磁流变阻尼器对斜拉桥拉索振动控制的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度斜拉桥拉索由于质量轻、阻尼小、柔性大,极易在风、风雨和桥面振动等外部激励下产生大幅振动,拉索的大幅振动对拉索的使用寿命和桥梁安全运营构成极大威胁,它已成为大跨度斜拉桥急需解决的关键问题之一。磁流变阻尼器具有阻尼力大小可调、响应快、性能稳定等优点而受到广泛关注。本文采用磁流变阻尼器对拉索的振动控制进行了理论和试验研究,系统深入地研究了磁流变阻尼器的力学性能及磁流变阻尼器对拉索振动的控制效果。具体的研究内容和取得的成果包括:
     1.在阻尼力实测的结果上提出了磁流变阻尼器的非线性参数模型,非线性参数模型能够较好地模拟永磁调节式磁流变阻尼器与RD-1005型磁流变阻尼器的力学性能。提出了递推法计算非线性参数模型的数值计算方法,该方法能在时间步长为10-3s时模拟出磁流变阻尼器的阻尼力时程。建立了动态调节适应度和多层次压缩搜索区间的遗传算法——层次压缩遗传算法。该方法既能克服传统遗传算法的早熟和停滞现象,又能加速收敛速度,该算法在非线性物理参数识别方面具有良好的效果。
     2.建立了拉索-磁流变阻尼器系统动力响应的有限单元模型,对试验索与永磁调节式磁流变阻尼器系统进行了全时程的数值仿真分析,其中阻尼器采用非线性参数模型。计算了阻尼器不同的安装高度、不同的磁场强度对系统等效模态阻尼比、钳固效应和频率变化的影响。拉索系统的等效模态阻尼比与拉索的振幅(或动能幅值)相关。随着阻尼器安装位置的提高,阻尼器对拉索的减振效果提高,系统的模态频率也略微增大。
     3.提出了适合于拉索-磁流变阻尼器系统的基于位移延时反馈的Bang-Bang控制和基于位移延时反馈的自适应控制的两种半主动控制算法。以实验室所建立的模型拉索为研究对象,对拉索系统的自由衰减振动和强迫振动进行了有限元数值仿真分析。数值仿真结果表明:对于自由衰减振动的拉索系统的前三阶模态,半主动控制所获得的等效模态阻尼比比磁流变阻尼器的最优被动控制相应提高了67%、49%、44%,与粘性油阻尼器的最优被动控制相比,也可以得到基本相同的结果;对于强迫振动,半主动控制时拉索的前三阶模态位移响应比最优被动控制时分别减小37%、39%和18%。合理选择电压的开关时间是半主动控制获得良好效果的关键,对于拉索系统的前三阶模态,零电压持续时间Δτ分别为0.1s、0.08s、0.06s时,系统获得最大的等效模态阻尼比。随着阻尼器安装高度的增大和拉索振动频率的提高,半主动控制相对于最优被动控制的优势减小。
     4.利用dSPACE、Matlab/simulink、MR阻尼器和电流放大器等工具,建立了磁流变阻尼器和拉索的半主动控制试验平台。采用基于位移延时反馈的Bang-Bang控制算法对拉索系统进行了半主动和被动控制试验,测量了磁流变阻尼器的输入电压、延时时间τ2和零电压持续时间Δτ对拉索减振效果、模态频率的影响,同时对拉索索力也进行了测量。试验结果同样表明:半主动控制的效果优于最优被动控制;对于拉索的前三阶模态振动,半主动控制测得的拉索-磁流变阻尼器系统等效模态阻尼比小于有限元计算结果,分别为计算值的78%、89%和74%。
     5.对长沙洪山大桥S09索进行了试验,采用共振激振后突然释放的试验方法,得到了拉索分别在安装不同阻尼器时前三阶振动的自由衰减信号。结果表明:拉索在安装阻尼器后系统的模态阻尼比显著提高;永磁调节式磁流变阻尼器对拉索的减振效果优于油阻尼器;永磁调节式磁流变阻尼器对拉索的的减振效果存在一优化磁场强度,现场试验结果与理论计算结果吻合。根据理论分析与试验结果,对长沙洪山大桥拉索实施了磁流变减振。
Due to high flexibility, relatively small mass and very low inherent damping, stay cables of the long-span bridges are susceptible to vibration under wind loading, or wind incorporated rain excitation, or deck motion. Large-amplitude vibration of cables may reduce the life of cables and threaten safe traffic, and has been considered today as one of the most critical problems for this type of bridge. Therefore, investigation of mechanism and countermeasures of cable vibration is very important for construction and maintenance of the cable-stayed bridges. As semi-active control devices, magnetorheological (MR) dampers have an excellent variable damping property and their damping forces can be changed by adjusting the input of voltage to the dampers. With the aid of an appropriate control strategy, the semi-active MR system control for cables vibration can achieve much better damping effectiveness than the passive control system. This thesis is concerned with the modeling of MR dampers, and the semi-active control and the passive control for cables vibration by using MR dampers. Theoretical investigations, laboratory validation and field experiments are carried out in this study.
