森林泥炭热解动力学特性和阴燃蔓延规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林地下火是森林地表腐殖质阴燃形成的一种火灾,对森林生态系统和大气循环有巨大破坏作用。前人的工作重点是研究森林地表可燃物的点燃概率经验模型,缺乏对腐殖质阴燃规律的深入研究。随着全球气候的变化,世界各地森林地下火频发,森林腐殖质阴燃机理的研究开始受到关注和重视,已逐渐成为阴燃研究的前沿热点领域。
     腐殖质类可燃物由森林凋落物质经过生物化学作用形成,有机成分种类繁多、结构复杂,水分含量、无机物含量不均匀,且阴燃过程受到腐殖质深度、风速等条件影响,因而腐殖质阴燃过程复杂,研究面临诸多挑战。在阴燃过程中,腐殖质中有机物在高温条件下与氧气发生热解氧化反应,释放能量,维持阴燃传播。有机物成分和含量将影响能量释放的功率。腐殖质中水分在高温下蒸发而吸收能量,延缓阴燃蔓延速度。腐殖质孔隙率则影响燃烧的能量密度、氧气流通性及材料导热性能。本文选择与腐殖质材料热解过程类似但结构和成分相对均匀的泥炭作为研究材料,研究各种参数对阴燃蔓延规律的影响,并从化学反应和能量方程出发,建立阴燃数值模型,探讨揭示泥炭阴燃蔓延的内在规律。
     本文首先实验研究了森林泥炭的元素组成、导热系数、比热容、颗粒真密度、灰烬表观密度等重要参数,界定了孔隙率和无水无灰烬的研究标准,为后续实验和模拟研究提供可靠数据支持。
     进而,通过热分析实验研究了微观尺度不同氧气浓度下泥炭的化学反应机理,建立了化学反应模型。研究发现泥炭在氮气条件下热解过程由三个失重过程组成,从而建立了三组分叠加反应模型,这与有氧条件下热解反应机理不同。对有氧但不同氧气浓度下,泥炭热解呈现两步失重过程,从而建立了两步连续反应模型。应用Kissinger、FWO、Starink、Friedman、Gyulai等五种不受机理函数影响的等转化率方法求解了热解过程的活化能,活化能随氧气浓度的变化规律与两步反应模型的结果一致,验证了两步反应机理假设及模型的恰当性。发现并分析了DSC和DTG峰不重合现象,完成了两种曲线的联立模拟,从而建立了同时模拟化学组分质量和热释放速率的化学反应模型。
     自呼中保护区和加格达奇自然保护区采集了经历过森林地表火和未经受森林地表火的不同深度处原始森林腐殖质和土壤,对五种腐殖质试样进行在空气气氛下热分析实验。利用热解阶段(第一个失重峰)的失重质量作为基准进行数据标准化处理,发现了不同样品在热解阶段表现一致的失重速率,但在氧化阶段清晰分成了受地表火和未受地表火影响的两种失重速率类型,进而提出了采用热分析技术衡量火灾消耗地表可燃物比例的计算方法。此方法可作为评估森林火灾严重程度的一种方法。
     通过自行设计的垂直向下自然阴燃实验装置,研究了不同水分含量、不同孔隙率、不同粒径的泥炭阴燃蔓延规律。实验过程精确控制泥炭样品粒径、孔隙率、含水率等参数。对不同水分含量和粒径的泥炭阴燃系列实验,保证泥炭孔隙率相同,从而保证可燃有机物表观密度一致。发现并解释了阴燃热解前锋速度不变而焦炭氧化区域不断增厚的现象,发现并分析了水分含量和孔隙率对阴燃蔓延的强化和抑制的双向影响效应,分析了阴燃点燃和熄灭过程中出现的炭黑挂壁、点燃明火、锥形熄灭、底部持续高温等现象,丰富了对阴燃现象及规律的认识。
     通过对微观尺度泥炭热解DTG曲线和阴燃实验中阴燃区域特征的对比分析,分析了阴燃前锋的四个区域结构和阴燃蔓延速率。提出利用曲面插值平滑方法对阴燃过程中温度-时间-位置三维数据进行处理的方法,并由此得到阴燃四个区域的前锋速度和厚度。此方法减小了阴燃实验中数据采集不均匀等因素产生的误差,为后续阴燃蔓延实验研究提供了更快速的解决方案。
     依据微观尺度化学反应模型和能量守恒方程,建立了泥炭阴燃蔓延的速率模型和阴燃蔓延的移动边界模型,解决了阴燃蔓延模拟中求解边界移动和灰烬累积的问题。
Ground fire in the forest is a kind of smoldering fire of humus and is a great threat to the forest ecosystem and atmospheric circulation. Previous research mainly focuses on the empirical model of ignition probability of humus, and there is much lack of the mechanism research of humus smoldering. As the change of global climate, ground fires have occurred over the world and much attention begins to be paid on forest humus smoldering, which has gradually become a frontier and hot research topic in the field of fire science.
