多带正交频分复用超宽带系统信道估计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着无线通信技术的迅猛发展以及在商业中的成功应用,人们在日常生活受之深刻影响的同时希望在任何时间、任何地点能够接入大量的信息。频谱资源的共享与高效利用成为无线通信领域迫切需要研究解决的问题。超宽带(UWB)因高速率低功耗、低成本的特点,已成为下一代短距离室内无线通信的最佳候选技术之一。它基于共用频段的思想,可以与其它现存的窄带系统共享频带,打破了短距离无线通信频率资源供不应求及不兼容的现状,为解决日趋紧张的频谱资源难题提供新的解决方案。作为超宽带技术实现方式之一,基于正交频分复用的多频带超宽带(MB-OFDM UWB)方案具有频带利用率高、捕捉多径能量强、传输速率灵活等优点,适合高速无线数据传输,在数字化无线家庭网络、数字化办公室、个人便携设备和军事等诸多领域都有着广阔的发展和应用前景。
     为了保证传输可靠性和功率效率,超宽带系统一般采用相干检测,然而在相干检测接收中,数据符号不可避免遭受随机相移、幅度波动的影响,必须在接收机必中进行有效的信道估计。本文针对多带正交频分复用超宽带系统特性,从实际应用角度出发,综合考虑信道估计算法实现的复杂度和精度,在如下几个方面进行了研究工作:
     与窄带系统相比,超宽带系统接收信号在多径分量的可分辨数量和到达时间方面有着本质的区别。论文首先分析了常规抽头延迟线信道衰落模型、△-K信道模型和S-V信道模型各自的优缺点,研究了IEEE802.15标准室内信道模型。在此基础上考虑超宽带信道“径”和“簇”的多径特性,提出了适用于MB-OFDM UWB系统的延迟抽头信道模型,分析了该模型的多径延迟统计特性和不同子载波上信道频率响应的相关性,从随机过程理论角度证明了在频域将超宽带无线信道建立成低阶AR模型的可行性,为进一步研究适用于MB-OFDM UWB系统的信道估计算法奠定了基础.
     传统的数据辅助信道估计通过训练序列或导频符号获得信道状态信息,虽然算法简单、估计速度较快,但是在频谱利用率和功率利用率上付出一定代价,对应用于高速率传输中的功率受限超宽带系统的影响尤为突出。论文在分析基于LS.MMSE等不同准则信道估计算法的计算复杂度和性能的基础上,在准静态信道环境中分别研究了理想同步和存在相位误差条件下的数据辅助信道估计算法。针对理想同步条件,本论文利用MB-OFDM UWB特定前导结构,提出了一种频域加权滤波的数据辅助信道估计方法。该算法首先对信道前导字获得基于LS准则的信道初始估计,通过频率平滑处理提高LS估计的抗噪能力,利用初始估计的加权对帧头前导字进行前向判决,根据判决结果估计数据符号上的信道频率响应,提高了低信噪比条件下信道估计的可靠性。在存在相位噪声时,本论文提出通过对不同符号导频子载波上的信道频率响应的一阶低通滤波来补偿相位噪声对信道估计的影响。该算法计算简单,在低信噪比条件下能达到良好的估计性能。
     针对时变信道,在理想同步条件下,论文研究了基于卡尔曼滤波算法的信道自适应估计和跟踪方法。常规的基于卡尔曼滤波的信道估计算法只是应用了信道时域相关性,本论文在频域将超宽带信道模型等效为二阶自适应回归模型,提出了一种基于低维卡尔曼滤波的迭代信道估计算法。该算法同时考虑超宽带信道时域和频域相关特性,利用了不同信道环境下子载波间隔的不同相关性对滤波算法进行降维处理,在一定程度上简化了计算。在此基础上结合导频子载波内插算法,在存在频偏误差的情况下进行对信道估计进行相位补偿,提高了信道估计跟踪性能。
     在超宽带系统中应用MIMO技术,能大大提高系统容量,从而扩大超宽带系统的传输速率和通信距离。论文对多天线MB-OFDM UWB系统的信道估计进行有益的探索,分别探讨了采用多天线传输的单用户信道估计和多用户信道估计。为了有效估计和跟踪信道状态,同时考虑带宽利用率及系统复杂度,本论文对两发一收天线的单用户提出了适用于硬判决迭代接收机的ML-EM信道估计算法和适用于软判决迭代接收机的MAP-EM信道状态信息算法。通过EM算法将多输入输出信道估计问题化简为一系列独立的单输入输出问题,避免了大规模矩阵运算。对于多用户情况,提出采用空间交替推广EM算法,通过在每次迭代过程中交替选择接收数据作为隐数据空间,关联噪声方差来加快迭代算法收敛速度。与基于数据辅助的信道估计算法相比,基于EM算法的信道估计不需要周期性的发送训练序列,降低了系统发射功率,同时节约了信道带宽,提高频谱利用率。
In recent years, wireless communication technology has been developed rapidly and applied in commercial successfully, which undoubtedly has a profound influence on our daily life. We hope to exchange a large amount of information at any time, from any location. As a result, sharing and efficiency utilization of spectrum resources has been an important issue in wireless communication field. Ultra wideband (UWB) has become an attractive candidate for future short-range and high date rate wireless communication owing to the potential for high data rates, and the potential for low processing power along with low implementation cost. UWB, which is a shared unlicensed system, coexists with other licensed and unlicensed narrowband systems. In spite of this, UWB will change the status of wireless frequency resource shortage and incompatible, and offer attractive solutions for increasingly scarce spectrum resources. As a strong candidate for UWB, MB-OFDM UWB drew more and more attention because of its advantages such as ability to provide high bandwidth efficiency, capability of capturing the multipath energy efficiently, flexible and high wireless data transmission, which can be applied to digital wireless home or office network, personal handy system or military field.
     To ensure the reliability of data and limitation of power, UWB system usually adopts coherent detection. By this way, unfortunately, the data is inevitably affected by random phase shift and amplitude fluctuation, it's needed for receiver to understand the fading propagation effects in frequency selective channels characteristics and carry out channel estimation. Considering the algorithms complexity and precision simultaneously, we present some novel and practical channel estimation schemes tailored to MB-OFDM UWB applications. The main innovations of the dissertation are as follows:
     There are important differences between UWB and narrowband channels, especially with respect to the number of resolvable paths and arrival times of multipath components. This paper compares the different transmission characteristics of some classic channel model, such as tap-line delay model,Δ-K model and S-V model, in terms of the statistical characteristics of multi-path delay amplitude and arrival times. Having insight into the in-door channel model of IEEE802.15, this paper probes into multi-path delay time and coefficients statistical characteristics based on tap-line model aiming to MB-OFDM UWB system. In order to analysis the channel estimation method in frequency domain, we demonstrate that the UWB channels can be adequately modeled by low-order autoregressive (AR) models, and discuss the correlation of subcarrier channel frequency response.
     The traditional data-aided channel estimation algorithm obtains the channel state information by the training sequences or polite symbols. Although this kind of algorithm is relatively simple and easy to implement, it will waste frequency and power efficiency. Based on comparing the algorithms complexity and performance for different estimation citation such as LS and MMSE, This paper presents new date-aided channel estimation algorithm for MB-OFDM UWB system. To make good trade-off between performance and computational complexity under satisfactory synchronization, we employ a simple LS method together with frequency-domain smoothing operation to estimate the channel frequency response using training preamble, then uses this channel estimate result to detect the frame header and refines the channel estimate by using a decision-directed technique. Furthermore, we developed an efficient phase error mitigation scheme. This method employs inter OFDM symbol smoothing technique for achieving further suppression in low SNR regime.
     Aimed to time-varying channel, this paper utilizes the Kalman filter to track the channel state varying on adjacent symbols. The traditional channel estimation based on Kalman filter is only made use of the channel correlation in time domain, this paper refine the estimation performance considering the channel correlation in frequency domain. The algorithm reduces the complexity by reducing dimension according the different correlation of subcarrier in different environment. Based on this, we combine polite interpolate and phase compensating when existing frequency offset, which improve the tracking performance.
     To enhance the data rates and transmission ranges of UWB systems, applying the MIMO scheme has attracted considerable interest, which could expand the capacity of UWB system. To estimate the channel state information effectively, this paper proposes channel state information estimation algorithms based on ML-EM with hard-decision receiver and MAP-EM with soft-dicision receiver respectively. The EM algorithm decomposes the MIMO channel estimation problem into a series of single input single output (SISO) problems, avoiding the complex computations. In the situation of multi-users, we adopt Space Alternating Generalized EM to accelerate the algorithm iteration rate. Compared with data-aided channel estimation method, EM channel estimation algorithm needn't transmit training symbols periodically, which reduce the transmission power and improve the bandwidth and spectrum efficiency.