     1. A series of cycle vibration tests with varying response amplitudes and different frequencies are first carried out for both the Adjustable-Permanent-Magnet Magneto-Rheological (APM-MR) dampers and the RD-1005 MR dampers to experimentally obtain hysteretic loops associated with the two kinds of dampers. Based on the experimental observations, a nonlinear parametric model (NLP model) is developed to describe the hysteretic loops of MR dampers. A recursive algorithm which is convergent under the time step less than order of 10-3 second is applied to discretize the governing equation of motion for MR dampers. The hierarchical compact genetic algorithm (HCGA) is proposed to identify the parameters of the NLP model. The HCGA combines the attractive merits of the global searching ability of genetic algorithm (GA) and the stable convergence of dimidiate searching root method to find the solution. It is proved that the HCGA quickly converge to the global optimum with a high probability in correctly identifying nonlinear parameter system, and the proposed NLP model matches the experimental results well over a wide range of operation conditions.
     2. A geometrical nonlinear finite element formulation making use of the proposed NLP model of MR dampers is presented for analyzing the dynamic responses of the cable-MR dampers system in time domain, and applied to a field cable of Hongshan cable-stayed bridge incorporated with APM-MR dampers. The effects of response amplitude, installation height and the magnetic field intensity of dampers on the equivalently linear modal damping ratio, displacement reduction effecting (DRE), modal frequency are investigated in detail. The theoretical study concludes that large installation height is in favor of suppressing cable vibration, and magnetic field intensity whose optimum value depends on cable vibration amplitudes affects significantly the performance of dampers.
     3. Two semi-active control algorithms for closed-loop cable vibration control with MR dampers are developed based on measurement displacement. Numerical simulation shows that the first three equivalent modal damping ratios obtained with semi-active control increases 67%, 49% and 44%, respectively, than those obtained with the optimum passive control with MR dampers tuned to a particular mode, and the corresponding displacement decrease 37%, 39% and 18%, respectively. The switch time of input voltage is vital in the semi-active control algorithm whenΔτ(time with zero voltage) is 0.1s, 0.08s and 0.06s, respectively. For the first three modes, the maximum equivalent modal damping ratios are obtained. The advantage of the semi-active control attenuates with increase of the installation height of MR dampers and modal frequencies of stay cables when compared to that of passive control.
     4. An experimental platform based on dSPACE, Matlab/simulink and MR dampers is established in laboratory to study the performance of semi-active control algorithms. The above-proposed semi-active algorithm with MR dampers is applied experimentally to the laboratory cable, and is compared to the passive control algorithm by using MR dampers tuned to a specific mode. The experimental study validate the semi-active algorithm is superior to the passive control tuned to a particular mode. The equivalently linear modal damping ratios experimentally obtained from semi-active control is slightly smaller than those theoretically obtained from semi-active control for all the three modes (78%, 89%, and 74%).
     5. Field tests are implemented on a stay cable incorporated with AMP-MR dampers of Hongshan Bridge in Changsha, China to evaluate practical mitigation vibration performance of MR damper. A series of sinusoidal exciting tests is used to measure modal damping characteristic of cable-MR dampers system. The displacement, acceleration and force time history data is obtained, then the filter and the least squares algorithm are employed to obtain the first three equivalent modal damping ratios. Vibration mitigation performance of the cable using the APM-MR dampers are compared to that using oil damper, the result shows that the APM-MR damper can more significantly suppress cable vibration than oil dampers, and have an obvious increase in equivalently linear modal damping ratios. The displacement response reduces at the location of damper of the cable when the dampers are installed. The displacement reduction effecting is studied by displacement time history data of the cable. Relationships between the DRE and the amplitude and the mode of the cable vibration and the magnetic field intensity of the APM-MR dampers are established for future applications. The field experiment results are generally in accordance with those of theoretical study.
引文
[1] 林元培. 斜拉桥. 北京: 人民交通出版社, 1997, 1-3
    [2] 邵旭东. 桥梁工程. 北京: 人民交通出版社, 2007, 5-6
    [3] 项海帆. 21 世纪世界桥梁工程的展望. 土木工程学报, 2006, 33(3):1-6
    [4] 陈明宪. 斜拉桥建造技术, 第 1 版. 北京: 人民交通出版社, 2003, 23-40
    [5] J. Wianechi. Cables wind excited vibrations of cable-stayed bridge. In: 5th Int. Cof. On Wind Eng., Colorado, 1979:536-541
    [6] Y. Hikami, N. Shiraishi. Rain-wind induced vibrations of cables in cable stayed bridges, Journal of Wind Engineering and Industrial Aerodynamics, 29(1988): 409-418
    [7] M. Matsumoto, N. Shiraishi, Rain-wind induced vibrations of cables of cable-stayed bridge, Journal of Wind Engineering and Industrial Aerodynamics, 41-44(1992):2011-2022
    [8] R. Poston, Cable-stayed Conundrum, Civil Engineering, Aug. 1998, 58-61
    [9] A. J. Persoon, K. Noorlander, Full-scale measurements on the Erasmus Bridge after rain/wind induced cable vibrations, In: Wind Engineering into the 21st Century, Balkema, Rotterdam, 1999, 1019-1026
    [10] 顾明,刘慈军,罗国强等.斜拉桥拉索的风(雨)激振及控制. 上海力学, 1998, 19(4): 283-288
    [11] 李寿英.斜拉桥拉索风雨激振机理及其控制理论研究:[同济大学博士论文].上海:同济大学,2005, 1-12
    [12] 王修勇,陈政清,何旭辉等.洞庭湖大桥风雨振减振试验研究.桥梁建设,2002(2):11-14
    [13] M. Virlogeux, Cable vibrations in cable-stayed bridges, In: Bridge Aerodynamics, Balkema, Rotterdam, 1998, 213-218
    [14] S.C. Watson, S. David,Cables in Trouble, Civil Enginerring, 1988, 58(4): 231-236
    [15] M. Ahmed & Abdel-Ghaffar,Importance of Cable Vibration in Dynamics of Cable-stayed Bridge , J. of Eng. Mech., 1991, 117(11): 257-267.
