C-myc siRNA缓解自体静脉移植物内膜增生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在冠脉搭桥手术(CABG)中,大隐静脉(great saphenous vein)血管桥被广泛使用,文献报道约80%的CABG使用了大隐静脉桥作为血管桥。较之于乳内动脉(internal thoracic artery)等动脉血管桥,大隐静脉血管桥的远期通畅率较低,术后1年通畅率85%,而术后10年通畅率只有50-60%。临床上许多病人因为大隐静脉血管桥远期阻塞需要接受二次搭桥手术。提高大隐静脉血管桥的远期通畅率能减少患者需要接受二次手术的几率以及接受二次手术所带来的风险和花费。
     大隐静脉移植桥的闭塞可以分为早期、中期和晚期三个阶段。早期闭塞主要的原因是缝合技术不规范、患者血液高凝状态等,中期闭塞的主要原因是移植静脉内膜的增生,晚期闭塞主要是由于移植血管粥样硬化。目前对于移植静脉中期的内膜增生再狭窄尚没有有效的治疗方法。
     移植静脉内膜的增生来源于血管平滑肌细胞的增生,研究表明造成内膜增生的血管平滑肌细胞是来源于局部的吻合血管的。暴露于动脉血流动力学环境之下的移植静脉中膜血管平滑肌细胞在动脉血流的剪切力作用下发生表型转变(phenotypic switching),从收缩型平滑肌细胞(contractile phenotype)转变为合成型的平滑肌细胞(synthetic phenotype)。合成型血管平滑肌细胞向内膜区迁移、增生,并分泌大量细胞外基质。这一过程造成了移植静脉血管内膜的增生,而增生的内膜组织较之正常内膜更易发生粥样硬化的改变。移植静脉内膜的增生是造成静脉移植物晚期狭窄的一个重要原因,目前对于移植静脉内膜的增生尚没有有效的治疗办法。
     以往的研究表明移植静脉内膜增生的过程涉及许多基因的异常高表达。C-myc基因在移植静脉中的表达情况与移植静脉内膜增生的发生发展情况是一致的,被认为启动并维持了移植静脉内膜的增生。既往使用AS-ODN抑制c-myc基因表达的研究证实了抑制c-myc基因的表达可以抑制移植血管中膜平滑肌细胞的增生,缓解移植静脉的狭窄。
     RNAi技术提供了简单高效的基因沉默的方法。本研究使用体外培养的血管平滑肌细胞筛选合适的干扰序列,并建立大鼠自体动静脉移植模型,首次研究c-myc siRNA在体内抑制移植静脉内膜增生的情况。
     第一部分:C-myc siRNA抑制体外培养血管平滑肌细胞增生的研究
     目的:人工合成c-myc siRNA序列,通过转染体外培养的血管平滑肌细胞检测其体外抑制血管平滑肌细胞增生的能力。
     方法:使用基因软件筛选出合适干扰序列,采用化学合成法人工合成3对c-myc siRNA序列和一对SCR序列。取SD大鼠胸主动脉,按照组织块培养法获取体外培养的血管平滑肌原代细胞并传代培养。使用阳离子脂质体为转染试剂进行体外转染实验。使用荧光标记的SCR序列筛选最佳转染条件,使用MTT法、WB、q-rt-PCR法检测各干扰序列的抑制效率,筛选出具有最强干扰效率的c-myc siRNA序列。
     结果:最佳干扰序列为:ACAUCAUCAUCCAGGACUGdTdT。转染48h后,筛选出的干扰序列对体外培养的血管平滑肌细胞细胞增殖的抑制为40%,抑制VSMCs c-myc mRNA的表达约为75%,抑制c-myc蛋白表达大约55%。
     结论:使用组织块培养法可以简便有效的获取体外培养的血管平滑肌细胞。序列ACAUCAUCAUCCAGGACUGdTdT能明显抑制体外培养的血管平滑肌细胞的增生。其对血管平滑肌细胞的增生是来源于对c-myc mRNA和c-myc蛋白质表达的抑制。
     第二部分:RNAi抑制大鼠自体移植静脉内膜增生的研究
     目的:体外实验部分筛选出了合适的干扰序列,本部分研究的目的是验证这一干扰序列在体内情况下是否能有效抑制移植静脉内膜的增生。
     方法:建立大鼠自体颈外静脉-颈总动脉移植模型。32只SD大鼠随机分成四组:空白对照组(No treatment),阴性干扰序列组(SCR),转染试剂组(Gel), c-myc siRNA组。术后3周处死大鼠并切取移植静脉。分别检测移植静脉内膜增生、c-myc基因表达以及血管平滑肌细胞PCNA表达的情况。
     结果:相对于其它对照组,c-myc siRNA组的内膜增生被明显抑制,增生内膜厚度减少约75%。Q-rt-pcr检测显示c-myc siRNA抑制c-myc基因的表达约50%,免疫组化染色显示c-myc蛋白表达在c-myc siRNA组也明显减少,同时细胞增殖能力的指标PCNA表达也明显下调。
     结论:本实验使用的c-myc siRNA能有效缓解移植静脉内膜的增生。C-myc siRNA能抑制移植静脉中膜血管平滑肌细胞的增值能力。C-myc siRNA对移植静脉内膜增生的抑制作用来源于其对c-myc基因表达的抑制。
Autologous saphenous vein is one of the most commonly used vascular conduits for coronary heart disease. It was reported that the great saphenous vein are used in almost about80%of all the CABG However, the long-term treatment outcome is far from satisfactory due to the gradually diminished patency rate of the vein grafts over time. One year, and10years following CABG surgery, the patency rate was about85%and50-60%, respectively. It is benefit to improve the long-term patency rate of vein grafts.