引文
[1]王金龙,王呈贵,阚春荣,徐以涛.无线超宽带(UWB)通信原理与应用[M].人民邮电出版社,2005:1-3.
    [2]陈国东.超宽带无线通信系统及若干关键技术研究[D].北京邮电大学博士学位论文.2007:1.
    [3]L. Yang, G. B. Giannakis. Ultra-Wideband Communications:An Idea whose Time has Come [J]. IEEE Signal Processing Magazine.2004,21(6):26-54.
    [4]FCC. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems[S].2002.
    [5]IEEE802.15 Working Group for WPAN Homepage [OL]:http://www.ieee802.15/pub/ TG3a.html.
    [6]张在琛,毕光国.超宽带无线通信技术及其应用[J].移动通信.2004,1(2):110-114.
    [7]DS-UWB Physical Layer Submission to 802.15 Task Group 3a[S]. IEEE P802.15-04-0137r1,2004.
    [8]朱刚.超宽带(UWB)原理与干扰[M].清华大学出版社,2009:38-40.
    [9]张士兵,张力军,徐晨.基于多带OFDM的超宽带通信系统[J].通信学报.2006,27(3):79-85.
    [10]周冉MB-OFDM-UWB无线通信系统的仿真研究[D].南京信息工程学院硕士学位论文.2008:18-19.
    [11]李长青UWB-OFDM系统中若干关键技的研究[D].北京邮电大学博士研究生学位论文.2006:22-23.
    [12]MultiBand OFDM Update and Overview[S]. MultiBand OFDM Alliance SIG. Sep 12, 2004
    [13]TI Physical Layer Proposal:Time-Frequency Interleaved OFDM[S], IEEE P802.15-03/141r3-TG3a.2003
    [14]刘璐MB-OFDM超宽带系统中的信道估计算法研究[D].吉林大学硕士学位论文.2008:13-15.
    [15]Anuj Batra, Jaiganesh Balakrishnan多频带OFDM为何比直接序列技术更适合高速UWB通讯—第三部份:通往更高资料速率之路.台湾,电子与计算计[EB/OL].2005:http://www.ti.com.tw/articles/
    [16]Hugh Cree.超宽带解决方案——MB-OFDM的优势和进展[EB/OL].2006:http: //www. ed-china. com/
    [17]S. Y. Park, G. Shor, and Y. S. Kim. Interference Resilient Transmission Scheme for Multiband OFDM System in UWB Channels [J]. Proc. ISCAS 2004, vol.5, May 2004: 373-376.
    [18]K. Fazel, S. Kaiser. Multi-Carrier and spread Spectrum Systems [M]. John Wiley & Sons Ltd,2003:24-26.
    [19]B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville. Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions [J]. IEEE Transactions on Communications.2002,50(12):2136-2148.
    [20]尹长川,罗涛,乐光新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社,2004:18-19.
    [21]Xu Jinsong, Lu Xiaochun, Wu Haitao, Bian Yujing, Wang Chaogang, Bai Yan, Wang Jing. Implementation of channel equalization of indoor positioning system based on MB-OFDM[C]. IEEE Youth Conference on Information, Computing and Telecommunication,2009:7-10.
    [22]Yang Xiao-dong, Zhu Xiao-ming Wang Yu-dong. Analysis of DFT-based channel estimation algorithm for UWB-OFDM system[C]. IET International Conference on Wireless, Mobile and Multimedia Networks,2008:130-133.
    [23]Xiangning Fan, Bing Leng, Zaichen Zhang, Guangguo Bi. Modified UWB channel estimation[C].2nd International Conference on Mobile Technology, Applications and Systems,2005:6,15-17.
    [24]Lowe Darryn, Huang Xiaojing. Adaptive Low-Complexity MMSE Channel Estimation for OFDM[C]. International Symposium on Communications and Information Technologies,2006:638-643.
    [25]罗颖光,刘郁林,王国鹏.基于导频序列信道缩短的超宽带信道估计[J].通信技术.2009,(3):62-64.
    [26]Zhongjun Wang, Yan Xin, George Mathew, Xiaodong Wang. A Low Complexity and Efficient Channel Estimator for Multiband OFDM-UWB Systems[J]. IEEE Transactions on Vehicular Technology.2010,59(3):1355-1366.
    [27]Mignone V, Morello A. CD3-OFDM:A novel demodulation scheme for fixed and mobile receivers[J]. IEEE Trans, on Commun..1996, COM-44(9):1144-1151.
