动态定量相衬数字全息显微成像技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命科学研究的突破在很大程度上依赖于各种新颖的、性能高的分析测试仪器。显微成像设备是生命科学研究中最常见的分析测试设备。传统的显微镜已经远不能满足目前科学研究的要求。发展新的显微成像分析技术,对活细胞等微小生物样品实现无扰、动态、定量的显微分析是目前生命科学研究的迫切需求。该技术关系到疾病发生机制的解析、医疗效果评价、药物筛选等重大科学问题。
     随着计算机和高分辨率CCD摄像机的发展,以及数字图像处理技术的进步,结合数字全息成像技术以及光学条纹分析技术,逐渐出现了基于复振幅位相定量分析的数字全息显微成像技术。该技术采用CCD摄像机等电子成像器件代替全息干版来记录全息图,可连续记录运动物体的各个瞬间过程,实现连续在线全息记录,并将记录的全息图存入计算机;其再现过程是对全息图进行数值再现,可定量分析样品的幅度和位相信息,为样品的定量检测分析带来了极大的方便。
     目前数值再现重构技术,主要是以菲涅尔衍射积分公式为基础的菲涅耳算法、卷积算法以及基于角谱传播理论的角谱法。但上述几种方法都借助了傅里叶变换算法来获得全息图的频谱,并基于空间滤波技术设计滤波器,在频域中对全息图进行滤波,以消除零级像以及孪生像,提取+1级频谱重构再现像。但当全息图中含有噪音或者寄生衍射条纹时,+1级频谱的边界将会变得模糊不清,因此难以精确地确定滤波窗口的形状及带宽。另外对于不同物体所形成的全息图频谱分布形状并不相同,因而在滤波过程中对于滤波窗口形状,以及大小的选择具有较大的任意性。根据每幅不同的全息图进行人工定义滤波器的方法在一定程度上解决了上述的不足,但对于动态全息分析而言,将有大量的全息图被记录和分析,人工定义滤波器的方法过于耗时,是不现实的。另一方面由于再现像质量与滤波窗口的选择紧密相关,人工定义滤波窗口没有统一的准则。因此,针对动态全息图的特点,对前后两幅全息图再现位相进行比较时,如果空间滤波不当的话,很可能导致前后两幅全息图的比较结果不可靠。因此迫切需要寻找具有统一准则的数值再现算法实现动态数字全息分析。
     本文为探索一种提高数字全息定量相衬显微动态分析技术,针对目前常用的数值再现算法不适用于动态分析的缺陷,提出一种基于小波变换的数值再现算法,无需空间滤波,避免或减轻动态全息图再现结果比较的不可靠性,实现对活细胞等位相物体的无扰、定量、动态分析。研究内容主要包括理论研究,计算机数值模拟研究以及实验研究。
     理论研究主要包括以下几方面:(一)基于空间滤波技术,提出自适应滤波器的自动设计算法。(二)提出基于一维以及二维Gabor小波变换的数值再现算法用于动态分析,包括最佳母小波函数的选择、小波变换最佳尺度参数的选取原则、以及小波变换脊的精确提取算法等。(三)考虑在超快动态数字全息中,由于CCD反应速度的局限,需利用角复用技术,提出针对角复用全息图的小波变换物光波数字重建技术。
     计算机数值模拟研究以及实验研究方面:首先利用数值方法进行模拟,检验上述再现算法的可靠性,并基于Matlab语言开发相关的程序;然后搭建全息实验光路,以洋葱细胞以及生物细胞为实验样品,采用CCD摄像机采集样品的全息条纹,进行数值再现,从而获得生物样品的定量位相分布信息;最后,以一个活动幼虫为研究对象,实现数字全息显微成像的动态分析。
     本论文的特色与创新之处在于首次在国内外提出应用具有多尺度细化分析的功能的Gabor小波变换构造数字全息再现核心算法,其关键技术在于通过小波变换脊对样品信号基频信息的提取以消除零级像与孪生像。该技术为活细胞等生物样品的分析提供了一种崭新的方法,对探索生命过程,促进生物医学研究实现新的突破,实现对活体细胞的动态检测,具有重要的科学意义。
To a great degree, the breakthrough in the field of the research of the life sciences dependon varies novel and powerful analysis measurement instruments. The microscopyapparatus is the most familiar employed. However, the conventional microscopyapparatus can not meet the development trend of the scientific research. Therefore, forthe active demand of the research of the life sciences, it is necessary to grope for a novelmicroscopical imaging technique that can achieve real-time, non-interference andquantitative analysis. This immediately concerns some important scientific problems,such as the exploration of mechanism of disease, the evaluation of the medical results,the drug screening and so on.
     With the rapid development of the computer and the charge coupled device (CCD)camera sensor technology, great progress had been made in technology of digital imageprocessing. At the same time, in combination with the holography and the optical fringeanalysis method, the digital holographic microscopy, a noninvasive contrast imagingtechnique allowing quantitative visualization of living cells, is developed. A CCD camerais employed to record a hologram onto a computer and numerical methods aresubsequently applied to reconstruct the holographic image to enable direct access to bothphase and amplitude information of the object wave in digital holography. It offers asignificant advantage for dynamic real-time analysis.
