(8): 967-993.
    [139]HANSSEN A G, LANGSETH M, HOPPERSTAD 0 S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000,24(4):347-383.
    [140]AKTAY L, KROPLIN B, TOKSOY A. Finite element and coupled finite element/smooth particle hydrodynamics modeling of the quasi-static crushing of empty and foam-filled single, bitubular and constraint hexagonal-and square-packed aluminum tubes [J]. Materials & Design,2008,29(5):952-962.
    [141]TOKSOY A K, G DEN M. Partial Al foam filling of commercial 1050H14 Al crash boxes:The effect of box column thickness and foam relative density on energy absorption [J]. Thin-Walled Structures,2010,48(7):482-494.
    [142]ZAREI H, KR GER M. Optimum honeycomb filled crash absorber design [J]. Materials & Design, 2008,29(1):193-204.
    [143]桂良进,范子杰,王青春.泡沫填充圆管的动态轴向压缩吸能特性[J].清华大学学报(自然科学版),2004,44(5):709-712.
    [144]SONG H, FAN Z, YU G. Partition energy absorption of axially crushed aluminum foam-filled hat sections [J]. International Journal of Solids and Structures,2005,42(9-10): 2575-2600.
    [145]WANG Q, FAN Z, GUI L. A theoretical analysis for the dynamic axial crushing behaviour of aluminium foam-filled hat sections [J]. International Journal of Solids and Structures, 2006,43(7-8):2064-2075.
    [146]WANG Q, FAN Z, GUI L. Theoretical analysis for axial crushing behaviour of aluminium foam-filled hat sections [J]. International Journal of Mechanical Sciences,2007,49(4): 515-521.
    [147]张宗华.轻质吸能材料和结构的耐撞性分析与设计优化[D].大连:大连理工大学,2010.
    [148]CHEN W, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures,2001,39(4): 287-306.
    [149]HEUNG-SOO K. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency [J]. Thin-Walled Structures,2002,40(4):311-327.
    [150]万育龙,程远胜.几种新型薄壁组合结构的轴向冲击吸能特性研究[J].中国舰船研究,2006,1(5-6):15-18.
    [151]张雄.轻质薄壁结构耐撞性分析与设计优化[D].大连:大连理工大学,2008.
    [152]HOU S, LI Q, LONG S. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria [J]. Finite Elements in Analysis and Design,2007,43(6-7): 555-565.
    [153]NAJAFI A. Axial collapse of thin-walled, multi-corner single-and multi-cell tubes [D]. Starkville:Mississippi State University,2009.
    [154]NAJAFI A, RAIS-ROHANI M. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes [J]. Thin-Walled Structures,2011,49(1):1-12.
    [155]FARUQUE 0, SAHA N. Extruded Aluminum Crash Can Topology for Maximizing Specific Energy Absorption [J]. Engineering,2008,2008(724):
    [156]ZHANG X, CHENG G, WANG B. Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core [J]. International Journal of Crashworthiness,2008,13(1):99-107.
    [157]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [158]钟万勰.暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6.
    [159]HALLQUIST J O. LSHDYNA theory manual [M]. California:Livermore Software Technology Corporation,2006.
    [160]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.
    [161]BELYTSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structures [M]. Wiley New York,2000.
    [162]JONES N. Energy-absorbing effectiveness factor [J]. International Journal of Impact Engineering,2010,37(6):754-765.
    [163]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008.
    [164]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [165]LUST R. Structural optimization with crashworthiness constraints [J]. Structural and Multidisciplinary Optimization,1992,4(2):85-89.
    [166]YAMAZAKI K, HAN J. Maximization of the crushing energy absorption of cylindrical shells [J]. Advances in Engineering Software,2000,31(6):425-434.
    [167]房加志.铁道车辆碰撞以及结构优化的仿真研究[D].北京:中国农业大学,2005.
    [168]王琥,李光耀,李恩颖.基于响应面法的汽车吸能部件优化问题研究[J].系统仿真学报,2007,(16):3824-3829.
    [169]张立新,隋允康,杜家政.基于响应面方法的结构耐撞性优化[J].北京工业大学学报,2007,33(2):129-133.
    [170]ZHANG Z, LIU S, TANG Z. Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam [J]. Thin-Walled Structures,2009,47(8-9):868-878.
    [171]陈国平,王妹歆,昂海松.微扑翼飞行中的生物和仿生力传感器述评[J].传感器与微系统,2008,27(2):14-18.
    [172]孔璐蓉,鞠彦兵.智能仿生算法研究综述.第12届全国信息管理与工业工程学术会议[C].北京,2008:162-167.
    [173]程新广,李志信,过增元.基于仿生优化的高效导热通道的构造[J].中国科学E辑,2003,33(3):251-256.
    [174]曾其蕴,李世红,周本濂.生物复合材料的特征及仿生的探讨[J].复合材料学报,1993,10(1):1-7.
    [175]贾贤.天然生物材料及其仿生工程材料[M].北京:化学工业出版社,2007.
    [176]张士贵.基于仿生的材料和结构优化研究[D].大连:大连理工大学,2005.
    [177]童秉纲.从仿生学角度谈智能变形飞行器的发展[C].第32期新观点新学说学术沙龙“智能可变形飞行器发展前景及我们的选择”.合肥,2009:17-18-106.
    [178]徐坚.自清洁功能的高分子仿生表面研究取得新进展[J].中国科学院院刊,2005,20(1):45-48.
    [179]郭婷.基于仿生的轻质结构耐撞性分析及应用[D].大连:大连理工大学,2008.
    [180]马皎皎,孙康,胡传平.基于啄木鸟头部特点的消防头盔抗冲击防护技术[J].消防科学与技术,2007,26(1):69-71.