    [28]Chini A, Wu Y. Filtered decision feedback channel estimation for OFDM based DTV terrestrial broadcasting system[J]. IEEE Trans. broadcasting.1998,44(1):2-10.
    [29]Liu H, Yu Y, Hung C. Combining Adaptive Smoothing and Decision-Directed Channel Estimation Schemes for OFDM WLAN Systems[C]. IEEE International Symposium on Circuits and Systems, ISCAS, Bangkok Thailand,2003:149-152.
    [30]Rim M. Optimally combining decision-directed and pilot-symbol-aided channel estimators[J]. IEEE Electronics Letters,2003,19(3):558-560.
    [31]Jianjun Ran, Grunheid R, Rohling H. Decision-directed channel estimation method for OFDM systems with high velocities[C]. The 57th IEEE Semiannual Vehicular Technology Conference,2003, Volume:4:2358-2361.
    [32]Ruifeng Zhang. Blind OFDM channel estimation through linear precoding:a subspace approach[C]. Conference. Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers,2002, Volume:1:631-633
    [33]Chengyang Li, Roy S. Subspace based blind channel estimation for OFDM by exploiting virtual carrier[C]. IEEE Global Telecommunications Conference,2001: 295-299.
    [34]Heath R.W., Giannakis G..B. Exploiting input cyclo-stationarity for blind channel identification in OFDM system[J]. IEEE Transaction on Signal Processing,1999,47(3): 848-856.
    [35]Zhiyuan Ren, Tiejun Lv, Fei Wang. Zero-tap detection-based kalman filter algorithm for UWB channel estimation[C]. IEEE International Conference on Ultra-Wideband, 2009:702-706
    [36]S M Riazul Islam, Kyung Sup Kwak. Winner-hopf interpolation aided kalman filter-based channel estimation for MB-OFDM UWB systems in time varying dispersive fading channel[C]. The 12th International Conference on Advanced Communication Technology (ICACT),2010:1184-1188
    [37]Yongzhe Xie, Georghiades C N. An EM-based channel estimation algorithm for OFDM with transmitter diversity[C]. IEEE Global telecommunications Conference,2001. Volume,2:871-875.
    [38]S M Sajad Sadough, Emmanuel Jaffrot, Pierre Duhamel. Wavelet Domain Channel Estimation For Multiband OFDM UWB Communications [C].14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8,2006.
    [39]S M Sajad Sadough, Ichir M.M., Pierre Duhamel, Emmanuel Jaffrot. Wavelet-Based Semiblind Channel Estimation for Ultrawideband OFDM Systems [J]. IEEE Transactions on Vehicular Technology,58(3):1302-1314.
    [40]Sadough S.M.S., Ichir M.M., Jaffrot E., Duhamel P.. Multiband OFDM UWB Channel Estimation Via a Wavelet Based EM-MAP Algorithm[C]. IEEE 7th Workshop on Signal Processing Advances in Wireless Communications,2006:1-5.
    [41]Sinem Coleri, Mustafa Ergen, Anuj Puri, Ahmad Bahai. Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems[J]. IEEE Transactions on Broadcasting. 2002,48(3):223-229.
    [42]M. Hsieh, C. Wei. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels[J]. IEEE Trans. on Consumer Electronics.1998,44(1):217-225.
    [43]Jia Lei, Daozhong Cao, Hou Chunping. Two Novel Transform Domain Estimation Methods for OFDM System and Their Application Environment[C]. IEEE Canadian Conference on Electrical and Computer Engineering.2004,1:377-380.
    [44]Samson Lasaulce, Noura Sellami, Yi Yuan, Ahmed Saadani. Performance Study of Least-Squares Channel Estimation Based on Hard Decisions[C]. IEEE Vehicular Technology Conference.2003,4:2570-2574P
    [45]Baoguo Yang, Khaled Ben Letaief, Roger S Cheng, Zhigang Cao. Channel estimation for OFDM transmission in mutilate fading channels based on parametric channel modeling[J]. IEEE Transactions on Communications.2001,49(3):467-479P
    [46]B.Muquet, M.Courville, P.duhame, V.Buzenac. A sub-space based blind and semi-blind channel identification method for OFDM systems[C]. Second IEEE Workshop on SPAWC.1999:170-173.
    [47]Jones V.K., Raleigh G.C.. Channel estimation for wireless OFDM systems[C]. IEEE Global Telecommunications Conference,1998. The Bridge to Global Integration: 980-985.