    [16] 王文涛.斜拉桥换索工程.北京:人民交通出版社, 1997, 1-4
    [17] I. Kovacs. Zur Frage der Seilschwingungen und der Seildampfung. Dig Bautechnik, 1982, 325-332
    [18] G. Tagata. Harmonically forced, finite amplitude vibration of a string, Journal of Sound and Vibration, 1977,51(4): 483-492
    [19] K. Takahashi. An approach to investigate the instability of the multiple-degree-of-freedom parametric dynamic system, Journal of Sound and Vibration. 1981, 78(4): 519-529
    [20] R. Uhrig. On kinetic response of cables of cable-stayed bridges due to combined parametric and forced excitation. Journal of Sound and Vibration. 1993, 165(1): 185-192
    [21] Y. Fujino, P. Warnitchai, B. M. Pacheco. An experimental and analytical study of auto parametric response in 3DOF model of cable- stayed-beam. Nonlinear Dynamics, 1993(4): 111-138
    [22] J. L. Lilien, A. Pinto Da Costa. Vibration Amplitudes Caused by parametric excitation of cable stayed structures. Journal of Sound and Vibration, 1994, 174(2):69-90
    [23] A. Pinto Da Costa, J. A. C. Martins, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/or towers, Journal of Engineering Mechanics, 1996, 122(7): 613-622
    [24] 亢战,钟万勰.斜拉桥参数共振问题的数值研究.土木工程学报, 1998, 31(4): 14-22
    [25] 汪至刚,孙炳楠.斜拉桥参数振动引起的拉索大幅振动.工程力学, 2001, 18(1): 103-109
    [26] 陈水生.大跨度斜拉桥拉索的振动及被动、半主动控制研究:[浙江大学博士学位论文].杭州:浙江大学,2002, 16-34
    [27] C. L. Lee, N. C. Perkins. Experimental investigation of isolated and simultaneous internal resonances in suspended cables. ASME J. Vib. Acoust. 1995, 117(4): 385-391
    [28] Okauchi T, Miyota M, Tatsumi M, et al. Field vibration test of a long-span cable-stayed bridge by large exciters. J of JSCE 1992,455: 75-84
    [29] Yamaguchi K, Manabei Y, Sasaki N, et al. Field observation and vibration test of the Tatara Bridge. In: Proc. IABSE conf. on CableStayed Bridge, Malmo, 1999, 56-61
    [30] H. Yamaguchi, Y. Fujino, Stayed cable dynamics and its vibration control. Bridge Aerodynamic, 1998, 235-253
    [31] 埃米尔·希缪等著,刘尚培等译.风对结构的作用-风工程导论, 同济大学出版社,1992,112-130
    [32] H. Yamaguchi. Analytical study on growth mechanism of rain vibration of cable, Journal of Wind Engineering and Industrial Aerodynamics. 33(1990): 73-80
    [33] GU M., DU X. Q. Experimental investigation of rain-wind-induced vibration of cables in cable-stayed bridges and its mitigation. Journal of Wind Engineering and Industrial Aerodynamics, 93(2005): 79-95
    [34] 彭 天 波 , 顾 明 . 斜 拉 桥 拉 索 风 雨 激 振 的 机 理 研 究 , 同 济 大 学 学 报 ,2001(1):35-39
    [35] 杜晓庆.斜拉桥拉索风雨激振研究:[同济大学博士学位论文].上海:同济大学,2003,47-63
    [36] J. A. Main, N. P. Jones, Full-scale measurements of stay cable vibration , In: Wind Engineering into the 21st Century, Balkema, Rotterdam, 1999, 963-970
    [37] Z. Q. Chen, X. Y. Wang, J. M. Ko , et al. Field measurements on wind-rain-induced vibration of bridge cables with and without MR dampers. The 3rd world conference of structural control, Como, Italy, 2002:7-12
    [38] 陈政清,柳成荫,倪一清等.洞庭湖大桥拉索风雨激振中的风场参数, 铁道科学与工程学报, 2004, 1(1): 52-57
    [39] 王修勇,陈政清,倪一清.斜拉桥拉索风雨振观测及其控制.土木工程学报, 2003, 36(6): 53-59
    [40] 胡建华,王修勇,陈政清等.斜拉索风雨振响应特性.中国公路学报, 2006, 19(3): 41-48
    [41] Henrik E.L., Ole D.L. Generating mechanisms for cable stay oscillations at the Faro Bridges. In: International conference on cable-stayed bridges, Bangkok, 1987,1023-1033
    [42] M. Matsumoto, H. Shirato, et al. Field observation of the full-scale wind-induced cable vibration. Journal of Wind Engineering and Industrial Aerodynamics, 91(2003):13-26
    [43] Flamand O. Rain-wind induced vibration of cables. Journal of Wind Engineering and Industrial Aerodynamics, 57 (1995): 353-362.