     Three distinct phases of vein grafts failure have been recognized till now. Early graft occlusion relates to technical complications and thrombosis. Mid-term graft occlusion is due to the development of fibrotic intimal hyperplasia. And atherosclerotic degeneration contributes to the late time restenosis.
     Vascular intimal hyperplasia was found to be one of the major causes for occlusion of the vein grafts. It was reported that the smooth muscle cells play a central role in the vein grafts' intimal hyperplasia. Evidences suggested that most of the smooth muscle cells come from the local vessel wall in the progress of vein graft's intimal hyperplasia. After reperfusion, VSMCs of the vein grafts would gradually change from contractile to synthetic phenotype. The phenotypic switching of the VSMCs will make the cells immigrate to the tunica intima of the vein grafts, enter the cell cycle and produce extracellular matrix. These contribute to the vein grafts stenosis. While traditional pharmacotherapy has no benefits to intimal hyperplasia, gene therapy provides a possible treatment for inhibiting intimal hyperplasia.
     Many genes are involved in the progress of intimal hyperplasis. The progress of the intimal hyperplasia of the vein grafts was consistent with the expression of the c-myc gene. It is believed that the continuous high expression of the c-myc gene is partly responsible for the development of intimal hyperplasia.
     The use of synthetic siRNA has been established as a technique for gene silencing. It was reported that antisense oligonucleotides to c-myc gene could reduce c-myc gene expression and inhibit VSMCs growth. Here, we employed siRNA as a medium to silence c-myc gene expression in order to inhibit VSMCs proliferation and protect vein grafts from late restenosis in a rat autologous vein graft model.
     Part Ⅰ:Small interfering RNA to c-myc inhibits VSMCs proliferation in vitro
     Objective:Three c-myc siRNAs and one SCR were synthesized. The effects of siRNAs on VSMCs proliferation in vitro were examined both in cell proliferation and c-myc geng expression.
     Methods:VSMCs from Sprague-Dawley rat were isolated and harvested. Cells were identified by morphology and immunohistochemistry for α-actin, and were used for experiments at passage5. VSMCs were transfected with the different siRNAs by using Lipofectamine2000reagent (Invitrogen Life, Biotechnologies, Carlsbad, CA). MTT assay, WB and q-rt-PCR were used to detecte the inhibition efficiency in cell proliferation.
     Result:The sequence ACAUCAUCAUCCAGGACUGdTdT was selected as the most effective siRNA in our study. In vitro, at48hours after transfection, this c-myc siRNA inhibited cell proliferation by40%, reduced c-myc mRNA level by70%and c-myc protein level by50%as compared with the controls.