    [48]Ye Li, Seshadri N., Ariyavisitakul S.. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels[J]. IEEE Journal on Selected Areas in Communications.1999,17(3):461-471.
    [49]Shengli Zhou, Giannakis G.B.. Finite-alphabet based channel estimation for OFDM and related multicarrier systems[J]. IEEE Transactions on Communications.2001,49(8): 1402-1414.
    [50]A. Saleh, R. A. Valenzuela. A statistical model for indoor multipath propagation[J]. IEEE Journal on Selected Areas in Communications.1987, vol.5:128-137.
    [51]T. S. Rappaport, S. Y. Seidel, K. Takamizawa. Statistical channel impulse response models for factory an open plan building radio communication system design[J]. IEEE Transactions on Communications.1991, vol.39:794-807.
    [52]Homayoun Hashemi. The indoor radio propagation channel[J]. Proceedings of the IEEE, 1993,81(7):943-968.
    [53]Homayoun Hashemi. Impulse response modeling of indoor radio propagation channels[J]. EEE Journal on Selected Areas in Communications.1993,11:967-978.
    [54]G. L. Stuber. Principles of Mobile Communications (2nd edit) [M]. Kluwer Academic Publishers, Norwell, MA,2000.
    [55]Theodore S. RaPPaport. Wireless communications Principles and Practice[M]. Beijing: Publishing House of Electronics Industry.1998.
    [56]Andreas F. Moliseh. Wideband wireless digital communications[M]. Beijing:Publishing House of Electronics Industry.2002.
    [57]J. Kunisch, J. Pamp. Measurement results and modeling aspects for the UWB radio channels[C]. Proc. IEEE Conference Ultra Wideband System Technology, May 2002: 19-23.
    [58]郭梯云,邬国扬,李建东.移动通信(修订本)[M].西安:西安电子科技大学出版社,2000
    [59]Chia-Chin Chong, Young-Eil Kim, et al. Statistical characterization of the UWB Propagation channel in indoor residential environment [J]. Wireless Communications and Mobile Computing.2005,5:503-512.
    [60]杨大成.移动传播环境:理论基础、分析方法和建模技术[M].机械工业出版社,2003:112-130.
    [61]D. Cassioli, M. Z. Win, A. F. Molisch. The ultra-wide bandwidth indoor channel:from statistical model to simulations [J]. IEEE Journal on Selected Areas in Communications. 2002,20:1247-1257
    [62]J. G. Proakis. Digital Communications (4th edit) [M]. McGraw-Hill, New York,2001
    [63]Turin G. L. Communication through Noisy, Random-Multipath Channles[J]. IRE Convention,1956:154-166
    [64]Jeff Foerster, Qinghua Li. UWB channel modeling contribution from Intel[S]. IEEE Technical Report P802.15 02/279SG3a, Intel Corporation, Hillsboro, OR, June 2002
    [65]S. S. Ghassemzadeh et al. A statistical path loss model for in-home UWB channels[C]. Proc. IEEE Conf. Ultra Wideband System Technology,2002:59-64.
    [66]M. Nakagami. The m-distribution:a general formula of intensity distribution of rapid fading in Statistical Methods in Radio Wave Propagation[M]. W. G. Hoffman, Ed., Pergamon Press, Oxford,1960
    [67]葛利嘉,朱林,袁晓芳,陈帮富等译.超宽带无线电基础[M].电子工业出版社,2006:190-196.
    [68]H Suzuki. A statistical model for urban radio propagation[J]. IEEE Transaction on Communication.1977, Vol. Com-25:673-680
    [69]Fang Zhu, Zhiqiang Wu, Carl. R. Nassar. Generalized Fading Channel Model with Application to UWB[C]. Proc. IEEE Conf. Ultra Wideband System Technology,2002: 13-17P
    [70]H. Hashemi.. Simulation of the urban Radio propagation channel [J]. IEEE Transaction on Vehicle Technology.1979,Vol.VT-28:213-22P
    [71]张在琛,毕光国.超宽带室内信道模型.电气电子教学学报[J].2004,26(6):60-63.
    [72]Huseyin Arslan. Ultra Wideband Wireless Communication[M]. John Wiley & Sons, Ltd, 2006
    [73]J. R. Foerster et al.. Channel modeling sub-committee report final[R]. IEEE 802.15-02/490, Nov.18,2003.