     The most popular numerical reconstruction methods for digital holography includethe well-known Fresnel diffraction integral method, the angular spectrum method and theconvolution-based method. In order to filter out the zero-order term, the twin image termand the parasitic interferences, the process of the spatial filtering must be carried out inthese methods. When some noises and parasitic interferences are introduced into thehologram, the spectrum of the virtual image would be disturbed by some other spectrum.It brings difficulties to define the spatial filter because of the blurry boundary andnon-regular distribution of the spectrum. Therefore, the quality of the reconstructedimage is mainly limited by the process of the spatial filtering. For the analysis ofdifferent object waves with respective spectrum, manual spatial filters with different pass-band are proposed. However, it shows that different results would be obtainedaccording to the spatial filters at different standard in the experiments, and it still bringsdifficulties to define a proper spatial filter at the uniform standard. On the other hand, forthe dynamic analysis, lots of holograms are recorded. Defining different manual spatialfilters would consume plenty of time for dynamic analysis. Thereby, the process of thespatial filtering limits the application of the digital holography for the dynamic andautomatic analysis. Therefore, it is necessary to grope for a numerical reconstructiontechnique that can be performed automatically at the uniform standard.
     In order to overcome the defect of the most popular numerical reconstructionmethods for the dynamic analysis, a numerical reconstruction technique of digitalholography by means of wavelet transform is described. Appling the wavelet transformto digital holography, the object wave can be reconstructed by calculating the waveletcoefficients of the hologram at the ridge or the peak of the wavelet coefficientsautomatically. At the same time the effect of the zero-order diffraction image and thetwin-image are eliminated without the spatial filtering. The theory, the results of thesimulations and experiments are demonstrated in detail in this paper.
     The theory mainly includes the following aspects:(1) Based on the processing ofthe spatial filtering, an automatic spatial filtering to obtain the virtual image term indigital holographic microscopy is presented.(2) A numerical reconstruction technique fordigital holography by means of the one-dimensional and two-dimensional Gabor wavelettransform is presented to achieve the dynamic and automatic analysis. The researchincludes the choice of the optimum mother wavelet, the decision of the values of thescale parameter and the accurate determination of the ridge of the Gabor wavelettransform.(3) A numerical reconstruction technique employing the de-multiplexing bymeans of the Gabor wavelet transform in digital holography is described.
     The simulations and experiments researches are mainly include the followingaspects: first, the numerical simulations are performed to demonstrate the validity of theaforementioned methods, and develop the programs and the application system byMatlab. Second, employ the apparatus analogous to a Mach-Zehnder interferometer forexperiments. Employ a CCD camera to recorder the holograms of the onion specimen and gastric cancer cells and perform the numerical reconstruction method. Finally, asequence of holograms of a grub is recorded for the dynamic and automatic analysis.
     The creative idea of this paper is that the Gabor wavelet transform, a tool excellingin multiresolution and localization in the time-or space-frequency domains, is applied tothe digital holography. The object wave can be reconstructed by calculating the waveletcoefficients of the hologram at the ridge or the peak of the wavelet coefficientsautomatically without the processing of the spatial filtering. This technique provides anovel method for the analysis of the biological samples, special for the living cells. It isof great significance in the development of the research of the life sciences and thedynamic analysis.
引文
[1]黄耀熊.生物医学工程概论及其发展前沿[M].2004.
    [2]黄耀熊.生物医学工程世纪之交新进展[J].科学前沿与学术评论,2001,23(4):45-47.
    [3]李宗林,罗晓毁,将爱德.显微细胞的图像分析技术[J].机械工程与自动化,2001,1:146-148.
    [4]阮萍,雍军光,黄耀熊.显微图像分析技术对红细胞结构功能的研究[J].中国医学物理学杂志,2004,21(1):21-22.
    [5]唐福元.泽尔尼克与相衬显微镜[J].物理与工程,2004,14(4):45-47.
    [6]许忠保,叶虎年.微分干涉相衬层析显微镜的研究[J].华中科技大学学报(自然科学版),2007,35(3):93-95.
    [7]彭若龙,钱梦騄.扫描电子声显微镜对骨组织的成像[J].声学技术,2007,26(5):1038-1039.
    [8]陈耀文,林月娟,张海丹,沈智威,沈忠英.扫描电子显微镜与原子力显微镜技术之比较[J].中国体视学与图像分析,2006,16(1):53-58.
    [9]顾树江,纪小龙.观察细胞形态的新工具-原子力显微镜[J].中国实用医药,2008,3(9):136-137.
    [10]高万峰,纪小龙.原子力显微镜在细胞形态学中应用的现状和前景[J].中华肿瘤防治杂志,2008,15(6):471-475.
    [11]于彦华,邢达.激光共焦扫描显微镜及其在生物医学中的应用[J].激光杂志,1999,20(6):35-38.
    [12]何其华.激光扫描共焦显微镜在检测活体组织和细胞中的应用[J].中国医学装备,2004,1(4):43-47.
    [13]田克斌,周国瑜.激光扫描共焦显微镜活体组织诊断技术的应用进展[J].上海口腔医学,2006,15(1):97-100.
    [14] A. D. Dinsmore, Eric R. Weeks, Vikram Prasad, et al. Three-dimensional confocal microscopy ofcolloids[J]. Appl. Opt.2001,40(24):4152-4159.