    [44] A.Bosdogianni, D.Olivari. Wind- and rain- induced oscillations of cable of stayed bridge, Journal of Wind Engineering and Industrial Aerodynamics, 64(1996): 171-185
    [45] C. Verwiebe, H. Rucheweyh. Recent research results concerning the exciting mechanisms of rain-wind-induced vibrations, Journal of Wind Engineering and Industrial Aerodynamics, 76(1998):1005-1013
    [46] N. Cosentino, O. Flamand, C. Ceccoli. Rain-wind induced vibration of inclinedstay cables. Part Ⅰ: Experimental investigation and physical explanation. Wind and Structure, 2003, 6(6) : 471-484
    [47] 顾明,刘慈军,徐幼麟等.带人工雨线的拉索在风激励下的响应,应用数学和力学,2002, 23(10): 1047-1054
    [48] 刘慈军.斜拉桥拉索风致振动研究:[同济大学博士学位论文].上海:同济大学,1999,46-62
    [49] M. Gu and Q. Lu. Theoretical analysis of wind-rain induced vibration of cables of cable-stayed bridges. J. Wind Engineering, 89(2001): 125-128
    [50] U. Peil, N. Nahrath. Modeling of rain-wind induced vibrations, Wind and Structure, 2003, 6(1): 41-52
    [51] A.H.P.van der Burgh, Hartono. Rain-wind-induced vibrations of a simple oscillator, International Journal of Non-Linear Mechanics, 39(2003): 93-100
    [52] Y.L.Xu, L.Y.Wang, Analytical study of wind-rain-induced cable vibration: SDOF model. Journal of Wind Engineering and Industrial Aerodynamics, 91(2003): 27-40.
    [53] L.Y.Wang, Y.L.Xu. Wind–rain-induced vibration of cable: an analytical model (1) , International Journal of Solids and Structures, 40 (2003) :1265-1280
    [54] Y.L. Xu, L.Y. Wang. Analytical of wind-rain-induced cable vibration. Journal of Wind Engineering and Industrial Aerodynamics, 89 (2001):109-112
    [55] K.Wilde, W.Witkowski, Simple model of rain-wind-induced vibrations of stayed cables. J.wind Eng. Ind. Aerodyn, 91(2003): 873-891
    [56] N. Cosentino, O. Flamand, C. Ceccoli, Rain-wind induced vibration of inclined stay cables, Part Ⅱ : Mechanical modeling and parameter characterization. Wind and Structure, 2003,6(6): 485-498
    [57] D.Q. Cao, R.W. Tucker, C. Wang, A stochastic approach to cable dynamics with moving rivulets. Journal of Sound and Vibration, 268(2003): 291-304
    [58] 徐刚,王靖夫,任文敏.斜拉桥拉索雨风振机理探讨.工程力学, 2004, 21(3): 44-48
    [59] D. Rocchi, A. Zasso. Vortex shedding from a circular cylinder in a smooth and wired configuration: comparison between 3D LES simulation and experimental analysis. Journal of Wind Engineering and Industrial Aerodynamics, 90(2002): 475-489
    [60] H. Takano, M. Ogasawara, et al. Vibrational damper for cables of the Tsurumi Tsubasa Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 807-818
    [61] M. Matsumoto, N. Shiraishi ec al. Aerodynamics behaviour of inclined circular cylinders cable aerodynamics, J. Wind Eng. Ind. Aerodyn. 33(1990): 63-72
    [62] 何向东,廖海黎,李明水等.斜拉索风雨振动试验研究,第十一届全国结构风工程会议论文集,三亚,2003, 210-214
    [63] Z. Yu, Y.L. Xu, Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers-I. Formulation, Journal of Sound and Vibration, 1998, 214(4): 659-673
    [64] Y.L. Xu, Z. Yu, Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers-II. Application, Journal of Sound and Vibration, 1998, 214(4): 675-693
    [65] 马 星 , 仲 政 , 胡 瑞 龙 . 斜 拉 索 风 雨 激 振 空 间 模 型 , 同 济 大 学 学 报 , 2003, 31(8):895-898
    [66] L. Y. Wang, Y. L. Xu. Analytical study of wind-rain-induced cable vibration: 2DOF model. Wind and Structures, 2003,6(4):291-306
    [67] M. Matsumoto et al., Response characteristics of rain-wind induced vibration of stay-cable of cable-stayed bridges, Journal of Wind Engineering and Industrial Aerodynamics, 57(1995):323-333
    [68] M. Matsumoto et al., Vortex-induced cable vibration of cable-stayed, Journal of Wind Engineering and Industrial Aerodynamics, 89 (2001):633–647