    [181]田丽梅, 卜兆国,陈庆海.肋条状仿生非光滑表面铸造成型方法[J].农业工程学报,2011,27(8):189-194.
    [182]ZHOU B L. The biomimetic study of composite materials [J]. JOM Journal of the Minerals, Metals and Materials Society,1994,46(2):57-62.
    [183]焦洪杰,张以都,陈五一.低RCS立柱结构仿生设计及仿真分析[J].武汉理工大学学报,2009,31(5):83-85.
    [184]郭婷,王跃方.仿甲壳虫芯柱的缓冲吸能结构[J].工程力学,2011,28(2):246-251+256.
    [185]张立玲,高峰,杜发荣.不同截面形状铝合金薄壁结构的轴向吸能特性研究[J].汽车技术,2006,(4):20-23.
    [186]YAMASHITA M, GOTOH M, SAWAIRI Y. Axial crush of hollow cylindrical structures with various polygonal cross-sectionsNumerical simulation and experiment [J]. Journal of Materials Processing Technology,2003,140(1-3):59-64.
    [187]ZHANG X, HUH H. Crushing analysis of polygonal columns and angle elements [J]. International Journal of Impact Engineering,2010,37(4):441-451.
    [188]FYLLINGEN, HOPPERSTAD 0, LANGSETH M. Simulations of a top-hat section subjected to axial crushing taking into account material and geometry variations [J]. International Journal of Solids and Structures,2008,45(24):6205-6219.
    [189]黄滟.轴向冲击下薄壁组合结构吸能特性分析[D].武汉:华中科技大学,2006.
    [190]REYES A. Square aluminum tubes subjected to oblique loading [J]. International Journal of Impact Engineering,2003,28(10):1077-1106.
    [191]WIERZBICKI T, JONES N. Structural failure [M]. New York:John Wiley and Sons,1989.
    [192]ZHANG X, CHENG G, ZHANG H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures [J]. Thin-Walled Structures,2006,44(11):1185-1191.
    [193]SANTOSA S P, WIERZBICKI T, HANSSEN A G. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering,2000,24(5):509-534.
    [194]LANGSETH M, HOPPERSTAD 0. Static and dynamic axial crushing of square thin-walled aluminium extrusions [J]. International Journal of Impact Engineering,1996,18(7-8): 949-968.
    [195]CAO J, YAO H, KARAFILLIS A. Prediction of localized thinning in sheet metal using a general anisotropic yield criterion [J]. International Journal of Plasticity,2000,16(9): 1105-1129.
    [196]唐智亮,刘书田,张宗华.薄壁非凸截面多胞管轴向冲击耐撞性研究[J].固体力学学报,2011,32(S1):206-213.
    [197]MACLEAN H L, LAVE L B. Evaluating automobile fuel/propulsion system technologies [J]. Progress in energy and combustion science,2003,29(1):1-69.
    [198]马建峰,陈五一,赵岭.基于竹子微观结构的柱状结构仿生设计[J].机械设计,2008,25(12):50-53.
    [199]TANG Z, LIU S, ZHANG Z. Energy absorption properties of non-convex multi-corner thin-walled columns [J]. Thin-Walled Structures,2012,51:112-120.
    [200]曾其蕴,李世红,鲍贤熔.竹节对竹材力学强度影响的研究[J].林业科学,1992,28(3):247-252.
    [201]邵卓平,黄盛霞,吴福社.毛竹节间材与节部材的构造与强度差异研究[J].竹子研究汇刊,2008,27(2):48-52.
    [202]BARDI F. On the axisyrametric progressive crushing of circular tubes under axial compression [J]. International Journal of Solids and Structures,2003,40(12):3137-3155.
    [203]DAXNER T, RAMMERSTORFER F, FISCHER F. Instability phenomena during the conical expansion of circular cylindrical shells [J]. Computer Methods in Applied Mechanics and Engineering, 2005,194(21-24):2591-2603.
    [204]EL-SOBKY H, SINGACE A A, PETS I OS M. Mode of collapse and energy absorption characteristics of constrained frusta under axial impact loading [J]. International Journal of Mechanical Sciences,2001,43(3):743-757.
    [205]MARZBANRAD J, MEHDIKHANLO M, SAEEDI POUR A. An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading [J]. Turkish Journal of Engineering & Environmental Sciences,2009,33(3):159-166.
    [206]SALEHGHAFFARI S, TAJDARI M, PANAHI M. Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading [J]. Thin-Walled Structures,2010,48(6):379-390.
    [207]LANGSETH M, HOPPERSTAD 0 S, HANSSEN A G. Crash behaviour of thin-walled aluminium members [J]. Thin-Walled Structures,1998,32(1-3):127-150.
    [208]SINGACE A, ELSOBKY H. Further experimental investigation on the eccentricity factor in the progressive crushing of tubes [J]. International Journal of Solids and Structures, 1996,33(24):3517-3538.
    [209]曾杰.金属管径向冲击数值模拟与吸能特性研究[D].2010.
    [210]YUEN S, NURICK G, STARKER. The energy absorption characteristics of double-cell tubular profiles [J]. Latin American Journal of Solids and Structures,2008,5(4):289-317.
    [211]ZHANG Z, LIU S, TANG Z. Crashworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads [J]. Thin-Walled Structures,2010,48(1): 9-18.
    [212]JONES N. Energy absorption effectiveness of thin-walled structures under static and dynamic axial crushing loads [J]. Impact loading of lightweight structures, edited by M. Alves & N. Jones. WIT Press, Boston, US, and Southampton, UK,2005,49(1):273-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700