    [15] Martin M. Knight, Susan R. Roberts, David A. Lee, et al. Live cell imaging using confocalmicroscopy induces intracellular calcium transients and cell death[J]. Am J Physiol Cell Physiol.2003,284:C1083-C1089.
    [16] Barry R. Masters and Phter T. C. So. Confocal microscopy and multi-photon excitationmicroscopy of human skin in vivo[J]. Opt. Express2001,8(1):2-10.
    [17] D. Carl, B. Kemper, G. Wernicke, and G. von Bally. Parameter-optimized digital holographicmicroscope for highresolution living-cell analysis[J]. Appl. Opt.2004,43:6536-6544.
    [18] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge.Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitativevisualization of living cells with subwavelength axial accuracy[J]. Opt. Lett.2005,30(5):468-470.
    [19] C. J. Mann, L. Yu, C. Lo and M. K. Kim. High-resolution quantitative phase-contrast microscopyby digital holography[J]. Opt. Express2005,13(22):8693-8698.
    [20] B. Kemper and G. von Bally. Digital holographic microscopy for live cell applications andtechnical inspection[J]. Appl. Opt.2008,47(1):A52-A61.
    [21] P. Langehanenberg, B. Kemper, D. Dirksen and G. von Bally. Autofocusing in digital holographicphase contrast microscopy on pure phase objects for live cell imaging[J]. Appl. Opt.2008,47(19):D176-D182.
    [22] H. J. Caulfield.光全息手册[M].北京:科学出版社,1988.
    [23] E. Leith and J. Upatnieks. Reconstructed wavefronts and communication theory[J], J. Opt. Soc.Am.,1962,52:1123.
    [24] J. W. Goodman and R. W. Lawrence. Digitl image formation from electronically detectedholograms[J], Applied Physics Letters1967,11:77-79.
    [25] M. A. Kronrod, N. S. Merzlyakov, L. P. Yaroslavsky. Reconstrution of a Hologram with aComputer[J], Soviet Physics-Technical Physics1972,17(2):333-334.
    [26] G.. von Bally. Holography in Medicine and Biology. Springer Series in Optical Sciences(Springer,1979).
    [27] G.. von Bally and P. Greguss, et al. Optics in Biomedical Sciences. Springer Series in OpticalSciences (Springer,1982).
    [28] G.. von Bally. Coherent imaging metrology in life sciences and clinical diagnostics[J]. inInternational Trends in Applied Optics, A. H. Guenther, ed., Spie Press Monograph,Vol.PM119(SPIE,2002):571-608.
    [29] B. Kemper, D. Dirksen, W. Avenhaus, A.Merker and G.. von Bally. Endoscopic double-pulseelectronic-speckle-pattern interferometer for technical and medical intracavity inspection[J].Appl. Opt.,2000,39:3899-3905.
    [30] S. Schedin, G. Pedrini and H. J. Tiziani. Pulsed digital holography for deformation measurementson biological tissues[J]. Appl. Opt.,2000,39:2853-2857.
    [31] W. Avenhaus, B. Kemper, G.. von Bally and W. Domschke. Gastric wall elasticity assessed bydynamic holographic endoscopy: ex vivo investigations in the porcine stomach[J]. Gastrointest.Endosc.2001,54:496-500.
    [32] B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge and P. Magistretti. Measurement ofthe integral refractive index and dynamic cell morphotometry of living cells with digitalholographic microscopy[J]. Opt. Express,2005,13:9361-9373.
    [33] B. Kemper, D. Carl, J. Schnekenburge, et al, Investigation of living pancreas tumor cells bydigital holographic microscopy[J]. J. Biomed. Opt.,2006,11(3):034005:1-8.
    [34] W. S. Haddad, D. Cullen, J. C. Solem, et al. Fourier-transform holographic microscope[J]. Appl.Opt.,1992,31(24):4973-4978.
    [35] U. Schnars, W. Jüptner. Direct recording of holograms by a CCD target and numericalreconstruction[J]. Appl. Opt.,1994,33(2):179-181.
    [36] J. Pomarico, U. Schnars, H. J. Hartmann, et al. Digital recording and numerical reconstruction ofholograms:a new method for displaying light in flight[J]. Appl. Opt.,1995,34(35):8095-8099.
    [37] U. Schnars, W. Jüptner. Digital recording and reconstruction of holograms in holograminterferometry and shearography[J]. Appl. Opt.,1994,33(20):4373-4377.
    [38] I. Yamaguchi. Phase-shifting digital holography[J]. Opt. Lett.,1997,22(16):1268-1270.
    [39] T. Zhang, I. Yamaduchi. Three dimensional microscopy with phase-shifting digital holography[J].Opt. Lett.,1998,23(15):1221-1223.
    [40] Y. J. Yu, W. J. Zhou, Y. Orphanos, et al. Phase-shifting digital holography in imagereconstruction[J]. J. Shanghai Univ.,2006,10(1):59-64.
    [41] U. Schnars. Direct phase determination in hologram interferometry with use of digital recordingholograms[J]. J. Opt. Soc. Am. A,1994,11(7):2011-2015.
    [42] C. Quan, C. J. Tay, H. Chen. Temporal phase retrieval from a complex field in digitalholographic interferometry[J]. Opt. Lett.,2007,32(12):1602-1604.