    [69] Ehsan, F., R. H. Scanlan. Damping stay cables with ties. In: 5th US-Japan Bridge Workshop, 1999,85-90
    [70] H. Yamaguchi, L. Jayawardena. Analytical estimation of structural dampingin cable structures. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1-3): 1961-1972
    [71] H. Yamaguchi, R. Adhikari. Energy-based evaluationof modal damping in structural cables with and without damping treatment. Journal of Sound and Vibration, 1995, 181(1): 71-83
    [72] 娄学全.南京长江第二大桥南汊主桥斜拉索减振研究.公路, 2000(11): 39-41
    [73] 魏建东,杨佑发.辅助索制振效果的有限元分析.中国公路学报,2000(4):66-69
    [74] 薛晓锋,胡兆同,刘健新. 高阻尼橡胶耗能性能试验研究. 公路交通科技, 2006, 23(3): 71-74
    [75] 程华才,朱雨林,孙汉超. 斜拉桥拉索减振阻尼器工作性能试验研究. 工程与建设, 2006, 20(1): 4-7
    [76] 李雄晖, 李黎. 军山大桥斜拉索减振技术试验研究. 公路交通科技, 2002,19(3): 66-68
    [77] 汪正兴.阻尼减振技术及其在桥梁与塔式结构中的应用.桥梁建设, 1999, (4): 22-25
    [78] Swan, R.. Vibration damped. Bridge Design and Engineering, 1997, (9):19-21
    [79] Takano, H., Ogasawara, M., Ito, N., et al. Vibrational damper for cables of the Tsurumi Tsubasa Bridge. Journal of Wind and Industrial Aerodynamics, 1997, 71:807-818
    [80] Okauchi, I., Miyata,T., Tatsumi, M. et al. Field vibration test of a long-span cable-stayed bridge using large exciters. Structural Engineering and Earthquake Engineering, 1997, 14(1): 83-93
    [81] 杨进.汕头礐石大桥主斜拉桥的开拓性技术成就.桥梁建设, 2000, (3): 25-28
    [82] 杨高中.粘性剪切阻尼器(VSD)在铜陵长江大桥上的应用.公路, 2000, (3): 66-67
    [83] 孙利民,周海俊,陈艾荣.索承重大跨桥梁拉索的振动控制装置种类和性能, 国外桥梁,2004, 4: 36-40.
    [84] M. Yoneda and K. Maeda. A study on practical estimation method for structural damping of stay cable with damper. Proc. Canada-Japan workshop on bridge aerodynamics, Ottawa, Canada, 1989: 119-128
    [85] Uno K., Kitagawa S., Tsutsumi H. et al. Inoue A. A simple method of designing cable vibration dampers of cable-stayed bridges. J. Struct. Engrg., Japan Society of Civil Engineering, Takyo,Japan,1991, 37A,789-798
    [86] Pacheco, B.M., Fujino, Y. and Sulekh, A.. Estimation curve for modal damping in stay cables with viscous damper. Journal of Engineering Mechanics, 1991, 119(6):1961-1979
    [87] Y. F. Duan. Vibration control of stay cables using semi-active magneto-rheological(MR) dampers:[dissertation]. HongKong :The HongKong Ploytechnic University, 2004,3-26
    [88] Xu,Y.L., Zhan,S., Ko, J.M., et al.. Experimental study of vibration mitigation of bridge stay cables. Journal of Structural Engineering, 1999, 125(9): 977-986
    [89] Xu,Y.L., Gu,M., Zhan,S., et al. Experimental investigation of cable-damper systems in cable-stayed bridges. 第五届全国风工程及工业空气动力学学术会议论文集, 绵阳,1998, 51-55
    [90] H. Tabatabai, A.B. Mehrabi. Design of mechanics viscous dampers for stay cables. Journal of Bridge Engineering, ASCE, 5(2), 2000: 114-123
    [91] 周海俊. 斜拉索振动控制理论与试验研究:[同济大学博士学位论文].上海:同济大学,2005,184-215
    [92] S. Krenk, Vibrations of a taut cable with an external damper. Journal of Applied Mechanics, ASME, 67(2000): 772-776
    [93] J.A. Main and N.P. Jones, Evaluation of Viscous Dampers for Stay-Cable Vibration Mitigation. Journal of Bridge Engineering, ASCE, 2001(6): 385-397
    [94] J.A. Main, N.P. Jones, Free vibration of taut cable with attached damper, I: linear viscous damper. Journal of Engineering Mechanics, ASCE, 2002(10): 1062-1071
    [95] J.A. Main, N.P. Jones, Free vibration of taut cable with attached damper, II: nonlinear damper. Journal of Engineering Mechanics, ASCE, 2002(10): 1072-1081
    [96] X. Y. Wang, Y. Q. Ni, J. M. Ko, et al. Optimal design of viscous dampers for multi-mode vibration control of bridge cables. Engineering Structures, 27(2005): 792-800
    [97] Hagedorn P. Active vibration damping in large flexible structures. In: P. German, M.Piam and D.Cailleric(eds), Theoretical and Applied Mechanics,1989: 83-100