     The humus material is formed by forest litter through biochemical degradation. It contains many different kinds of organic compounds with complicated structure, nonuniform contents of water and mineral matters. The smoldering process is influenced by the duff depth, wind speed and so on, and the research on this process faces great challenges. In this thesis, the peat is selected as the research material because of its similar thermal decomposition behavior with that of forest humus. The uniform structure and compounds of peat will benefit the mechanism research. The organic matter of peat reacts at high temperature with oxygen by pyrolysis and oxidation reactions and releases heat to maintain the smoldering spread. The composition and content of organic matter will affect the energy released. Water in the peat will evaporate by absorbing energy. The porosity of peat influences the energy density, the flow of gas and heat conduction. The influcence of many factors on peat smoldering was investigated experimentally. From the perspective of the chemical reactions and energy converasion, the numerical model is set up to discuss the inherent law of peat smoldering.
     This thesis firstly measured the elements of forest peat, the coefficient of thermal conductivity, the specific heat coefficient, the true density of particles and the apparent density of ash. The porosity and the standard mass without water and ashes were defined. It provided reliable data for the experiments and simulations of peat smoldering.
     The micro-scale chemical reaction mechanism of peat was studied by thermal analysis experiments under different oxygen concentrations, and the chemical reaction model was established. It was found that the pyrolysis process of peat in nitrogen atmosphere was composed of three weight loss processes, which was different from those in the aerobic conditions. The three component superposition reaction scheme was established for peat pyrolysis in nitrogen. For peat decomposition under the aerobic with different oxygen concentrations, a two-step consecutive reaction model was established. The methods of Kissinger, FWO, Starink, Friedman and Gyulai were applied to obtain the activation energy of peat decomposition process. Results were in accordance with the two-step reaction model, which verified the rationality of this reaction model. The inconsistent phenomenon of DSC and DTG peaks was discovered and analyzed. The simultaneous simulation method of two kinds of curves was proposed and the method could obtain the chemical composition and heat release at the same time for peat smoldering simulation.
     The humus and soil samples were collected layer by layer from the forests experiencing surface fire and the forests not subjected to fire, from HuZhong and JiaGeDaJi nature reserves in China where wild fires often occur. The thermal analysis experiments of five kinds of duff samples were conducted in air condition. The DTG cures were standardized by using the loss mass of the pyro lysis stage. The results showed that there was almost the same weight loss rate of five samples in the pyro lysis stage and DTG cures was clearly divided into two groups of mass loss rate curves, corresponding to the samples affected by surface fire and not affected by surface fire. The burned ratio of peat due to forest fire was evaluated which could be used as a severity evaluation of forest fire.
     The smoldering experiment device was designed to study the natural vertical downward smoldering fire. Series of smoldering experiments of peat with different water content, porosity and particle size were conducted. The particle size, porosity and water content of samples were controlled carefully in the experiments. The porosity was kept same during the series smoldering experiments of peat with different water content and particle size. So the apparent density of organic matter of peat was same. The reasons of the stable speed of pyro lysis frontier and the continuously thickening oxidation zone were illustrated. The dual effect of strengthening and restraining smoldering spread of water and porosity parameters was discovered. Many special phenomenon were also discovered and explained, such as black carbons on the wall of device, the conical shape after extinguish and the continuous high temperature on the furnace bottom. These results will be helpful to the cognition of smoldering.
     By the comparison of the DTG curves and the character of smoldering zones in the experiments, four zones of smoldering frontier and smoldering spread rate were defined. The temperature-time-position data of smoldering experiments were dealt with the surface interpolation smooth method. And the frontier spread rates and thicknesses of four zones were obtained. This smooth method can decrease the influence of experiment error, such as non-uniform position of thermalcouples inserted in the device.
     Based on the micro-scale chemical reaction model and the equation of energy, a smoldering spread rate model and a moving boundary smoldering model were established. The moving boundary and the accumulation of ashes problems were solved.
引文
[1]G. Rein, N. Cleaver, C. Ashton, P. Pironi, J.L. Torero, The Severity of Smouldering Peat Fires and Damage to the Forest Soil. Catena,2008.74:p. 304-309.