    [43] M. K. Kim. Wavelength-scanning digital interference holography for optical section imaging[J].Opt. Lett.,1999,24(23):1693-1695.
    [44] G. Pedrini, P. Fr ning, H. Fessler, H. J. Tiziani. In-line digital holographic interferometry[J].Appl. Opt.,1998,37(26):6262-6269.
    [45] P. Ferraro, L. Miccio, S. Grilli, et al. Quantitative phase microscopy of microstructures withextended measurement range and correction of chromatic aberrations by multiwavelength digitalholography[J]. Opt. Express,2007,15(22):14591-14600.
    [46] J. L. Valin, E. Goncalves, F. Palacios. Methodology for analysis of displacement using digitalholography[J]. Opt. Las. Eng.,2005,43:99-111.
    [47] B. Javidi, I. Moon, S. Yeom, et al. Three-dimensional imaging and recognition of microorganismusing single-exposure on-line(SEOL) digital holography[J]. Opt. Express,2005,13(12):4492-4506.
    [48]王亮,冯少彤,聂守平等.基于多次滤波技术的单次曝光三维物体数字全息[J].激光技术,2007,31(4):354-357.
    [49] B. Nilsson, T. E. Carlsson. Direct three dimensional shape measurement by digital light-in-flightholography[J]. Appl. Opt.,1998,37(34):7954-7959.
    [50] O. Matoba, T. J. Naughton, Y Frauel, et al. Real-time three-dimensional object reconstruction byuse of a phase-encoded digital hologram[J]. Appl. Opt.,2002,41(29):6187-6192.
    [51] P. Almoro, W. Garcia and C. Saloma. Colored object recognition by digital holography and ahydrogen Raman shifter[J]. Opt. Express,2007,15(12):7176-7181.
    [52] B. Javidi, E. Tajahuerce. Three dimensional object recognition by use of digital holography[J].Opt. Lett.,2000,25(9):610-612.
    [53] T. Nomura, B. Javidi. Object recognition by use of polarimetric phase-shifting digitalholography[J]. Opt. Lett.,2007,32(15):2146-2148.
    [54] Y. Jamaguchi, S. Ohta, J. Kato. Surface contouring by phase-shifting digital holography[J].Optics and Lasers in Engineering,2001,36(5):417-428
    [55] E. Tajahuerce, O. Matoba, B. Javidi. Shift invariant three dimensional object recognition bymeans of digital holography[J]. Appl. Opt.,2001,40(23):3877-3886.
    [56] M. Y. Y. Hung, L. Lin, H. M. Shang. Simple method for direct determination of bending strainsby use of digital holography[J]. Appl. Opt.,2001,40(25):4514-4518.
    [57] W. Chen, C. Quan, C. J. Tay. Measurement of curvature and twist of a deformed object usingdigital holography[J]. Appl. Opt.,2008,47(15):2874-2881.
    [58] Y. Fu, G. Pedrini, W. Osten. Vibration measurement by temporal Fourier analyses of a digitalhologram sequence[J]. Appl. Opt.,2007,46(23):5719-5727.
    [59] F. M. Santoyo, G. Pedirini, S. Schedin, et al.3D displacement measurements of vibrating objectswith multipulse digital holography[J]. Meas. Sci. Technol.,1999,10(12):1305-1308.
    [60] C. B. Lefebvre, S. Co tmellec, D. Lebrun, et al. Application of wavelet transform to hologramanalysis:three dimensional location of particles[J]. Opt. Laser Eng.,2000,33(6):409-421.
    [61] J. Sheng, E. Malkiel, J. Katz. Digital holographic microscope for measuring three-dimensionalparticle distributions and motions[J]. Appl. Opt.,2006,45(16):3893-3901.
    [62] T. Kreis, M. Adams, W. Jüptner. Digital in-line holography in particle measurement[C]. Proc.SPIE,1999,3744:54-64.
    [63] J. Desse, P. Picart, P. Tankam. Digital three-color holographic interferometry for flow analysis[J].Opt. Express,2008,16(5):5471-5480.
    [64] D. W. Kim, H. J. Choi, Y. G. Choi, et al. Information hiding for digital holograms by electronicpartial encryption methods[J]. Opt. Commun.,2007,277:277-287.
    [65] B. Javidi, T. Nomura. Securing information by use of digital holography[J]. Opt. Lett.,2000,25(1):28-30.
    [66]孙刘杰,庄松林.基于同轴菲涅耳全息的标识印刷防伪技术[J].中国激光,2007,34(3):402-405.
    [67] B. Kemper, P. Langehanenberg, G. Bally. Digital Holographic Microscopy A New Method forSurface Analysis and Marker Free Dynamic Life Cell Imaging[J]. Biophotonics,2007,2:41-44.
    [68] M. Paturzo, L. Miccio, S. De Nicola, et al. Amplitude and phase reconstruction ofphotorefractive spatial bright-soliton in LiNbO3during its dynamic formation by digitalholography[J]. Opt. Express,2007,15(13):8243-8251.
    [69] S. D. Nicola, P. Ferraroa, A. Finizio, et al. Characterization of microstructures in lithium niobatecrystals by digital holography[C]. Proc. of SPIE.,2003,4944:353-360.