    [98] Yamaguchi H. and Dung N.N. Optimization of active wave control for cable vibrations. Proc. 3rd Symp. Motion and Vibration Control, JSME, Tokyo, 19-21,1993:150-155
    [99] Fujino Y., Warnitchai P and Pacheco B. M. Active stiffness control of cable vibration. Journal of Applied Mechanics,ASME.1993,60: 948-953
    [100] Achkire, Y. and Preumont, A. Active tendon control of cable-stayed bridges. Earthquake Engineering and Structural Dynamics, 1996, 25: 585-597
    [101] B. Xu, Z.S. Wu, K. Yokoyama, Neural networks for decentralized control of cable-stayed bridge. Journal of Bridge Engineering, ASCE ,2003(8): 229-236
    [102] J. Rabinow. The magnetic fluid clutch. AIEE Trans, 1948(67): 1308-1315
    [103] J. D. Calson, M. J. Chrzan. Magnetorheological fluid dampers. U.S., 5277281, 1994
    [104] B F Spencer Jr, S J Dyke, M Sain, et al. Phenomenological model of a magnetorheological damper. Journal of Engineering Mechanics, ASCE, 1997, 123(3): 230-238
    [105] G Yang, B F Spencer Jr, J D Carlson, et al. Large-scale MR fluid dampers: modeling and dynamic performance considerations. Engineering Structures, 2002, 24: 309-323
    [106] H Fujitani, et al. Development of 400 kN magnetorheological damper for areal based-isolated building. In: Proceedings of SPIE Conference Smart Structures and Materials, 5057, SPIE-International Society for Optical Engineering, Bellingham, Wash, England, 2003, 655-664
    [107] 欧进萍,关新春.磁流变耗能器性能的试验研究.地震工程与工程振动, 1999, 19(4): 76-81
    [108] 熊超,郑坚,张进秋等.磁流变阻尼器的设计及其力学特性实验研究.军械工程学院学报,2004,16(2): 1-5
    [109] 刘超群,陈花玲,李海龙.磁流变阻尼器阻尼性能研究.振动、测试与诊断, 2004, 24(2): 135-138
    [110] 祝长生.剪切型磁流变脂阻尼器转子系统的动力特性.机械工程学报, 2006, 42(10): 91-94
    [111] 瞿伟廉,樊友川.磁流变液阻尼器的磁路有限元分析与优化设计方法.华中科技大学学报(城市科学版), 2006, 23(3): 1-4
    [112] 闫维明,纪金豹,葛惠娟等.逆变型 MR 阻尼器磁路设计与试验研究.北京工业大学学报, 2006, 32(7): 593-595
    [113] 廖昌荣,余淼,陈伟民等.基于 Eyring 本构模型的磁流变液阻尼器设计原理与试验研究.机械工程学报, 2005,24(10): 133-136
    [114] 周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验研究.地震工程与工程振动, 2002, 22(4): 144-150
    [115] 董平,唐家祥,龚荣洲.一种新型磁流变阻尼器的性能实验研究.华中科技大学学报(自然科学版), 2002, 30(7): 86-88
    [116] 李忠献, 吴林林, 徐龙河等.磁流变阻尼器的构造设计及其阻尼力性能的试验研究.地震工程与工程振动, 2003, 23(1): 128-132
    [117] 涂建维,瞿伟廉,邹承明.MR 智能阻尼器试验研究及径向基网络模型.武汉理工大学学报, 2003, 25(1): 43-45
    [118] 杜修力,牛东旭,廖维张等.逆变型磁流变阻尼器的设计及性能试验.振动与冲击,2006, 25(6): 49-53
    [119] R Stanway, J L Sproston, N G Stevens. Non-linear modeling of an electro-rheological vinration damper. Journal of Electrostatics, 1987, 20: 167-184
    [120] D R Gamota, F E Filisko. Dynamic mechanical studies of electrorheological materials: moderate frequencies. Journal of Rheology, 1991, 35: 399-425
    [121] Y K Wen. Method for random vibratiob of hysteretic systems. Journal of the Engineering Mechanics Division, ASCE, 1976, 102(EM2): 249-263
    [122] G. Yang. Large-scale magnetorheological fluid damper for vibration mitigation:modeling testing and control. University of Notre Dame, Indiana, USA, 2001, 56-72
    [123] 关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定.振动与冲击, 2001, 20(1): 5-8
    [124] N. Makris, A. B. Scott, P. T. Douglas. Electrorheological damper with annular ducts for seismic protection application. Smart Materials and Structures, 1996, 5(5): 551-564
    [125] C. C. Chang, P. Roschke. Neural network modeling of a magnetorheological damper. J. Intelligent Material Systems and Structures, 1998, 9: 755-764
    [126] C. C. Chang, Tim Tse. Commanding MR dampers through a Bouc-Wen based inverse dynamic model. In: Proceedings of the 3rd International Conference on Structural Control, Como, Italy, 2002: 787-792
    [127] P Q Xia. An inverse model of MR damper using optimal network and system identification. Journal of Sound and Vibration, 2003, 266:1009-1023