    [2]M.N.-N. Masalehdani, F. Mees, M. Dubois, Y. Coquinot, J.-L. Potdevin, M. Fialin, M.-M. Blanc-Valleron, Condensate Minerals from a Burning Coal-Waste Heap in Avion, Northern France. The Canadian Mineralogist,2009.47: p.573-591.
    [3]L. Moreno, M.E. Jimenez, H. Aguilera, P. Jimenez, A. De La Losa, The 2009 Smouldering Peat Fire in Las Tablas De Daimiel National Park (Spain). Fire Technology,2011.47(2):p.519-538.
    [4]T.J. Ohlemiller, Modeling of Smoldering Combustion Propagation. Progress in Energy and Combustion Science,1985.11(4):p.277-310.
    [5]R. Hadden, Smouldering and Self-Sustaining Reactions in Solids:An Experimental Approach. [Doctor]. The University of Edinburgh.2011.
    [6]R.J. Yokelson, R. Susott, D.E. Ward, J. Reardon, D.W.T. Griffith, Emissions from Smoldering Combustion of Biomass Measured by Open-Path Fourier Transform Infrared Spectroscopy. Journal of Geophysical Research,1997.102: p.18865.
    [7]L.M. Mckenzie, W.M. Hao, G.N. Richards, D.E. Ward, Measurement and Modeling of Air Toxins from Smoldering Combustion of Biomass. Environmental Science & Technology,1995.29:p.2047-2054.
    [8]D.E. Ward, C.C. Hardy, Smoke Emissions from Wildland Fires. Environment International,1991.17:p.117-134.
    [9]R. Koppmann, K. Von Czapiewski, J.S. Reid, A Review of Biomass Burning Emissions, Part I:Gaseous Emissions of Carbon Monoxide, Methane, Volatile Organic Compounds, and Nitrogen Containing Compounds. Atmospheric Chemistry and Physics Discussions,2005.5:p.10455-10516.
    [10]J.S. Reid, R. Koppmann, T.F. Eck, D.P. Eleuterio, A Review of Biomass Burning Emissions Part Ii:Intensive Physical Properties of Biomass Burning Particles. Atmospheric Chemistry and Physics,2005.5:p.799-825.
    [11]J.S. Reid, T.F. Eck, S.A. Christopher, R. Koppmann, O. Dubovik, D.P. Eleuterio, B.N. Holben, E. A. Reid, J. Zhang, A Review of Biomass Burning Emissions Part Iii:Intensive Optical Properties of Biomass Burning Particles. Atmospheric Chemistry and Physics,2005.5:p.827-849.
    [12]C. Freeman, C.D. Evans, D.T. Monteith, B. Reynolds, N. Fenner, Export of Organic Carbon from Peat Soils. Nature,2001.412:p.785.
    [13]S.E. Page, F. Siegert, J.O. Rieley, H.D. Boehm, A. Jaya, S. Limin, The Amount of Carbon Released from Peat and Forest Fires in Indonesia During 1997. Nature,2002.420(6911):p.61-65.
    [14]A. Usup, Y. Hashimoto, H. Takahashi, H. Hayasaka, Combustion and Thermal Characteristics of Peat Fire in Tropical Peatland in Central Kalimantan, Indonesia. Tropics,2004.14(1):p.1-19.
    [15]G. Rein, C.M. Belcher, Fire Phenomena and the Earth System:An Interdisciplinary Guide to Fire Science, Wiley Online Library,2013.
    [16]王秋华,森林火灾燃烧过程中的火行为研究.中国林业科学研究院博士学位论文,2010.
    [17]L. Moreno, M.-E. Jimenez, H. Aguilera, P. Jimenez, A.D.L. Losa, The 2009 Smouldering Peat Fire in Las Tablas De Daimiel National Park (Spain) Fire Technology,2011.47:p.519-538.
    [18]S.E. Page, F. Siegert, J.O. Rieley, H.D.V. Boehm, A. Jaya, S. Limin, The Amount of Carbon Released from Peat and Forest Fires in Indonesia During 1997. Nature,2002.420(6911):p.61-65.
    [20]李明汉,地下火的特点及扑救方法.森林防火,1986(01):p.18-19.
    [21]王耀华,张忠信,李建民,高廷玉,森林地下火的危害及防治措施.林业科技,2000(01):p.37-38.
    [22]路长,阴燃与森林地下火的特性研究.[硕士].中国科学技术大学.2000.
    [23]王志成,刘绍卓,夏季森林地下火分类及火行为特点.2004.29:p.27-28.
    [24]李忠琦,张淑云,李华,王明玉,黑龙江省呼中林区地下火发生的气象条件分析.森林防火,2004.1:p.25-26.