    [70] P. Ferraro, G. Coppola, S. D. Nicola. Digital holography for characterizatin and testing of MEMSstructures[C]. IEEE.,2002,0-7803-7595-5:125-126.
    [71] G. Coppola, S. D. Nicola, P. Ferraro. Characterization of MEMS structures by microscopicdigital holography[C]. Proc. of SPIE.,2003,4945:71-78.
    [72] E. Novak. MEMS Metrology Techniques[C]. Proc. of SPIE.,2005,5716:173-181.
    [73] F.Montfort, Y. Emery, F. Marquet. Process engineering and failure analysis of MEMS andMOEMS by Digital Holography Microscopy(DHM)[C]. Proc. of SPIE.,2007,6463:64630G-1-64630G-7.
    [74] J. Müller, V. Kebbel, W. Jüptner, et al. Digital holography as a tool for testing high-aperturemicro-optics[J]. Opt. Laser Eng.,2005,43:739-751.
    [75] V. Kebbel, H. J. Hartmann, W. P. O. Jüptner. Characterization of micro-optics using digitalholography[C]. Proc. of SPIE.,2000,4101:477-577.
    [76] J. Kühn, F. Charrièrea, T. Colomba. Digital holographic microscopy for nanometric qualitycontrol of micro-optical components[C]. Proc. of SPIE.,2007,6475:64750V1-64750V12.
    [77] S. Kim, S. J. Lee. Measurement of Dean flow in a curved micro-tube using micro digitalholographic particle tracking velocimetry[J]. Experiments in Fluids,2009,46:255–264.
    [78] L. Xu, X. Peng, J. Miao, and A. K. Asundi. Studies of digital microscopic holography withapplications to microstructure testing [J]. Appl. Opt.,2001,40(28):5046-5051.
    [79] K. Jeong, L. Peng, J. J. Turek, et al. Fourier-domain holographic optical coherence imaging oftumor spheroids and mouse eye [J]. Appl. Opt.,2005,44(10):1798-1805.
    [80] K. Jeong, L. Peng, J. J. Turek, et al. Fourier-domain digital holographic optical coherenceimaging of living tissue[J]. Appl. Opt.,2007,46(22):4999-5008.
    [81] L. Martínez-León, G. Pedrini, and W. Osten. Applications of short-coherence digital holographyin microscopy[J]. Appl. Opt.,2005,44(19):3977-3984.
    [82] F. Charrière, A. Marian, F. Montfort, et al. Cell refractive index tomography by digitalholographic microscopy[J]. Opt. Lett.,2006,31(2):178-180.
    [83] G. Popescu, L. P. Deflores, J. C. Vaughan, et al. Fourier phase microscopy for investigation ofbiological structures and dynamics[J]. Opt. Lett.,2004,29(21):2503-2505.
    [84] M. Sebesta, M. Gustafsson. Object characterization with refractometric digital Fourierholography[J]. Opt. Lett.,2005,30(5):471-473.
    [85] E. Cuche, P. Marquet and C. Depeursinge. Simultaneous amplitude-contrast and quantitativephase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Appl.Opt.1999,38(34):6994-7001.
    [86] P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, et al. Digital holographic microscopy: anoninvasive contrast imaging technique allowing quantitative visualization of living cells withsubwavelength axial accuracy[J]. Opt. Lett.,2005,30(5):468-470.
    [87] P. Marqueta, B. Rappazb, F. Charrièrec. Analysis of cellular structure and dynamics with digitalholographic microscopy[C]. Proc. of SPIE,2007,6633:66330F-1-66330F-5.
    [88] F. Charrière, N. Pavillon, T. Colomb, et al, Living specimen tomography by digital holographicmicroscopy: morphometry of testate amoeba[J], Opt. Express,2006,14(16):7006-7013.
    [89] K. omasz, K. Rafa, K. Magorzata. Reconstruction of refractive-index distribution in off-axisdigital holography optical diffraction tomographic system[J]. Opt. Express,2009,17(16):13758-13767.
    [90] W. Chen, C. Quan, C. J. Tay, et al. Quantitative detection and compensation of phase-shiftingerror in two-step phase-shifting digital holography[J]. Opt. Comm.,2009,282(14):2800-2805.
    [91] T. V. Tishko, V. P. Titar, D. N. Tishko, K. V. Nosov. Digital holographic interference microscopyin the study of the3D morphology and functionality of human blood erythrocytes[J]. LaserPhysics,2008,18(4):1-5.
    [92] F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A.D. Mitchell, P. Marquet,B. Rappaz. Living specimen tomography by digital holographic microscopy: morphometry oftestate amoeba[J]. Opt. Express,2006,14(16):7005-7013.
    [93] J. Weng, J. Zhong, and C. Hu. Digital reconstruction based on angular spectrum diffraction withthe ridge of wavelet transform in holographic phase-contrast microscopy[J]. Opt. Express,2008,16(26):21971-21981.
    [94] J. Weng, J. Zhong, and C. Hu. Phase reconstruction of digital holography with the peak of thetwo-dimensional Gabor wavelet transform[J]. Appl. Opt.,2009,48(18):3308-3316.
    [95] T. Colomb, E. Cuche, F. Charrière, et al. Automatic procedure for aberration compensation indigital holographic microscopy and applications to specimen shape compensation[J]. Appl. Opt.,2006,45(5):851-863.
