新型磁流变阻尼器及大跨度空间结构半主动控制体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变(MR)阻尼器作为一种半主动控制装置,兼具被动控制装置的稳定性和主动控制装置的适应性,被认为是可应用于土木工程结构控制最具前景的耗能减震装置之一,受到国内外学者的广泛关注。本文系统研究新型MR阻尼器的结构设计、原理改进、性能测试、力学模型以及基于新型MR阻尼器的大跨度空间结构半主动控制体系,主要研究工作与创新成果如下:
     (1)建立了一种剪切阀式MR阻尼器的简化设计方法。以磁路优化原则为基础,将磁路设计与结构设计合为一体,在得到阻尼器最优设计参数的同时简化了阻尼器的设计过程。研究表明,所建立的简化设计方法简便、有效、可靠,可作为剪切阀式MR阻尼器工程设计的一种实用方法。
     (2)研制了两种新型MR阻尼器并建立了其阻尼力预估模型。改进传统结构形式,设计制作了阻尼力双向调节和全通道有效两种新型MR阻尼器,通过阻尼通道处磁场分布测试及阻尼器力学性能试验,研究了结构参数及磁场分布对阻尼器力学性能的影响,通过磁路有限元分析并结合试验数据,建立了阻尼器阻尼力预估模型。研究表明,两种新型MR阻尼器均很好地实现了设计意图,阻尼力双向调节MR阻尼器在零电流状态下能实现中等出力,有效保证了其故障安全性能;全通道有效MR阻尼器的最大阻尼力提高一倍以上,阻尼力调节系数提高70%以上;所建立的阻尼力预估模型能较准确地预估阻尼器的实际阻尼力。
     (3)建立了新型MR阻尼器的动力滞回模型。基于Logistic函数和Gompertz函数,建立了新型MR阻尼器的两种动力滞回模型,识别了所研制的两种新型MR阻尼器的模型参数。研究表明,所建立的两种动力滞回模型的函数形式简单,且对新型MR阻尼器力学性能的识别精度较高。
     (4)建立了基于新型MR阻尼器的大跨度空间结构半主动控制体系。针对一体育馆屋盖结构,建立了应用阻尼力双向调节MR阻尼器的大跨度空间结构半主动控制体系,基于阻尼器的三状态出力特性,提出了改进的半主动中级开关控制算法和半主动三级控制算法以及修正的Clipped-optimal半主动开关控制算法,比较分析了不同半主动控制算法的控制效果。研究表明,所提出的半主动控制算法有效提高了对受控结构的控制效果。
Magnetorheological (MR) damper is a semi-active control device, which takes advantage of both the reliability of passive devices and the adaptability of fully active control devices, so it is considered to be one of the most promising devices for mitigation of serious hazards induced by earthquakes, and the corresponding researches have attracted a lot of scholastic attentions. In this thesis, the design method, improved structure, performance test, mechanical model of MR dampers and semi-active control system of long-span spatial structures based on new MR dampers are studied. The primary research work and achievements in this dissertation are included as follows.
     (1) A simplified design method of share-valve mode MR damper is proposed. In this method, the design process of the MR damper is simplified through the combination of the magnetic circuit design and the structural design as one process based on the principles of magnetic circuit optimization. The results show that the proposed simplified design method is simple, efficient and reliable, and it may become one of the most practicable methods for the engineering design of the share-valve mode MR damper.
     (2) Tow new MR dampers are designed, produced and tested and a damping force prediction model is proposed. The structure of traditional share-valve mode MR damper is improved and two new MR dampers denoted MR damper with bidirectional adjusting damping force and MR damper with full-length effective damping path respectively are designed and the influence of the structure parameters and the distribution of magnetic field on the mechanic characteristics of the damper is studied by dynamic tests and magnetic field tests in the damping path. A damping force prediction model is proposed based on the results of magnetic finite element simulation and tests. The results show that both dampers are consistent with the design. Medium output powers without current input can be obtained by the proposed MR damper with bidirectional adjusting damping force which can ensure the fail-safe property of the system while the maximum output powers of the proposed MR damper with full-length effective damping path are doubled at least and the dynamic ranges of the output powers are increased by 70% at least compared to MR dampers of traditional structure and same dimension. The proposed model can predict the actual damping force of the MR dampers proposed accurately.