    [25]舒立福,’王明玉,田晓瑞,李忠琦,肖永军,大兴安岭林区地下火形成火环境研究.自然灾害学报,2003.12(4):p.62-67.
    [26]于立峰,森林地下火蔓延方式及火行为特点研究.林业勘查设计,2012.1(2):p.111-112.
    [27]S.L. Piao, J.Y. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, T. Wang, The Carbon Balance of Terrestrial Ecosystems in China. Nature,2009.458(7241):p. 1009-U1082.
    [28]P. Reimann, T. Conrad, A. Schutze, Underground Fire Detection Based on a Semiconductor Gas Sensor.14th international conference on automatic fire detection, Duisburg, Germany,2009.
    [29]G.M. Davies, A. Gray, G. Rein, C. J. Legg, Peat Consumption and Carbon Loss Due to Smouldering Wildfire in a Temperate Peatland. Forest Ecology and Management,2013.308:p.169-177.
    [30]B. Langmann, A. Heil, Release and Dispersion of Vegetation and Peat Fire Emissions in the Atmosphere over Indonesia 1997/1998. Atmospheric Chemistry and Physics,2004.4(8):p.2145-2160.
    [31]C.L. Song, Indonesian Forest Fire and Haze Risk Remains High, http://insights.wri.org/news/2013/07/indonesian-fo.,2013.
    [32]D. Cancellieri, V. Leroy-Cancellieri, E. Leoni, A. Simeoni, A.Y. Kuzin, A.I. Filkov, G. Rein, Kinetic Investigation on the Smouldering Combustion of Boreal Peat. Fuel,2012.93:p.479-485.
    [33]A.C. Watts, L.N. Kobziar, Smoldering Combustion and Ground Fires: Ecological Effects and Multi-Scale Significance. Fire Ecology,2013.8:p.124-132.
    [34]Nasa, Nasa Satellite Tracks Hazardous Smoke and Smog Partnership, http://visibleearth.nasa. gov/view.php?id-1260,2014.
    [35]B. Lawson, W. Frandsen, B. Hawkes, G. Malrymple, Probability of Sustained Smoldering Ignition for Some Boreal Forest Duff Types. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Forest Management Note 63,1997.
    [36]W. Frandsen, Ignition Probability of Organic Soils. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE,1997.27(9):p.1471-1477.
    [37]R.A. Hartford, Smoldering Combustion Limits in Peat as Influenced by Moisture, Mineral Content, and Organic Bulk Density, Proceedings of the Conference on Fire and Forest Meteorology, University of Montana,1989, pp. 282-286.
    [38]G. Rein, Smouldering Combustion Phenomena in Science and Technology. International Review of Chemical Engineering,2009.1:p.3-18.
    [39]H, Chen, W. Zhao, N. Liu, The/mal Analysis and Decomposition Kinetics of Chinese Forest Peat under Nitrogen and Air Atmospheres. Energy & Fuels, 2011.25:p.797-803.
    [40]T.J. Ohlemiller, Modeling of Smoldering Combustion Propagation. Progress in Energy and Combustion Science,1985.11:p.277-310.
    [41]贾宝山,葛少成,石亮,纤维质燃料正向阴燃传播的数值分析.中国安全科学学报,2007.17(1):p.34-39.
    [42]S.V. Leach, G. Rein, J.L. Ellzey, O.A. Ezekoye, J.L. Torero, Kinetic and Fuel Property Effects on Forward Smoldering Combustion. Combustion and Flame, 2000.120(3):p.346-358.
    [43]J.L. Torero, A.C. Fernandezpello, Forward Smolder of Polyurethane Foam in a Forced Air Flow. Combustion and Flame,1996.106(1-2):p.89-109.
    [44]李迎旭,火场木材热解燃烧表观动力学研究.[硕士].浙江大学.2005.
    [45]李迎旭,方梦祥,余春江,宋长忠,骆仲泱,岑可法,硬木地板材料和棉花秆的变氧浓度热解燃烧表观动力学的实验研究.火灾科学,2005(03):p.137-143.
    [46]李迎旭,方梦祥,严晓龙,余春江,宋长忠,骆仲泱,岑可法,火场硬木地板材料和棉花秆的变氧浓度热解燃烧动力学的试验研究.能源工程,2005(02):p.1-6.
    [47]孙文策,解茂昭,张明阁,沙秀芝,李河,水平燃料床阴燃的传播及其向明火转捩的实验研究.火灾科学,1995.4:p.23-29.
    [48]路长,余明高,林棉金,陈亮,贾海林,水分影响下阴燃传播及气相反应发生的研究.中国安全科学学报,2008.18:p.91-96.