     Conclusions:The VSMCs proliferation in vitro could be reduced effectively by downregulation c-myc gene expression utilizing c-myc siRNA.
     Part Ⅱ:Small interfering RNA to c-myc inhibits vein graft restenosis in a rat vein graft model
     Objective:In vitro study, the c-myc siRNA was selected. To investigate the inhibition efficiency of this c-myc siRNA on grafted veins' intimal hyperplasis, a rat vein graft model was used in this study.
     Methods:Autologous jugular vein to carotid artery reverse interposition grafts were performed in male Sprague-Dawley rats.32rats were divided into four groups as follows:nontreated group, receiving no treatment (n=8); only gel group,200ul of25%pluronic F-127gel (sigma) in5%glucose solution was applied to the surface of the vein grafts immediately after arteriovenous anastomosis (n=8); scrambled siRNA treated group, treated with200ul of above gel containing50ug scrambled siRNA (n=8); c-myc siRNA treated group,200ul gel containing50ug c-myc siRNA was applied to the surface of the grafts(n=8). Rats were sacrificed3weeks after surgery. The intimal hyperplasis and the c-myc gene expression were detected. Stains for PCNA were also preformed.
     Result:In vivo, the c-myc siRNA treatment reduced intimal hyperplasia by75%. Compared to the controls, the c-myc gene expression was also reduced in c-myc siRNA treatment group as well as the PCNA expression.
     Conclusions:Small interfering RNA to c-myc can inhibit vein graft restenosis in a rat vein graft model.
引文
1. Nolte, A., Secker, S., Walker, T., Greiner, T. O., Neumann, B., Simon, P., Ziemer, G., and Wendel, H. P. Veins are no arteries:even moderate arterial pressure induces significant adhesion molecule expression of vein grafts in an ex vivo circulation model. J Cardiovasc Surg (Torino) 52:251-259.
    2. Akowuah, E. F., Sheridan, P. J., Cooper, G. J., and Newman, C. Preventing saphenous vein graft failure:does gene therapy have a role? Ann Thorac Surg 76: 959-966,2003.
    3. Conte, M. S. Molecular engineering of vein bypass grafts. J Vasc Surg 45 Suppl A: A74-81,2007.
    4. Amirak, E., Zakkar, M., Evans, P. C., and Kemp, P. R. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells. Biochem Biophys Res Commun 391:818-823.
    5. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487-517,1995.
    6. Owens, G. K., Kumar, M. S., and Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767-801,2004.
    7. Sterpetti, A. V., Cucina, A., D'Angelo, L. S., Cardillo, B., and Cavallaro, A. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 113:691-699,1993.
    8. Hilker, M., Tellmann, G., Buerke, M., Moersig, W., Oelert, H., Lehr, H. A., and Hake, U. Expression of the proto-oncogene c-myc in human stenotic aortocoronary bypass grafts. Pathol Res Pract 197:811-816,2001.
    9. Ramirez, J. A., Sanchez, L. A., Marin, M. L., Lyon, R. T., Parsons, R. E., Suggs, W. D., and Veith, F. J. c-MYC oncoprotein production in experimental vein graft intimal hyperplasia. J Surg Res 61:323-329,1996.
    10. Cole, M. D., and McMahon, S. B. The Myc oncoprotein:a critical evaluation of transactivation and target gene regulation. Oncogene 18:2916-2924,1999.
    11. Dominguez-Sola, D., Ying, C. Y., Grandori, C., Ruggiero, L., Chen, B., Li, M., Galloway, D. A., Gu, W., Gautier, J., and Dalla-Favera, R. Non-transcriptional control of DNA replication by c-Myc. Nature 448:445-451,2007.
    12. Mannion, J. D., Ormont, M. L., Magno, M. G, O'Brien, J. E., Shi, Y., and Zalewski, A. Sustained reduction of neointima with c-myc antisense oligonucleotides in saphenous vein grafts. Ann Thorac Surg 66:1948-1952,1998.
    13. Arenz, C., and Schepers, U. RNA interference:from an ancient mechanism to a state of the art therapeutic application? Naturwissenschaften 90:345-359,2003.