     (3) Tow new dynamic models of new MR dampers are proposed based on the Logistic function and the Gompertz function and parametric identifications of the models according to the tests results of the new MR dampers proposed are conducted. The results show that both models can identify the dynamic characteristics of MR dampers precisely without complicated function form.
     (4) A semi-active control system of long-span space structures based on new MR dampers is established. The semi-active control system of long-span space structures is established based the new MR damper with bidirectional adjusting damping force according to an actual indoor gymnasium. A medium bang-bang control algorithm, a hierarchical control algorithm and a revised clipped-optimal control algorithm are proposed based on the three states output power properties of MR damper with bidirectional adjusting damping force and control results of different control algorithms are compared. The results show that the control levels are greatly upgraded by the control algorithms proposed.
引文
[1]欧进萍,结构振动控制——主动、半主动和智能控制,北京:科学出版社,2003.
    [2]徐龙河.基于MR阻尼器的半主动结构控制的理论与试验研究.天津:天津大学博士论文,2003.
    [3]周福霖.工程结构减震控制.北京:地震工业出版社,1997.
    [4]周福霖.隔震、消能减震和结构控制技术的发展和应用(上、下).世界地震工程,1989(4):16-20,1990(1):7-17.
    [5]Talbot J P. Base isolated buildings: modeling for the prediction of isolation performance. Acoustics Bulletin. 2004, 29 (6): 26-31.
    [6]Choi K M, Jung H J, Lee H J, et al. Seismic protection of base-isolated building with nonlinear isolation system using smart passive control strategy. Structural Control and Health Monitoring. 2008, 15 (5): 785-796.
    [7]唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993.
    [8]Jangid R S, Bhaskararao A V. Harmonic response of adjacent structures connected with a friction damper. Journal of Sound and Vibration. 2006, 292 (3-5): 710-725.
    [9]Whittaker A S, Aiken I D. Passive energy dissipation systems for earthquake-resistant design. Structural Engineering in Natural Hazards Mitigation. 1993: 712-717.
    [10]李钢,李宏男.基于位移的消能减震结构抗震设计方法.工程力学,2007,24(9):88-94.
    [11]钱辉,李宏男,宋钢兵.形状记忆合金阻尼器消能减震体系的控制研究.振动与冲击,2008,27(8):42-47.
    [12]Ghosh A, Basu B. A closed-form optimal tuning criterion for TMD in damped structures. Structural Control and Health Monitoring. 2007, 14 (4): 681-692.
    [13]Li H N, Ni X L. Optimization of non-uniformly distributed multiple tuned mass damper. Journal of Sound and Vibration. 2007, 308 (1-2): 80-97.
    [14]Min K W, Kim H S, Lee S H, et al. Performance evaluation of tuned liquid column dampers for response control of a 76-story benchmark building. Engineering Structures. 2005, 27 (7): 1101-1112.
    [15]黄瑞新,李爱群,张志强等,北京奥利匹克中心演播塔TMD风振控制.东南大学学报,2009,39(3):519-524.
    [16]岳前进,张力,刘小惠.调谐液体阻尼器(TLD)附加阻尼力的测量.土木工程学报,2008,41(6):22-26.
    [17]Yao J T P. Concept of structure control. Journal of the Structural Division. 1972, 98 (7): 1567-1574.
    [18]林伟.多维多点地震激励的大跨度空间结构磁流变阻尼器半主动控制.天津:天津大学博士论文,2009.
    [19]Du H, Boffa J, Zhang N. Active seismic response control of tall Buildings based on reduced order model. Proceedings of the American Control Conference, Minnesota, USA, 2006: 1132-1137.
    [20]Samali B, Al-Dawod M, Kwok K C, et al. Active control of cross wind response of 76-story tall building using a fuzzy controller. Journal of Engineering Mechanics. 2004, 130 (4): 492-498.
    [21]Bani-Hani K A. Vibration control of wind-induced response of tall buildings with an active tuned mass damper using neural networks. Structural Control and Health Monitoring. 2007, 14 (1): 83-108.
    [22]Bani-Hani K A, Alawneh M R. Prestressed active post-tensioned tendons control for bridges under moving loads. Structural Control and Health Monitoring. 2007, 14 (3): 357-383.