    [49]余明高,孟牒,路长,董艳军,聚氨酯泡沫材料密度对阴燃及向明火转化过程的影响.中南大学学报,2012.43(5):p.1864-1870.
    [50]余明高,孟牒,路长,董艳军,赵万里,不同热交换条件下阴燃温度场变化规律研究.中国矿业大学学报,2011.40(5):p.684-690.
    [51]周建军,彭磊,路长,刘乃安,逆向阴燃传播的积分模型.中国科学技术大学学报,2006.36(1):p.86-90.
    [52]路长,陈亮,林棉金,余明高,逆向阴燃传播过程和模型.消防科学与技术,2008.27(5):p.313-316.
    [53]路长,周建军,林其钊,邹样辉,张林鹤,王清安,水平阴燃向有焰火转化的研究.燃烧科学与技术,2005(01):p.41-46.
    [54]邵占杰,林其钊,聚氨酯泡沫材料阴燃特性的实验研究.消防科学与技术,2003(05):p.363-365.
    [55]路长,周建军,张林鹤,彭磊,林其钊,王清安,聚亚安酯材料阴燃转为有焰燃烧的实验研究.燃烧科学与技术,2005(03):p.268-272.
    [56]林其钊,王清安,灾害燃烧及特点.火灾科学,2000(04):p.19-24.
    [57]路长,林其钊,王清安,阴燃中出现有焰火的理论初探.火灾科学,2000(01):p.13-20.
    [58]F. He, F. Behrendt, Comparison of Natural Upward and Downward Smoldering Using the Volume Reaction Method. Energy & Fuels,2009.23:p.5813-5820.
    [59]R.M. Hadden, G. Rein, C.M. Belcher, Study of the Competing Chemical Reactions in the Initiation and Spread of Smouldering Combustion in Peat. Proceedings of the Combustion Institute,2013.34(2):p.2547-2553.
    [60]A.P. Aldushin, A. Bayliss, B.J. Matkowsky, On the Mechanism of Triggering the Transition from Smoldering to Flaming. Proceedings of the Combustion Institute,2007.31:p.2661-2668.
    [61]S.V. Leach, G. Rein, J.L. Ellzey, O.A. Ezekoye, J.L. Torero, Kinetic and Fuel Property Effects on Forward Smoldering Combustion. Combustion and Flame, 2000.120:p.346-358.
    [62]G. Rein, C. Lautenberger, A.C. Fernandez-Pello, J.L. Torero, D.L. Urban, Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion. Combustion and Flame,2006.146(1-2):p.95-108.
    [63]A.B. Dodd, C. Lautenberger, A.C. Fernandez-Pello, Numerical Examination of Two-Dimensional Smolder Structure in Polyurethane Foam. Proceedings of the Combustion Institute,2009.32:p.2497-2504.
    [64]郭晓平,解茂昭,孙文策,水平纤维质填充床阴燃过程的数值模拟.工程热物理学报,2000.21(5):p.658-660.
    [65]贾宝山,解茂昭,林立峰,水平填充床中纤维质燃料正向阴燃数值模拟研究.大连理工大学学报,2009.49(2):p.205-210.
    [66]路长,阴燃过程及其向明火转化的机理研究.[博士].中国科学技术大学.2007.
    [67]林龙沅,典型条件下的阴燃过程及其向明火转化的研究.[硕士].中国科学技术大学.2007.
    [68]彭磊,聚氨酯泡沫材料的阴燃及其向有焰火转化过程的研究.[硕士].中国科学技术大学.2005.
    [69]F. He, N. Zobel, W. Zha, F. Behrendt, Effects of Physical Properties on One-Dimensional Downward Smoldering of Char:Numerical Analysis. Biomass and Bioenergy,2009.33:p.1019-1029.
    [70]F. He, F. Behrendt, Experimental Investigation of Natural Smoldering of Char Granules in a Packed Bed. Fire Safety Journal,2011.46:p.406-413.
    [71]M.R. Nimlos, M.F. Crowley,生物燃料的计算模拟,化学工业出版社,北京,2012.
    [72]邵占杰,阴燃及其传播特性研究.[硕士].中国科学技术大学.2003.
    [73]R. Hungerford, W. Frandsen, K. Ryan, Ignition and Burning Characteristics of Organic Soils. Tall Timbers Fire Ecology Conference,1995.
    [74]G. Rein, N. Cleaver, C. Ashton, P. Pironi, J. Torero, The Severity of Smouldering Peat Fires and Damage to the Forest Soil. CATENA,2008.74(3): p.304-309.