    [96] E. Cuche, F. Bevilacqua and C. Depeursinge. Digital holography for quantitative phase-contrastimaging[J]. Opt. Lett.,1999,24(5):291-293.
    [97] E. Cuche, P. Marquet and C. Depeursinge. Aperture apodization using cubic spline interpolation:application in digital holographic microscopy[J]. Opt. Commun.,2000,182(1-3):59-69.
    [98] E. Cuche, P. Marquet and C. Depeursinge. Spatial filtering for zero order and twin-imageelimination in digital off-axis holography[J]. Appl. Opt.,2000,39(23):4070-4075.
    [99] D. Beghuin, E. Cuche, P. Dahlgren, et al. Single acquisition polarisation imaging with digitalholography[J]. Electron. Lett.,1999,35(23):2053-2055.
    [100] T. Colomb, E. Cuche, F. Montfort, et al. Ones vector imaging by use of digital holography:simulation and experimentation[J]. Opt. Commun.,2004,231(1-6):137-147.
    [101] T. Colomb, E. Cuche and C. Depeursinge. Birefringence measurement by use of digitalholographic microscopy: examples with fiber optics and concrete samples[C]. Proc. of SPIE.,2005,5856:1022-1027.
    [102] T. Colomb, F. Dürr, E. Cuche, et al. Polarization microscopy by use of digitalholography:application to optical fiber birefringence measurements[J]. Appl. Opt.,2005,44(21):4461-4469.
    [103] P. Massatsch, F. Charrière, E. Cuche, et al. Time-domain optical coherence tomography withdigital holographic microscopy[J]. Appl. Opt.,2005,44(10):1806-1812.
    [104] W. M. Ash, M. K. Kim. Digital holography of total internal reflection[J]. Opt. Express,2008,16:9811-9820.
    [105] M. K. Kim, L. Yu and C. J. Mann. Interference techniques in digital holography[J]. Journal ofOptics A A: Pure and Applied Optics,2006,8:S518-523.
    [106] N. Warnasooriya and M. K. Kim. LED-based multi-wavelength phase imaging interferencemicroscopy [J]. Opt. Express,2007,15(15):9239-9247.
    [107] A. Dakoff, J. Gass, M. K. Kim. Microscopic three-dimensional imaging by digital interferenceholography[J]. Journal of Electronic Imaging,2003,12(4):643-647.
    [108] M. C. Potcoava and M. K. Kim. Optical tomography for biomedical applications by digitalinterference holography[J]. Measurement Science and Technology,2008,19:0740101-8.
    [109] A. Khmaladze, M. Kim, and C. Lo. Phase imaging of cells by simultaneous dualwavelengthreflection digital holography[J]. Opt. Express,2008,16(15):10900-10911.
    [110] J. Gass, A. Dakoff, and M. K. Kim. Phase imaging without2pi ambiguity by multiwavelengthdigital holography[J]. Opt. Lett.,2003,28(13):1141-1143.
    [111] M. K. Kim. Tomographic three-dimensional imaging of a biological specimen usingwavelength-scanning digital interference holography[J]. Opt. Express,2000,7(9):305-310.
    [112] L. Yu and M. K. Kim. Wavelength scanning digital interference holography for variabletomographic scanning[J]. Opt. Express,2005,13(15):5621-5627.
    [113] C. Liu., Z.G. Liu, F. Bo, et al. Super-resolution digital holographic imaging method[J]. Appl.Phys. Lett.,2002,81:3143-3145.
    [114] M. Liebling, T. Blu, E. Cuche. Local amplitude and phase retrieval method for digitalholography applied to microscopy[C]. Proc. of SPIE.,2003,5143:210-214.
    [115] S. Lai, B. Kemper, G. von Bally. Off-axis reconstructions of in-line holograms for twin-imageelimination[J]. Opt. Commun.,1999,169:37-43.
    [116] T. Colomb, Jühn, F. Charrière, et al. Total aberrations compensation in digital holographicmicroscopy with a reference conjugated hologram[J]. Opt. Express,2006,14(10):4300-4306.
    [117] S. de Nicola, P. Ferraro, A. Finizio, et al. Wave front reconstruction of Fresnel off-axisholograms with compensation of aberrations by means of phase-shifting digital holography[J].Optics and Lasers in Engineering,2002,37(4):331-340.
    [118] P. Ferraro, G. Coppola, S. D. Nicola, et al. Digital holographic microscope with automatic focustracking by detection sample displacement in real time[J]. Opt. Lett.,2003,28(14):1257-1259.
    [119] S. de Nicola, A. Finizio, G. Pierattini, P. Ferraro. Angular spectrum method with correction ofanamorphism for numerical reconstruction of digital holograms on tilted planes[J]. Opt. Express,2005,13(24):9935-9940.
    [120]葛宝臻,罗文国,吕且妮等.数字再现三维物体菲涅耳计算全息的研究[J].光电子.激光,2002,13(12):1289-1292.
    [121]刘诚,刘志刚,薄峰等.数字全息中再现像分离问题的研究[J].光子学报,2003,32(5):588-591.