    [23]Dyke S J, Spencer B F, Quast P, et al. Experimental verification of acceleration feedback control strategies for a active tendon system. National Center for Earthquake Engineering Research, Buffalo, New York, 1994.
    [24]徐幼麟,张文首.地震作用下智能相邻建筑的主动锚索控制.世界地震工程. 2001,17(1):15-29.
    [25]Yang J N, Giannopoulos F, Active tendon control of structures. Journal of Engineering Mechanics Division, 1978, 104 (3): 551-568.
    [26]Nagarajaiah S, Mao Y Q, Saharabudhe S. Nonlinear seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system. Structural Engineering and Mechanics. 2006, 24 (3): 375-393.
    [27]Loh C H, Lin P Y, Chung N H. Experimental verification of building control using active bracing system. Earthquake Engineering & Structural Dynamics. 1999, 28 (10): 1099-1119.
    [28]Kobori T, Takahashi M, Nasu T. Seismic response controlled structure with active variable stiffness system. Earthquake Engineering and Structural Dynamics. 1993, 22 (11): 925-941.
    [29]Takahashi M, Kobori T, Nasu T, et al. Active response control of buildings for large earthquakes-seismic response control system with variable structural characteristics. Smart Materials and Structures. 1998, 7 (4): 522-529.
    [30]Nasu T, Kobori T, Takahashi M, et, al. Analytical study on applying the active variable stiffness system to a high-rise building. Journal of Structural Engineering. 1995, 41: 33-39.
    [31]Patten W N. New life for the Walnut Creek Bridge via semi-active vibration control. Newsletter of the international association for structural control. 1997, 2 (1): 4-5.
    [32]Symans M D, Constantinou M C. Semi-active control of earthquake induced vibration. 11th Word Conference on Earthquake Engineering, Acapulco, Mexico, 1996, Paper No. 95.
    [33]Winslow M W, Methods and means for translating electrical impulses into mechanical forces. US Patent NO.2. 1947, 417, 850.
    [34]Winslow M W, Induced fibration of suspensions. Journal of Applied Physics. 1949, 20: 1137-1140.
    [35]Dyke S J, Spencer B F Jr, Sain M K and Carlson J D. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materials and Structures. 1996, 5 (5): 565-575.
    [36]Dyke S J, Spencer B F Jr, Sain M K and Carlson J D. An experimental study of MR dampers for seismic protection. Smart Materials and Structures. 1997, 7(5): 693-703.
    [37]Spencer B F Jr, and Sain M K. Controlling Buildings: A New Frontier in Feedback. IEEE Control Syst Mag Special Issue on Emerging Technology. 1997, 17(6): 19-35.
    [38]Spencer B F Jr, and Soong T T. New applications and development of active, semi-active and hybrid control techniques for seismic and non-seismic vibration in the USA. Proceedings of International Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures, Cheju, Korea, 1999: 23-25.
    [39]Spencer B F Jr, Carlson J D, Sain M K, et al. On the current status of magnetorheological dampers: Seismic protection of full-scale structures. Proceedings of the American Control Conference, Albuquerque, New Mexico, 1997: 458-462.
    [40]Dyke S J, Spencer B F Jr, Sain M K, et al. Experimental verification of semi-active structural control strategies using acceleration feedback. Proceeding of the 3rd International Conference on Motion and Vibration Control, Chiba, Japan, 1996: 291-296.
    [41]Dyke S J, Spencer B F Jr. Seismic response control using multiple MR dampers. Proceeding of the 2nd International Workshop on Structural Control, Hong Kong, China, 1996: 163-173.
    [42]Yang G, Ramallo J C, Spencer B F Jr, Carlson J D and Sain M K. Large-scale MR Fluid Dampers: Dynamic Performance Considerations. Proceedings of International Conference on Advances in Structure Dynamics, Hong Kong, China, 2000: 341-348.
    [43]Yang G, Jung H J, and Spencer B F Jr. Dynamic Model of Full-scale Magnetorheological Dampers for Civil Engineering Applications. Proceedings of US-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Regions, Seattle, USA, 2001: 213-224.
    [44]Yang G., Spencer B F Jr, Carlson J D and Sain M K. Large-scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations. Engineering Structures, 2002, 24 (3): 309-323.