    [75]K.R. Anderson, Incorporating Smoldering into Fire Growth Modelling Third Symposium on Fire and Forest Meteorology, Canada,2000.
    [76]S.G. Otway, E.W. Bork, K.R. Anderson, M.E. Alexander, Relating Changes in Duff Moisture to the Canadian Forest Fire Weather Index System in Populus Tremuloides Stands in Elk Island National Park. Canadian Journal of Forest Research,2007.37:p.1987-1998.
    [77]W.H. Frandsen, Burning Rate of Smoldering Peat. Northwest Science,1991.65: p.166-172.
    [78]W.H. Frandsen, Smoldering Spread Rate:A Preliminary Estimate, Proceedings of the 1 lth Conference on Fire and Forest Meteorology 1991.
    [79]D. Blake, A.L. Hinwood, P. Horwitz, Peat Fires and Air Quality:Volatile Organic Compounds and Particulates. Chemosphere,2009.76(3):p.419-423.
    [80]T.R. Muraleedharan, M. Radojevic, A. Waugh, A. Caruana, Emissions from the Combustion of Peat:An Experimental Study. Atmospheric Environment,2000. 34(18):p.3033-3035.
    [81]D. Chand, Laboratory Measurements of Smoke Optical Properties from the Burning of Indonesian Peat and Other Types of Biomass. Geophysical Research Letters,2005.32:p. L12819.
    [82]G. Rein, S. Cohen, A. Simeoni, Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts. Proceedings of the Combustion Institute,2009.32: p.2489-2496.
    [83]J. Valette, V. Gomendy, J. Marechal, Heat-Transfer in the Soil During Very Low-Intensity Experimental Fires-the Role of Duff and Soil-Moisture Content. International Journal of Wildland Fire,1994.4:p.225-237.
    [84]E. Enninful, Predicting Temperature Profiles During Simulated Forest Fires. [Master]. University of Saskatchewan.2006.
    [85]A.M. Grishin, A.S. Yakimov, Mathematical Simulation of the Process of Peat Ignition. Journal of Engineering Physics and Thermophysics,2008.81:p.204-212.
    [86]K. Miyanishi, Duff Consumption. Chapter 13, Forest Fires:Behavior and Ecological Effects,2001.
    [87]W. Zhao, H. Chen, N. Liu, J. Zhou, Thermogravimetric Analysis of Peat Decomposition under Different Oxygen Concentrations. Journal of Thermal Analysis and Calorimetry,2014.
    [88]W. Zhao, H. Chen, J. Zhou, N. Liu, Characteristics and Kinetics of Forest Peat Pyrolysis. Acta Physico-Chimica Sinica,2009.25:p.1756-1762.
    [89]H. Chen, W. Zhao, N. Liu, J. Zhou, Thermal Decomposition Extent of Duff Due to Surface Forest Fire. Procedia Engineering,2013.62:p.1000-1006.
    [90]H. Chen, W. Zhao, N. Liu, Thermal Analysis and Decomposition Kinetics of Chinese Forest Peat under Nitrogen and Air Atmospheres. Energy & Fuels, 2011.25:p.797-803.
    [1]X. Xiao, D. Sichen, S. Seetharaman, H.Y. Sohn, Determination of Kinetic Parameters Using Differential Thermal Analysis—Application to the Decomposition of Caco3. Metallurgical and Materials Transactions B,1997. 28(6):p.1157-1164.
    [2]N. Koga, H. Tanaka, Kinetics of Thermal Decomposition of Mco3 to Mo (M=Ca, Sr and Ba). Journal of Thermal Analysis,1988.34(1):p.177-188.
    [3]M. Samtani, D. Dollimore, K.S. Alexander, Comparison of Dolomite Decomposition Kinetics with Related Carbonates and the Effect of Procedural Variables on Its Kinetic Parameters. Thermochimica Acta,2002.392-393:p. 135-145.
    [4]A. Usup, Y. Hashimoto, H. Takahashi, H. Hayasaka, Combustion and Thermal Characteristics of Peat Fire in Tropical Peatland in Central Kalimantan, Indonesia. Tropics,2004.14(1):p.1-19.
    [5]C. Diblasi, Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis. Progress in Energy and Combustion Science,2008.34(1):p.47-90.
    [6]J.J. Manya, E. Velo, L. Puigjaner, Kinetics of Biomass Pyrolysis:A Reformulated Three-Parallel-Reactions Model. Industrial & Engineering Chemistry Research,2003.42(3):p.434-441.
    [7]J.J.M. Orfao, F.J.A. Antunes, J.L. Figueiredo, Pyrolysis Kinetics of Lignocellulosic Materials—Three Independent Reactions Model. Fuel,1999. 78(3):p.349-358.