    [74]Andreas F. Molisch, Dajana Cassioli, Chia-Chin Chong, et al.. A Comprehensive Standardized Model for Ultrawideband Propagation Channel[J]. IEEE Transactions on Antennas and Propagation.2006,54(11):3151-3164.
    [75]R. C. Qiu. A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design:Wavebased system analysis[J]. IEEE Transactions on Wireless Communication.2004,4:2312-2324.
    [76]A. Batra et al.. Design of a multiband OFDM system for realistic UWB channel environments [J]. IEEE Transaction on Microwave Theory Technology.2004,52(9): 2123-2138.
    [77]解武,曹家年,刘世航,吕学龙IEEE 802.15.4a信道对UWB功率谱影响分析.深圳大学学报(理工版)[J].2010,27(1):43-48.
    [78]Andreas F. Molisch, Kannan Balakrishnan, Chia-Chin Chong, et al.802.15.4a Channel model subgroup final report[R]. IEEE P802.15-04-0535-00-004a. Sept.2004.
    [79]Andreas F. Molisch. Ultrawideband Propagation Channels-Theory, Measurement, and Modeling[J]. IEEE Transactions on Vehicular Technology.2005,54(5):1528-1545
    [80]Texas Instruments et al. Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a[R]. IEEE P802.15-03/268r3, March,2004
    [81]Qiyue Zou, Alireza Tarighat, Ali H. Sayed. Performance Analysis of Multiband OFDM UWB Communications With Application to Range Improvement[J]. IEEE Transactions on Vehicular Technology.2007,56(6):3864-3878.
    [82]MultiBand OFDM Physical Layer Specification[S]. Relaese1.0, MBOA&WiMedia, Apr.2005
    [83]金一剑MIMO-MB-OFDM超宽带技术研究[D].重庆大学硕士学位论文.2007:15-20页
    [84]R.Negi, J. Cioffi. Pilot tone selection for channel estimation in a mobile OFDM system[J]. IEEE Transactions on Consumer Electronics.1998,44:1122-1128.
    [85]Y. Li. Pilot-symbol-aided channel estimation for OFDM in wireless system[J]. IEEE Transactions on Vehicular Technology.2000,49(4):1207-1215
    [86]王昵,邓平.OFDM系统导频信道估计内插算法研究[J].成都信息工程学院学报.2008,23(2):141-146.
    [87]J.J.van de Beek, O. Edfors, M. Sandell. On channel estimaion in OFDM system[C]. Proc. VTC'95. Chicago, USA, vol2:815-819.
    [88]Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek, Sarah Kate Wilson, Per Ola B"orjesson OFDM Channel Estimation by Singular Value Decomposition[J]. IEEE Transactions on Communications.1997,46(7):931-939.
    [89]M. Speth, S. Fechtel, G. Fock, H.Meyr. optimum Receiver Design for OFDM-Based Broadband Transmission-Part Ⅱ:A Case Study[J]. IEEE Transactions on Communications.2001,49:571-578.
    [90]Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek, Sarah Kate Wilson, Per Ola B"orjesson. Analysis of DFT-Based Channel Estimators for OFDM[J]. Wireless Personal Communications.2000,12:55-70.
    [91]M. Morelli, U. Mengali. A comparison of pilot-aided channel Estimation methods for OFDM systems[J]. IEEE Transactions on Signal Processing.2001,49(12):3065-3073
    [92]赵洁.多载波CDMA关键技术研究[D].哈尔滨工程大学硕士论文,2005
    [93]Chunping Hou, Shenghui Song, Dazhong Cao. Channel estimation for adaptive OFDM system and effects of estimation error on system performance[C]. The 4th International Workshop on Mobile and Wireless Communications Network,2002:200-204.
    [94]Douglas F, Elliott. Handbook of Digital Signal Processing[M]. San Diego, CA: Academic Press, Inc.,1987
    [95]程华.基于导频的OFDM信道估计算法研究[D].太原理工大学硕士学位论文.2008
    [96]Sunkyung Shin, Qinghai Yang, Kyungsup Kwak. Performance Analysis of MB-OFDM System using SVD aimed LMMSE Channel Estimation[C]. IEEE International Conference on Ultra-Wideband,24-26 Sept.2007:840-844
    [97]Y. Li, A. F. Molisch, J. Zhang. Practical approaches to channel estimation and interference suppression for OFDM-based UWB communications[J]. I IEEE Transactions on Wireless Communication,2006,5(9):2317-2320
    [98]Y. Li, H. Minn. Channel estimation and equalization in the presence of timing offset in MB-OFDM systems[C]. IEEE GLOBECOM Conference, Washington, DC, Nov.26-30, 2007:3389-3394
    [99]陈军,王蔚婷.一种适用于MB-OFDM超宽带系统的信道估计方法及性能仿真[C].2005年全国超宽带无线通信技术学术会议论文:191-197.