    [45]Tse1 T, and Chang C C. Shear-Mode Rotary Magnetorheological Damper for Small-Scale Structural Control Experiments. Journal of Structural Engineering, 2004, 130(6): 904-911.
    [46]Yi F, Dyke S J, Caicedo M, et, al. Experimental verification of multiinput seismic control strategies for smart dampers. Journal of Engineering Mechanics. 2001, 127(11): 1152-1164.
    [47]Yi F, Dyke S J, Caicedo J M, and Carlson J D. Seismic response control using smart dampers. Proceedings of the 1999 American Control Conference, San Diego, California, 1999, (CD-ROM).
    [48]Yi F, Dyke S J, Frech S, and Carlson J D. Investigation of Magnetorheological Dampers for Earthquake Hazard Mitigation. Proceedings of the 2nd World Conference on Structrue Control, Wiley, West Sussex, UK, 1998: 349–358.
    [49]Jansen L M, Dyke S J. Semiactive control strategies for MR dampers: comparative study. Journal of Engineering Mechanics. 2000, 126(8): 795-803.
    [50]Chooi W W and Oyadiji S O. Design, Modeling and Testing of Magnetorheological (MR) Dampers Using Analytical Flow Solutions. Computers and Structures, 2008, 86 (3-5): 473-482.
    [51]Chooi W W. Experimental characterisation of the properties of magnetorheological (MR) fluids and MR damper. PhD thesis, University of Manchester, UK, 2005.
    [52]Gavin H P, Hanson R D and Filisko F E. Electrorheological Dampers, Part 1: Analysis and Design. Journal of Applied Mechanics, 1996, 63(9): 669–675.
    [53]Gavin H P, Hanson R D and Filisko F E. Electrorheological Dampers, Part 2: Testing and Modeling. Journal of Applied Mechanics, 1996, 63(9):676–682.
    [54]Gavin H P, Hoagg J, Dobossy M. Optima Design of MR Dampers. Proceedings of U.S.-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Regions, Seattle, USA, 2001: 225-236.
    [55]Fujitani H and Soda S. Dynamic characteristics of magneto-rheological fluid damper. Proceedings of the SPIE’s 7th Annual International Symposium on Smart Structuresand Materials 2000: Damping and Isolation, Hong Kong, China, 2000: 194-203.
    [56]Fujitani H, Soda S, Hata K, et, al. Dynamic performance evaliation of 200kN magneto-pheological damper. Technical Note of National Institute for Land and Infrastructure Management. 2002, 41: 349-356.
    [57]欧进萍,关新春.磁流变耗能器及其性能.地震工程与工程振动,1998,18(3):74-81.
    [58]欧进萍,关新春.磁流变耗能器性能的试验研究.地震工程与工程振动,1999,19(4):76-81.
    [59]欧进萍,关新春.磁流变耗能器的阻尼力模型及其参数确定.振动与冲击,2001,20(1):5-8.
    [60]欧进萍,关新春.可控流体减振驱动器的研究与应用.世界地震工程,1998,14(4):30-41.
    [61]欧进萍,关新春.土木工程结构智能体系的研究与发展.地震工程与工程振动,1999,19(2):21-28.
    [62]关新春.磁流变液及其智能结构减振驱动器的理论与试验研究.哈尔滨:哈尔滨工业大学博士论文,2000.
    [63]关新春,欧进萍.磁流变减振驱动器的响应时间试验与分析.地震工程与工程振动,2002,22(6):96-102.
    [64]Ou J P and Guan X C. Magnetorheological fluid and smart damper for structural vibration control. Proceedings of US-China Millennium Symposium on Earthquake Engineering,. Beijing, China, 2000: 267-272.
    [65]杨飏,欧进萍.导管架式海洋平台模型结构磁流变阻尼隔震数值分析.应用基础与工程科学学报,2007,15(2):183-189.
    [66]杨飏,欧进萍.导管架式海洋平台磁流变阻尼隔震结构的模型试验.振动与冲击. 2006,25(5):1-5.
    [67]杨飏,欧进萍.导管架式海洋平台磁流变阻尼隔震的振动台试验.地震工程与工程振动,2005,25(4):141-148.