    [128] S. B. Choi, S. K. Lee. A hysteresis model for the field-dependent damping foece of a magnetorheological damper. Journal of Sound and Vibration, 2001, 245(2): 375-383
    [129] H. P. Du, Kam Yim Sze. James Lam. Semi-active H∞ control of vehicle suspension with magneto-rheological damper. Journal of Sound and Vibration, 283(2005) :981-996
    [130] 李秀领.磁流变阻尼器的双 Sigmoid 模型及试验验证.振动工程学报, 2006, 19(2): 168-172
    [131] 翁建生,胡海岩,张庙康.磁流变液体的流变力学特性试验和建模.应用力学学报, 2000, 17(3): 1-5
    [132] 欧进萍.结构振动控制—主动、半主动和智能控制.第 1 版.北京:科学出版社,2003,296-326
    [133] 陈政清,禹见达,曹宏等.MR 阻尼器与油阻尼器减振性能的试验研究.湖南大学学报, 2005,32(6):107-113
    [134] J.A. Main, N.P. Jones. Free vibrations of taut cable with attached damper II: nonlinear damper. Journal of Engineering Mechanics, ASCE 128 (2002): 1072–1081
    [135] Q. Zhou, S.R.K. Nielsen, W.L. Qu. Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers. Journal of Sound and Vibration. 296 (2006) :1–22
    [136] 邬喆华.磁流变阻尼器对斜拉索振动控制的研究:[浙江大学博士学位论文].杭州:浙江大学, 2003, 48-50
    [137] Dyke, S J, Spencer, Jr., B.F., Sain, M.K. On the efficacy of magnetorheological dampers for seismic response reduction. In: Proceedings of DETC’97, 1997 ASME Design Enigineering Technical Conferences, Sacramento, California, 1997,451-462
    [138] Dyke, S.J., Spencer Jr., B.F., Sain, M.K., and Carlson, J.D.An experimental study of MR dampers for seismic protection. Smart. Mat. and Struct., 1998,5:693–703
    [139] Dyke, S.J., Spencer Jr., B.F., Jr.,Sain, M.K., and Carlson, J.D. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mat. and Struct., 1996 : 565–575
    [140] Spencer Jr., B.F., Dyke, S.J., Sain, M.K. Magnetorheological dampers: a new approach to seismic protection of structures. In: Proc. Conf. On Decision and Control, Sacramento, 1996, 676–681
    [141] Dyke, S.J., Spencer Jr., B.F., Quast. Acceleration feedback control of MDOF structures. J. Engrg. Mech., ASCE, 1995, 122(9): 907–918
    [142] Spencer Jr., B.F., and Sain, M.K. Controlling buildings: A new frontier in feedback. Control Systems, IEEE, 1997,7(6): 19–35
    [143] Spencer Jr., B.F., and Soong, T.T. New application and development of active, semi-acitve and hybrid control techniques for seismic and non-seismic vibration in the USA. In: Proc. Int. Post-SMiRT Conf. Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vib. of Struct., 1999,1:467–488
    [144] E.A. Johnson, R.E. Christenson, B.F. Spencer Jr.. Semiactive damping of cables with sag, Computer Aided Civil and Infrastructure Engineering, 18 (2003): 132-146
    [145] Lou,W.J., Ni,Y.Q. and Ko,J.M.. Dynamic properties of a stay cable incorporated with magneto-rheological fluid dampers. Advances in Structural Dynamics, J.M.Ko and Y.L.Xu(eds), Elsevier Science Ltd, Oxford. UK, Vol. II, 1341-1348
    [146] Ni,Y.Q., Chen Y. and Ko, J.M., et al. Neuro-control of cable vibration using semi-active magnetorheological dampers. Engineering Structures, 24 (2002): 295-307
    [147] 王修勇.斜拉桥拉索振动控制新技术研究:[中南大学博士学位论文].长沙:中南大学, 2002, 87-96
    [148] 瞿伟廉,陈朝辉,项海帆.智能阻尼器在风工程中的应用.第九届全国结构风响应学术会议论文集, 长沙,1999, 3104-3110
    [149] Brown, A.S., Ankireddi, S. and Yang, H.T.Y.. Actuator and sensor placement for multiobjective control of structures. Journal of Structural Engineering, 1999, 125(7): 757-765
    [150] 范存新,唐和生,薛松涛等.智能被动振动控制系统研究.振动与冲击, 2000, 19(4): 40-43
    [151] 李人厚.智能控制理论和方法.西安:西安电子科技大学出版社,1999,56-78
    [152] 李映辉.柔索与斜拉桥动力分析及振动控制方法研究:[重庆大学博士学位论文]. 重庆:重庆大学, 1999, 35-42
    [153] 楼梦麟,吴京宁.结构主动变刚度控制中的若干问题.同济大学学报, 2001, 29(4):379-383
    [154] 朱晓锦,陶宝祺.基于自寻优控制方法实现结构振动主动控制.振动、测试与诊断, 1999, 19(1): 15-18
    [155] 李秀领,李宏男.磁流变阻尼器结构控制研究进展.防灾减灾工程学报, 2004, 24(3): 335-342
    [156] Guyan R J. Reduction of stiffness and Matrices. AIAA, 1965,3:380-385