    [100]叶凌敏,仇洪冰MB-OFDM UWB系统中的信道估计算法研究[J].计算机仿真.2009,26(1):126-128,153.
    [101]王军,李少谦,龚树平,韩川.变换域通信系统中的信道估计技术[J].电子科技大学学报.2009,38(1):40-42,96
    [102]冷冰,樊祥宁,张在琛UWB/OFDM的信道估计方法研究.第9届全国青年通信学术会议,2004:3-7页
    [103]S. Wu, Y. Bar-Ness. A phase noise suppression algorithm for OFDM-based WLANs[J]. IEEE Communication Letter.2002,6(12):535-537.
    [104]K. Nikitopoulos, A. Polydoros. Phase-impairment effects and compensation algorithms for OFDM systems[J]. IEEE Transaction on Communication.2005,53(4):698-707.
    [105]Zi-Wei Zheng. Channel Equalization With Phase Error Mitigation for the Chinese Digital Television Terrestrial Broadcasting Systems[J]. IEEE Transaction on Broadcasting.2010,56(4):570-576.
    [106]C. Mishra, A. Valdes-Garcia, F. Bahmani, A. Batra, E. Sanchez-Sinencio, J. Silva-Martinez. Frequency planning and synthesizer architectures for multiband OFDM UWB radios[J]. IEEE Transaction on Microwave Theory Technology.2005,53(12): 3744-3756.
    [107]Zhongjun Wang, Yan Xin, Mathew G., Xiaodong Wang. Efficient Phase-Error Suppression for Multiband OFDM-Based UWB Systems[J]. IEEE Transactions on Vehicular Technology.2010,59(2):766-778.
    [108]A Troya, K Maharatna, M Krsti'c, E Grass, U Jagdhold, R Kraemer. Efficient inner receiver design for OFDM-based WLAN systems:Algorithm and architecture[J]. IEEE Transactions on Wireless Communication.2007,6(4):1374-1385
    [109]Zhongjun Wang, Yan Xin, Tomisawa M. Design and Analysis of Channel Estimation for Multi-Band OFDM-UWB Systems [C]. IEEE Global Telecommunications Conference, 2008:1-5
    [110]Y. Li, A. F. Molisch, J. Zhang. Practical approaches to channel estimation and interference suppression for OFDM-Based UWB communications [J]. IEEE Transactions on Wireless Communication.2006,5(9):12317-2320
    [111]Zhongjun Wang, Lee Guek Yeo, Wenzhen Li, Yanxin Yan, Yujing Ting, Tomisawa M. A Novel FFT Processor for OFDM UWB Systems [C]. IEEE Asia Pacific Conference on: 374-377.
    [112]P. A. Bello. Characterization of randomly time-variant linear channels[J]. IEEE Transaction on Communication.1963,11(4):360-393.
    [113]W. C. Jakes (2nd). Microwave Mobile Communications[M]. IEEE Press, New York, 1994
    [114]秦文OFDM系统中子载波间干扰的产生因素及消除研究[D].电子科技大学博士学位论文,2008:54-60.
    [115]G.L.Turn, F.D.Clapp, T.L.Johnson, S.B.Fine, D.Lavry. A Statistical model of urban multipath propagation[J]. IEEE Transaction on Vehicle Technology.1972, VT-21, no.1: 1-9.
    [116]S.J.Howard, K. Pahlavan. Autoregressive modeling of wide-band indoor radio propagation[J]. IEEE Transaction on Communication.1992,40(9):1540-1552.
    [117]S. S. Ghassemzadeh, R. Jana, C. W. Rice, W. Turin, V. Tarokh. Measurements and modeling of an ultra-wide bandwidth indoor channel [J]. IEEE Transaction on Communication.2004,52(10):1786-1796.
    [118]W. Turin, R. Jana, S. S. Ghassemzadeh, C. W. Rice, V. Tarokh. Autoregressive modeling of an indoor UWB channel[C]. IEEE Conference on Ultra Wideband System Processing Technology, May 2002:71-74
    [119]Guoxiang Gu, Xiang Gao, Jianqiang He, Mort Naraghi-Pour. Parametric Modeling of Wideband and Ultrawideband Channels in Frequency Domain[J]. IEEE Transaction on Vehicle Technology.2007,56(4):1600-1612.