    [122]钟丽云,张以谟,吕晓旭等.数字全息图再现像的分析计算[J].中国激光.2004,31(5):570-574
    [123]钟丽云,张以谟,吕晓旭,熊秉衡.数字全息中的一些基本问题分析[J].光学学报,2004,24(4):465-471.
    [124]范琦,赵建林,李世扬等.数字全息再现像的细节显示和视觉畸变矫正[J].中国激光,2005,32(10):1401-1405.
    [125]范琦,赵建林,向强等.改善数字全息显微术分辨率的几种方法[J].光电子.激光,2005,16(2):226-230.
    [126]吕且妮,葛宝臻,张以谟.数字全息再现像质的影响因素分析[J].光电子.激光,2005,16(1):83-87.
    [127]吕且妮,葛宝臻,张以谟.数字显微像面全息技术研究[J].光电子.激光,2006,17(4):475-478.
    [128]王亮,冯少彤,聂守平等.利用多尺度变换提高数字全息再现像质量[J].光电子.激光,2007,18(5):625-628.
    [129]王华英,王大勇,谢建军等.显微数字全息中物光波前重建方法研究和比较[J].光子学报,2007,36(6):1023-1027.
    [130]王华英,王大勇,谢建军.数字全息显微中的准直光再现[J].激光技术,2008,32(2):131-133.
    [131]王华英,王大勇,赵洁等.预放大数字全息系统的成像分辨率分析[J].光子学报,2008,37(4):729-733.
    [132]张亦卓,王大勇,赵洁等.数字全息中实用位相解包裹算法研究[J].光学学报,2009,29(12):3323-3327.
    [133]钱晓凡,张磊,董可平等.基于相移技术的显微数字全息重构细胞位相[J].光子学报,2006,35(10):1565-1568.
    [134]董可平,钱晓凡,张磊等.数字全息显微术对细胞的研究[J].光子学报,2007,36(11):2013-2016.
    [135]邸江磊,赵建林,范琦等.数字全息显微术中重建物场波前的位相校正[J].光学学报,2008,28(1):56-61.
    [136]赵雅晶,钟金钢.黄氏傅里叶计算全息图的数字再现及零级像的消除[J].光子学报,2004,33(11):1339-1342.
    [137]赵雅晶,钟金钢.全数字全息术在图像信息隐藏中的应用[J].光学技术,2005,31(6):854-857.
    [138]钟金钢,陈家楠,赵雅晶.全数字全息术在音频信息加密中的应用[J].信息安全与通讯保密,2006,12:128-130.
    [139]翁嘉文,钟金钢,胡翠英.菲涅耳数字全息图的Gabor小波变换再现法[J].光学学报,2009,29(8):2109-2114.
    [140] M. Makel, S. Coetmeuec, D. Auano, et al. Formulation of in-line holography process by alinear shift invariant system: Application to measurement of fiber diameter[J]. Opt.Comm.,2003,223(46):236-271.
    [141] Y. Qin, J. Zhong. Quality evaluation of phase reconstruction in LED-based digitalholography[J]. Chiese Optics Letters.2009,7(12):1146-1150.
    [142]胡翠英,钟金钢,高应俊等.显微数字全息位相重构的窗口选取和倾斜校正[J].光学学报,2009,29(12):3317-3322.
    [143]胡翠英,钟金钢,高应俊等.基于显微数字全息的生物薄膜折射率的测量[J].光电子.激光,2010,21(1):66-69.
    [144] G. Pedrini and H. J. Tiziani. Short-coherence digital microscopy by use of a lenslessholographic imaging system[J]. Appl. Opt.,2002,41(22):4489-4496.
    [145] D. Kim, W. Y. Jang, and S. Kim. White light on-axis digital holographic microscopy based onspectral phase shifting[J]. Opt. Express,2006,14(1):229-234.
    [146] C. Yuan, H. Zhai, X.Wang, et al. Lensless digital holography with short-coherence light sourcefor three-dimensional surface contouring of reflecting micro-object[J]. Opt. Comm.,2007,270:176-179.
    [147] M. Liebling, T. Blu and M. Unser. Complex-wave retrieval from a single off-axis hologram[J].J. Opt. Soc. Am. A-Opt. Image Sci. Vis.,2004,21(3):367-377.
    [148] M. Liebling, T. Blu, E. Cuche. A novel non-diffractive reconstruction method for digitalholographic microscopy[C]. IEEE.,2002,0-7803-7584-X:625-628.
    [149] B. Kemper, S. Kosmeier, P. Langehanenberg, et al. Integral refractive index determination ofliving suspension cells by multifocus digital holographic phase contrast microscopy[J]. J. Bio.Opt.,2007,12(5):054009-1-054009-9.
    [150] P. Ferraro and D. Alferi. Quantitative phase-contrast microscopy by a lateral shear approach todigital holographic image reconstruction[J]. Opt. Lett.,2006,31(10):1405-1407.
    [151] N. Demoli, D. Vukicevic and M. Torzynski. Dynamic digital holographic interferometry withthree wavelengths. Opt. Express.,2003,11:767-774.
    [152] J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet and C.Depeursinge. Real-time dual-wavelength digital holographic microscopy with a single hologramacquisition. Opt. Express.,2007,15(12):7231-7242.
    [153] C. Yuan, H. Zhai and H. Liu. Angular multiplexing in pulsed digital holography for aperturesynthesis. Opt. Lett.,2008,33:2356-2358.