    [157] Skelton R E, Hughes P C. Model cost analysis for linear matrix second order systems. Journal of Dynamic, Measurement and Control, 1980, 102: 151-158
    [158] 郑兆昌.复杂结构模态综合技术.北京:清华大学出版社,1983, 65-72
    [159] 王文亮,杜作润.结构振动与动态子结构法.上海:复旦大学出版社, 1985, 22-35
    [160] Moor B C. Principal component analysis in linear systems. Controllability, Observability and Modal Reduction, IEEE Trans. Autom. Control, 1981, 26(1): 17-32
    [161] Hyland B C, Bernstein D S. The optimal projection equations for fixed order dynamic condensation. IEEE Trans. On Automatic Control, 1984, 29(11):1034-1037
    [162] Leitman G. Semi-active control for vibration attenuation[J].J Intelligent Mat., Systems and Structure , 1994, 19(5): 841-846
    [163] McClamroch N H. Closed loop structural control using electrorheological dampers. In: Proc. Am. Control Conf. , American Automatic Control Council, Washington, D. C., 1995, 4173-4177
    [164] Jose A. Inaudi. Modulated homogeneous friction:a semi-active damping strategy. Earthquake Engineering Structure Dynamic, 1997, 26(3): 361-376
    [165] 徐龙河,周云,李忠献. 半主动磁流变阻尼控制方法的比较与分析. 世界地震工程, 2000, 16(3): 95-100
    [166] 李忠献,徐龙河,姜南等.基于 MRF-04F 阻尼器的结构减震控制模型试验.地震工程与工程振动, 2004, 24(1): 148-151
    [167] 张春巍,欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析.世界地震工程,2003, 19(1): 37-43
    [168] 陈水生,任东红.斜拉桥拉索 MR 模糊半主动控制研究.华东交通大学学报,2005,22(5): 1-4
    [169] 陈勇,孙柄楠,楼文娟等.采用 ER 阻尼器作斜拉索半主动振动控制的试验研究.土木工程学报, 2004, 37(1): 50-55
    [170] 李惠,刘敏,欧进萍等.斜拉索磁流变智能阻尼控制系统分析与设计.中国公路学报,2005, 18(4): 38-41
    [171] Wu. Theoretical and experimental study on cable vibration reduction with a TMD-MR damper:[dissertation].The Louisiana State University ,2006,17-31
    [172] 沈世钊,陈昕.网壳结构稳定性.北京:科学出版社, 1999, 11-14
    [173] R C Ehrgott, S F Masri. Structural control applications of an electrorheological device. In: Proceeding of the International Workshop on Structural Control, University of southern California, Los Angeles, USA, 1994: 115-129
    [174] Holland J H.Adaptation in natural and artificial systems.Boston:MIT Press,1975,20-43
    [175] Goldberg D E. Genetic algorithms in search, optimization and machine learning.Reading, MA:Addison-Wesley,1989,46-87
    [176] Loh C H, Chung S T. A Three-Stage Identification Approach for Hysteretic Systems. Earthquake Engineering and Structural Dynamics, 1993,22(1): 129-150
    [177] G. Yan, Lily L. Zhou. Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers. Journal of sound and vibration, 296(2006): 368-382
    [178] 李守巨,刘迎曦,任明法等.基于改进遗传算法的水轮发电机振动荷载参数识别.工程力学,2003,20(5): 163-169
    [179] 邬喆华,陈 勇,楼文娟等.磁流变阻尼器对斜拉索减振效果的试验研究.振动工程学报,2004,17(1):102-107
    [180] P. G. Bergan, G. Horrigmoe, B. kakeland. Solution techniques for non-linear finite element problems. International Journal for Numerical MethodsEngineering, 1978, 12: 1677-1696
    [181] J. L. Meek, H. S. Tan. Geometrically nonlinear analysis of space frames by an incremental iterative technique. Computer Methods in Applied Mechanics and Engineering, 1984, 47: 261-282
    [182] R. Kouhia. On the solution non-linear finite element equations. Computers & Structures, 1992, 44: 243-254
    [183] 范志良,石洞.结构非线性分析的变步长增量迭代法研究.同济大学学报, 1993, 21(3): 315-321
    [184] 杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究:[中南大学博士学位论文]. 长沙:中南大学,2004, 31-47
    [185] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,2001: 483-491
    [186] 铁摩辛柯著,肖敬勋等译.材料力学.天津: 天津科学技术出版社, 1989,517
    [187] 殷家驹,张元冲.计算力学教程.西安: 西安交通大学出版社, 1992,203-205
    [188] 谢新民,丁锋.自适应控制系统.北京:清华大学出版社, 2002, 1-7
    [189] 李国勇,张翠平,郭红戈等.最优控制理论及参数优化.北京:国防工业出版社, 2006: 67-84
    [190] 胡寿松,王执铨,胡维礼.最优控制理论与系统.北京:科学出版社, 2005, 50-72
    [191] 吴麒,慕春棣.自动控制原理.北京:清华大学出版社, 1990, 131-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700