    [8]A.W. Coats, J.P. Redfern, Kinetic Parameters from Thermogravimetric Data.
    Nature,1964.201(4914):p.68-69.
    [9]J. Opfermann, Kinetic Analysis Using Multivariate Non-Linear Regression. I. Basic Concepts. Journal of Thermal Analysis and Calorimetry,2000.60(2):p. 641-658.
    [10]H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel,2007.86(12-13):p.1781-1788.
    [11]M. Muller-Hagedorn, H. Bockhorn, L. Krebs, U. Mtiller, A Comparative Kinetic Study on the Pyrolysis of Three Different Wood Species. Journal of Analytical and Applied Pyrolysis,2003.68-69:p.231-249.
    [12]S. Hu, A. Jess, M. Xu, Kinetic Study of Chinese Biomass Slow Pyrolysis: Comparison of Different Kinetic Models. Fuel,2007.86(17-18):p.2778-2788.
    [13]H.X. Chen, N.A. Liu, W.C. Fan, Two-Step Consecutive Reaction Model and Kinetic Parameters Relevant to the Decomposition of Chinese Forest Fuels. Journal of Applied polymer science,2006.102(1):p.571-576.
    [14]戚红梅,惠世恩,崔大伟,王西宾,升温速率和水分含量对木屑热解过程和特性的影响.可再生能源,2009.27(3):p.4.
    [15]任强强,赵长遂,升温速率对生物质热解的影响.燃料化学学报,2008.36(2):p.4.
    [16]赵伟涛,陈海翔,周建军,刘乃安,森林泥炭的热解特性及热解动力学研究.物理化学学报,2009.
    [17]R. Font, I. Martin-Gullon, M. Esperanza, A. Fullana, Kinetic Law for Solids Decomposition. Application to Thermal Degradation of Heterogeneous Materials. Journal of Analytical and Applied Pyro lysis,2001.58:p.703-731.
    [18]A.N. Garcia, R. Font, Thermogravimetric Kinetic Model of the Pyro lysis and Combustion of an Ethylene-Vinyl Acetate Copolymer Refuse. Fuel,2004. 83(9):p.1165-1173.
    [19]N.A. Liu, W.C. Fan, R. Dobashi, L.S. Huang, Kinetic Modeling of Thermal Decomposition of Natural Cellulosic Materials in Air Atmosphere. Journal Of Analytical And Applied Pyrolysis,2002.63(2):p.303-325.
    [20]L.F. Calvo, M. Otero, B.M. Jenkins, A. Moran, A.I. Garcia, Heating Process Characteristics and Kinetics of Rice Straw in Different Atmospheres. Fuel Processing Technology,2004.85(4):p.279-291.
    [21]M. Momoh, A.N. Eboatu, E.G. Kolawole, A.R. Horrocks, Thermogravimetric Studies of the Pyrolytic Behaviour in Air of Selected Tropical Timbers. Fire and Materials,1996.20(4):p.173-181.
    [1]H. Chen, W. Zhao, N. Liu, Thermal Analysis and Decomposition Kinetics of Chinese Forest Peat under Nitrogen and Air Atmospheres. Energy & Fuels, 2011.25:p.797-803.
    [2]J.H. Flynn, L.A. Wall, General Treatment of the Thermogravimetry of Polymers. J Res Nat Bur Stand,1966.70(6):p.487-523.
    [3]M.J. Starink, A New Method for the Derivation of Activation Energies from Experiments Performed at Constant Heating Rate. Thermochimica Acta,1996. 288(1-2):p.97-104.
    [4]H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis. ANALYTICAL CHEMISTRY,1957.29(11):p.1702-1706.
    [5]H.L. Friedman, New Methods for Evaluating Kinetic Parameters from Thermal Analysis Data. JOURNAL OF POLYMER SCIENCE PART B-POLYMER LETTERS,1969.7(1PB):p.41-46.
    [6]G.G.J. Greenhow, A New Integral Method for the Kinetic Analysis of Thermogravimetric Data. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY,1974.6(3):p.279-291.
    [7]M.X. Fang, D.K. Shen, Y.X. Li, C.J. Yu, Z.Y. Luo, K.F. Cen, Kinetic Study on Pyrolysis and Combustion of Wood under Different Oxygen Concentrations by Using Tg-Ftir Analysis. Journal of Analytical and Applied Pyrolysis,2006. 77(1):p.22-27.
    [8]M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao, M. Olazar, Kinetic Study of Lignocellulosic Biomass Oxidative Pyrolysis. Fuel,2012.95(1):p. 305-311.