    [68]李惠,刘敏,欧进萍,等.斜拉索磁流变智能阻尼器控制系统分析与设计.中国公路学报,2005,18(4):37-41.
    [69]李忠献,吴林林,徐龙河等.磁流变阻尼器的构造设计及其阻尼力性能的试验研究.地震工程与工程振动,2003,23(1):128-132.
    [70]Li Z X, Xu L H. Performance tests and hysteresis model of MRF-04K damper. Journal of Structural Engineering, 2005, 131(8):1303-1306.
    [71]徐龙河,李忠献.基于MRF-04K阻尼器的LQG半主动控制系统.天津大学学报,2006,39(9):1054-1059.
    [72]李忠献,徐龙河,姜南等.基于MRF-04K阻尼器的结构减震控制模型试验研究.地震工程与工程振动,2004,24(1):148-153.
    [73]徐龙河,周云,李忠献.半主动控制装置在受控结构中的优化设置.地震工程与工程振动,2000,20(3):143-148.
    [74]徐龙河,周云,李忠献.半主动磁流变阻尼方法的比较与分析.世界地震工程,2000,16(3):95-100.
    [75]徐龙河,周云,李忠献. MRFD半主动控制系统的时滞与补偿.地震工程与工程振动,2001,21(3):127-131.
    [76]Li Z X, Wu L L, Xu L H, et, al. Structural design and performance study on MR damper. Keynote Lectures on China-Japan Workshop on Vibration, Control and Health Monitoring of Structures, Shanghai, China, 2002: 8-10.
    [77]李忠献,刘建军.螺旋凹槽结构磁流变阻尼器性能分析与试验.工程力学,2008,25(11):8-13.
    [78]刘建军,李忠献.磁流变液在结构振动控制中的应用与研究进展.材料导报,2007,21(7):5-7.
    [79]姜南,李忠献.基于半主动控制的MR阻尼器控制力优化.地震工程与工程振动. 2008,28(3):138-144.
    [80]姜南,李忠献.相邻结构地震反应MR阻尼器控制的仿真分析.地震工程与工程振动. 2008,28(2):131-136.
    [81]姜南.应用MR阻尼器的相邻建筑地震反应半主动控制理论与试验研究.天津:天津大学博士论文,2003.
    [82]Lin W, LI Z X, Ding Y. Trust-region based Instantaneous Optimal Semi-active Control on Long-span Spatial Structure with MRF-04K Damper. Earthquake Engineering and Engineering Vibration, 2008, 7 (4): 447-464.
    [83]李忠献,林伟,丁阳.多维地震激励下空间结构MR阻尼器半主动控制.天津大学学报, 2007, 40 (5): 512-518.
    [84]林伟,李忠献,倪一清.基于信赖域方法的MR阻尼器瞬时最优半主动控制.工程力学,已录用待发表.
    [85]林伟,李忠献,倪一清.基于信赖域方法的MR阻尼器瞬时最优半主动控制实验研究.振动工程学报,已录用待发表.
    [86]Lin W, Li Z X, Ding Y. WPT-based Modal Control on Vertical Vibration of Spatial Structures Using MRF-04K Damper. Submitted to Earthquake Engineering and Structural Dynamics.
    [87]林伟.多维多点地震激励的大跨度空间结构磁流变阻尼器半主动控制.天津:天津大学博士论文,2009.
    [88]王修勇,陈政清,何旭辉等.洞庭湖大桥风雨减振试验研究.桥梁建设,2002,2:11-14.
    [89]何旭辉,陈政清,黄方林.洞庭湖大桥斜拉索减振试验研究.振动工程学报,2002,15(4):447-450.
    [90]伏晓宁.洞庭湖大桥斜拉索风雨振控制新技术.公路,2003,2:14-18.
    [91]Spencer B F Jr, Nagarajaiah S. State of the art of structural control. Journal of Structural Engineering. 2003, 129 (7): 845-856.
    [92]瞿伟廉,刘嘉,涂建维. 500kN足尺磁流变液阻尼器设计的关键技术.地震工程与工程振动,2007,27(2):124-130.
    [93]瞿伟廉,闫淼,涂建伟.新型足尺磁流变液阻尼器的设计及仿真分析.武汉理工大学学报,2007,29(2):87-89.