    [120]H. Akaike. Use of statistical models for time series analysis[C]. IEEE International Conf. on Acoustics, Speech, and Signal Processing. Japan,1986, Vol.11:3147-3155.
    [121]Wei Chen, Ruifeng Zhang. Kalman filter channel estimator for OFDM systems in time and frequency-selective fading environment[C]. International Conference on Acoustics, Speech, and Signal Processing-ICASSP,2004,4:377-380.
    [122]宋铁成,尤肖虎,沈连丰,宋晓晋.基于导频和修正Kalman滤波的MIMO-OFDM信道估计方法[J].通信学报.2007,28(2):23-28.
    [123]任大孟,张曙.一种快变信道下OFDM系统的Kalman信道估计算法[J].哈尔滨工程大学学报,2007,28(11):1268-1272
    [124]汤晓黎,陈晓光.一种是用于终端移动的OFDM无线局域网的信道估计方法[J].电路与系统学报.2006,11(1):138-142.
    [125]C.K.Chui, GChen. Kalaman Filtering with Real Time Application[M]. Berlin: Springer,1999
    [126]Z. Yuanjin. A Novel Channel Estimation and Tracking Method for Wireless OFDM Systems Based on Pilots and Kalman Filtering[J]. IEEE Transactions on Consumer Electronics.2003,49(2):275-283.
    [127]S. Kay. A fast accurate single frequency estimator[J]. IEEE Transactions on Acoustic, Speech, and Signal Processing.1989,37(12):1987-1990.
    [128]A. F. Molisch, M. Z. Win, J. H. Winters. Space-time-frequency (STF) coding for MIMO-OFDM systems[J]. IEEE Communication Letter.2002,6(9):370-372
    [129]R. A. Horn, C. R. Johnson. Matrix Analysis[M]. Cambridge University Press, New York,1985
    [130]A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society[J]. Series B (Methodological).1977,39(1):1-38.
    [131]Wautelet V, Herzet C, Dejohghe A. MMSE-based and EM iterative channel estimation methods[C]. IEEE Symposium on Communications and Vehicular Technology, SCVT, Benelux, Eindhoven, The Netherlands,2003:1-8
    [132]Chiavaccini E, Vitetta G M. MAP symbol estimation on frequency-flat Rayleigh fading channels via a Bayesian EM algorithm[J]. IEEE Transaction on Communication.2001, 49(11):1869-1872
    [133]Kobayashi M, Caire B J. Successive interference cancellation with SISO decoding and EM channel estimation[J]. IEEE Journal on Selected Areas in Communication.2001, 19(8):1450-1460
    [134]Ma X, Kobayashi H, Schwartz S C. EM-Based Channel Estimation Algorithms for OFDM[J]. EURASIP Journal on Applied Signal Processing,2004, (10):1460-1477
    [135]Mazet L, Buzenac-Settineri V, de Courville M. An EM based semi-blind channel estimation algorithm designed for OFDM[C]. In Proc. Record of the 36rd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,2002:1642-1646.
    [136]Touati A, Ocloo J M, Duhamel PI. Semi-blind channel estimation for OFDM systems via an EM-Block algorithm[C]. EUSIPCO, Vienna, Ausha, September 2004.
    [137]Carlos H. Aldana, Elisabeth de Carvalho, John M. Cioffi. Channel estimation for multicarrier multiple input single output systems using the EM algorithm[J]. IEEE Trans.on Signal Processing,2003,51(12):3280-3292
    [138]Wautelet X, Herzet C, Dejonghe A, et al. Comparison of EM-Based algorithms for MIMO channel estimation[J]. IEEE Transaction on Communication.2007,55(1): 216-226.
    [139]Khalighi, Boutros J. Modified unbiased EM-based channel estimation for MIMO turbo receivers[C]. In Proc. IEEE Symposium on Signal Processing and Information Technology, ISSPIT, Rome, Italy,2004:127-131
    [140]H. Hartley..Maximum likelihood estimation from incomplete data[J]. Biometrics.1958, 14:174-194
    [141]Xie Y., Georghiades C.N.. Two EM-type channel estimation algorithms for OFDM with transmitter diversity [J]. IEEE Trans.Comm..2003,51(1):106-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700