    [154] Z. Liu, M. Centurion, G. Panotopoulos, J. Hong and D. Psaltis. Holographic recording of fastevents on a CCD camera. Opt. Lett.,2002,27:22-24.
    [155] X. Wang, H. Zhai and G. Mu. Pulsed digital holography system recording ultrafast process ofthe femtosecond order. Opt. Lett.,2006,31:1636-1638.
    [156] P. Gabolde and R. Trebino. Single-shot measurement of the full spatio-temporal field ofultrashort pulses with multi-spectral digital holography. Opt. Express.,2006,14:11460-11467.
    [157] M. Paturzo, P. Memmolo, A. Tulino, A. Finizio and P. Ferraro. Investigation of angularmultiplexing and de-multiplexing of digital holograms recorded in microscope configuration.Opt. Express.,2009,17:8709-8718.
    [158] R. M. Goldestein, H. A. Zebker, C. L. Werner. Satellite radar interferometry: Two-dimensionalphase unwrapping[J]. Radio Science,1988,23(4):713-720.
    [159] D. C. Ghiglia, L. A. Romero, Direct phase estimation from phase differences using fast ellipticpartial differential equation solvers[J]. Opt. Lett.,1989,14(20):1107-1109.
    [160] K. Abbas. A new recurrent approach for phase unwrapping[J]. International Journal of AppliedScience and Engineering,2005,2:135-143.
    [161] P. S. Agram, Howard A. Zebker. Sparse two-dimensional phase unwrapping using regular-gridmethods[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(2):327-331.
    [162] Q. Kemao, W. Gao, et al. Windowed Fourier filtered and quality guided phase unwrappingalgorithm: on locally high-order polynomial phase[J]. Appl. Opt.,2010,49(7):1075-1079.
    [163] V. Katkovnik, J. Bioucas-Dias. Multi-frequency phase unwrap from noisy data: adaptive leastsquares approach[J]. American Institute of Physics Conference Proceedings,2010,1236:472-478.
    [164] Schnars U, Juptner WPO. Digital recording and numerical reconstruction of holograms[J].Measurement Science and Technology,2002,13(9):85-101.
    [165] Lingfeng Yu, Myung K. Kim. Wavelength-scanning digital interference holography fortomographic three-dimensional imaging by use of the angular spectrum method[J]. Opt. Lett.,2005,30(16):2092-2094.
    [166] J. Weng, J. Zhong and C. Hu. Automatic spatial filtering to obtain the virtual image term indigital holographic microscopy[J]. Appl. Opt.,2010,49(2):189-195.
    [167]周灿林,亢一澜,张志锋.小波变换在数字全息中的应用[J].光电工程,2004,31(7):42-45.
    [168]刘雯雯,戴宜全,康新等.基于有限脉冲响应滤波器的数字全息零级像消除[J].光学学报,2008,28(5):856-859.
    [169] Michael Liebling, Thierry Blu and Michael Unser. Fresnelets: new multriesolution waveletbases for digital holography[J]. IEEE Transactions on Image Processing,2002,11(12):1-14.
    [170] J. Zhong, J. Weng. Phase retrieval of optical fringe patterns from the ridge of a wavelettransform[J]. Opt. Lett.,2005,30(19):2560-2562.
    [171] Cesar A., Taeeeui Kim. Determination of strains from fringe patterns using space-frequencyrepresentations[J]. Optical Engineering,2003,42(11):3182-3193.
    [172]翁嘉文,钟金刚.离散栅格Gabor小波变换得尺度参数取值方法[J].中国图象图形学报.2006,11(9):1266-1270.
    [173] J. Zhong, J. Weng. Dilating Gabor transform for the fringe analysis of3-D shapemeasurement[J]. Optical Engineering.2004,43(4):8995-8997.
    [174] H. Zhao, W. Chen and Y. Tan. Phase unwrapping algorithm for the measurement ofthree-dimensional object shapes[J]. Appl. Opt.,1994,33(20):2297-2300.
    [175] D. Parshall and M. K. Kim. Digital holographic microscopy with dual-wavelength phaseunwrapping[J]. Appl. Opt.,2006,45(3):451-459.
    [176] J. M. Huntley. Noise-immune phase unwrapping algorithm[J]. Appl. Opt.,1989,28(16):3268-3270.
    [177]王晓雷,翟宏琛,王毅,母国光.超短脉冲数字全息术中的立体角分复用技术[J].物理学报,2006,55(3):1137-1142.
    [178]王晓雷,王毅,翟宏琛,朱晓农,母国光.记录飞秒级超快动态过程的脉冲数字全息技术[J].物理学报,2006,55(9):4613-4616.
    [179]王晓雷,王毅,翟宏琛,朱晓农,母国光,吴兰.应用波分复用技术实现飞秒级超快动态过程脉冲数字显微全息记录[J].光学学报,2006,26(11):1632-1635.
    [180]张延曹,赵建林,张伟等. Tukey窗函数用于数字全息图的切趾研究[J].光子学报,2007,36(12):2256-2260.
    [181]张延曹,赵建林范琦等. Tukey窗切趾全息图用于粒子场在焦位置测量的实验研究[J].中国激光,2008,35(10):1542-1547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700