    [94]瞿伟廉,樊友川.磁流变液阻尼器的磁路有限元分析与优化设计方法.华中科技大学学报,2006,23(3):1-4.
    [95]Stanway R, Sproston J L, Stevens N G. Non-linear Identification of an Electrorheological Vibration Damper. IFAC Identification and System Parameter Estimation, 1985, 195-200.
    [96]Stanway R, Sposton J L, Stevens N G. Non-linear Modeling of an Electro- heological Vibration Damper. Journal of Electrostatics, 1987, (20): 167-184.
    [97]Shames I H, Cozzarelli F A. Elastic and inelastic Stress Analysis. Englewood Cliffs: Prentice Hall, 1992: 120-122.
    [98]Wereley N M, Pang L, Kamath G M. Idealized Hysteresis Modeling of Electrorheological and Magnetorheological Damper. Journal of Intelligent Masterial Systems and Structrues, 1998, 9(8): 642-649
    [99]孙清,伍晓红,胡志义等.磁流变阻尼器性能试验及其非线性力学模型.工程力学,2007,24(4):183-187.
    [100]Wen Y K. Method of Random Vibration of Hysteretic Systems. Journal of Engineering Mechanics Division, 1976, 102(2): 249-263.
    [101]Spencer B F Jr, Dyke S J, Sain M K, et al. Phenomenological model of a magnetorheological damper. Journal of Engineering Mechanics. 1997, 123(3): 230-238.
    [102]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证.地震工程与工程振动,2002,22(4):144-150.
    [103]徐赵东,李爱群,叶继红.大跨空间网壳结构减震控制的研究与发展.振动与冲击,2005,24(3):59-62.
    [104]沈士钊.大跨空间结构理论研究和工程实践.中国工程科学, 2001, 3(3):34-40.
    [105]Yamada M et al. Vibration control of large space structures using TMD system EA-I.Proceedings of 15th Asia-Pacific Conference on Structural Engineering and Construction. Cold Coast, Queesland, Australia, 1995.
    [106]叶继红,陈月明,沈士钊. TMD系统在单层球壳振动控制中的参数分析.空间结构,1999,5(2):10-17.
    [107]叶继红,陈月明,沈士钊. TMD系统在单层球壳振动控制中的适用性分析.工程力学(增刊),1999:403-409.
    [108]叶继红,陈月明. TMD减震系统的优化设计.振动工程学报,2000,13(3):376-381.
    [109]叶继红,陈月明. TMD系统在单层鞍壳振动控制中的适用性分析.工程建筑,2000,30(4):14-17.
    [110]范峰,沈士钊.网壳结构的粘滞阻尼减震分析与试验研究.地震工程与工程振动,2000,20(1):105-111.
    [111]范峰,沈士钊.网壳结构的粘弹阻尼减震分析.地震工程与工程振动. 2003,23(3):156-159.
    [112]杜东升,李爱群,徐赵东等.多点输入下大跨度空间结构的消能减震分析.特种结构,2005,22(2):33-40.
    [113]瞿伟廉,徐幼麟. ER/MR智能阻尼器对空间网壳结构地震反映的半主动控制.地震工程与工程振动,2001,21(4):24-31.
    [114]唐少容,周岱,黄真等. MR智能阻尼器对空间网壳结构的风振抑制分析.振动与冲击,2006,25(6):25-28.
    [115]Dominguez A, Sedaghati R. Stiharu I. Modeling and application of MR dampers in semi-adaptive structures. Computers and Structures. 2008, 86 (3-5): 406-415.
    [115]吴林林.磁流变阻尼器的构造设计与性能测试.天津:天津大学硕士论文,2002.
    [117]雷天觉.液压工程手册.北京:机械工业出版社,1990.
    [118]Carlson J D. Permanent-Electromagnet Systems. http://www.lord.com, 2008.
    [119]杜修力,牛东旭,廖维张等.逆变型磁流变阻尼器的设计及性能试验.振动与冲击,2006,25(5):49-53.
    [120]闫维明,葛惠娟,董彬等.逆变型磁流变阻尼器的实验和分析.地震工程与工程振动,2007,27(3):171-176.
    [121]葛慧娟,闫维明,孟剑.逆变型MR阻尼器的设计及磁路分析.四川建筑科学研究,33(1):142-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700