    [9]M. Starink, A New Method for the Derivation of Activation Energies from Experiments Performed at Constant Heating Rate. Thermochimica Acta,1996. 288(1):p.97-104.
    [10]R. Font, I. Martin-Gullon, M. Esperanza, A. Fullana, Kinetic Law for Solids Decomposition. Application to Thermal Degradation of Heterogeneous Materials. Journal Of Analytical And Applied Pyrolysis,2001.58:p.703-731.
    [11]A.N. GarciA, R. Font, Thermogravimetric Kinetic Model of the Pyrolysis and Combustion of an Ethylene-Vinyl Acetate Copolymer Refuse. Fuel,2004.83:p. 1165-1173.
    [12]D.K. Shen, Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment. Fuel,2012.88(6):p.1024-1030.
    [13]C. Chen, X. Ma, K. Liu, Thermogravimetric Analysis of Microalgae Combustion under Different Oxygen Supply Concentrations. Applied Energy, 2011.88:p.3189-3196.
    [1]E. Enninful, Predicting Temperature Profiles During Simulated Forest Fires. [Master]. University of Saskatchewan.2006.
    [2]J. Valette, V. Gomendy, J. Marechal, Heat-Transfer in the Soil During Very Low-Intensity Experimental Fires-the Role of Duff and Soil-Moisture Content. International Journal of Wildland Fire,1994.4:p.225-237.
    [3]G. Rein, N. Cleaver, C. Ashton, P. Pironi, J.L. Torero, The Severity of Smouldering Peat Fires and Damage to the Forest Soil. Catena,2008.74:p. 304-309.
    [4]M.P. Plucinski, W.R. Anderson, Laboratory Determination of Factors Influencing Successful Point Ignition in the Litter Layer of Shrubland Vegetation. International Journal of Wildland Fire,2008.17(5):p.628.
    [5]R.A. Hartford, Smoldering Combustion Limits in Peat as Influenced by Moisture, Mineral Content, and Organic Bulk Density, Proceedings of the Conference on Fire and Forest Meteorology, University of Montana,1989, pp.282-286.
    [6]W.H. Frandsen, Smoldering Spread Rate:A Preliminary Estimate, Proceedings of the 11th Conference on Fire and Forest Meteorology 1991.
    [7]G. Rein, C.M. Belcher, Fire Phenomena and the Earth System:An Interdisciplinary Guide to Fire Science, Wiley Online Library,2013.
    [8]路长,阴燃过程及其向明火转化的机理研究.[博士].中国科学技术大学.2007.
    [9]林龙沅,典型条件下的阴燃过程及其向明火转化的研究.[硕士].中国科学技术大学.2007.
    [10]G. Campbell, J. Jungbauer Jr, W. Bidlake, R. Hungerford, Predicting the Effect of Temperature on Soil Thermal Conductivity. Soil Science,1994.158(5):p. 307-313.
    [1]H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel,2007.86(12-13):p.1781-1788.
    [2]H. Chen, W. Zhao, N. Liu, Thermal Analysis and Decomposition Kinetics of Chinese Forest Peat under Nitrogen and Air Atmospheres. Energy & Fuels, 2011.25:p.797-803.
    [3]D. Neves, H. Thunman, A. Matos, L. Tarelho, A. Gomez-Barea, Characterization and Prediction of Biomass Pyrolysis Products. Progress in Energy and Combustion Science,2011.37(5):p.611-630.
    [4]A. Demirbas, Combustion Characteristics of Different Biomass Fuels. Progress in Energy and Combustion Science,2004.30(2):p.219-230.
    [5]B.W. Benscoter, D.K. Thompson, J.M. Waddington, M.D. Flannigan, B.M. Wotton, W. J. De Groot, M.R. Turetsky, Interactive Effects of Vegetation, Soil Moisture and Bulk Density on Depth of Burning of Thick Organic Soils. International Journal of Wildland Fire,2011.20(3):p.418.
    [6]K. Papadikis, S. Gu, A. V. Bridgwater, Cfd Modelling of the Fast Pyrolysis of Biomass in Fluidised Bed Reactors. Part B. Chemical Engineering Science, 2009.64(5):p.1036-1045.
    [7]N.H. Abu-Hamdeh, Thermal Properties of Soils as Affected by Density and Water Content. Biosystems Engineering,2003.86(1):p.97-102.
    [8]G. Campbell, J. Jungbauer Jr, W. Bidlake, R. Hungerford, Predicting the Effect of Temperature on Soil Thermal Conductivity. Soil Science,1994.158(5):p. 307-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700