    14. Hannon, G J. RNA interference. Nature 418:244-251,2002.
    1.刘小清冠心病流行病学研究进展及疾病负担.中华心血管病杂志2008年6期
    2. Shah, P. J., Bui, K., Blackmore, S., Gordon, I., Hare, D. L., Fuller, J., Seevanayagam, S., and Buxton, B. F. Has the in situ right internal thoracic artery been overlooked? An angiographic study of the radial artery, internal thoracic arteries and saphenous vein graft patencies in symptomatic patients. Eur J Cardiothorac Surg 2005; 27:870-875.
    3. Jorapur, V., Cano-Gomez, A., and Conde, C. A. Should saphenous vein grafts be the conduits of last resort for coronary artery bypass surgery? Cardiol Rev 2009; 17: 235-242.
    4. Goldman, S., Sethi, G K., Holman, W., Thai, H., McFalls, E., Ward, H. B., Kelly, R. F., Rhenman, B., Tobler, G H., Bakaeen, F. G., Huh, J., Soltero, E., Moursi, M., Haime, M., Crittenden, M., Kasirajan, V., Ratliff, M., Pett, S., Irimpen, A., Gunnar, W., Thomas, D., Fremes, S., Moritz, T., Reda, D., Harrison, L., Wagner, T. H., Wang, Y., Planting, L., Miller, M., Rodriguez, Y., Juneman, E., Morrison, D., Pierce, M. K., Kreamer, S., Shih, M. C., and Lee, K. Radial artery grafts vs saphenous vein grafts in coronary artery bypass surgery:a randomized trial. JAMA 305:167-174.
    5. Akowuah, E. F., Sheridan, P. J., Cooper, G J., and Newman, C. Preventing saphenous vein graft failure:does gene therapy have a role? Ann Thorac Surg 2003; 76:959-966.
    6. Parang, P., and Arora, R. Coronary vein graft disease:pathogenesis and prevention. Can J Cardiol 2009; 25:e57-62.
    7. Suggs, W. D., Olson, S. C., Madnani, D., Patel, S., and Veith, F. J. Antisense oligonucleotides to c-fos and c-jun inhibit intimal thickening in a rat vein graft model. Surgery 1999; 126:443-449.
    8. Amirak, E., Zakkar, M., Evans, P. C., and Kemp, P. R. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells. BioChem Biophys Res Commun 391:818-823.
    9. Owens, G K. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995; 75:487-517.
    10. Owens, G K., Kumar, M. S., and Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84:767-801.
    11. Sterpetti, A. V., Cucina, A., D'Angelo, L. S., Cardillo, B., and Cavallaro, A. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 1993; 113:691-699.
    12. Zwolak, R. M., Adams, M. C., and Clowes, A. W. Kinetics of vein graft hyperplasia:assCiation with tangential stress. J Vasc Surg 1987; 5:126-136.
    13. Schwartz, S. M., deBlois, D., and O'Brien, E. R. The intima. Soil for atherosclerosis and restenosis. Circ Res 1995; 77:445-465.
    14. Hilker, M., Tellmann, G, Buerke, M., Moersig, W., Oelert, H., Lehr, H. A., and Hake, U. Expression of the proto-oncogene c-myc in human stenotic aort coronary bypass grafts. Pathol Res Pract 2001; 197:811-816.
    15. Yu, M. L., Wang, J. F., Wang, G K., You, X. H., Zhao, X. X., Jing, Q., and Qin, Y. W. Vascular Smooth Muscle Cell Proliferation Is Influenced by let-7d MicroRNA and Its Interaction With KRAS. Circ J 75:703-709.
    16. Luo, Z., Asahara, T., Tsurumi, Y., Isner, J. M., and Symes, J. F. Reduction of vein graft intimal hyperplasia and preservation of endothelium-dependent relaxation by topical vascular endothelial growth factor. J Vasc Surg 1998; 27:167-173.
    17. Tian, X. D., Gao, C. Q., Zhou, N. K., Li, B. J., Xiao, C. S., Liu, X., and Zhang, T. [Effect of non-restrictive external stent on the expression of platelet-derived growth factor in vein grafts of rabbits]. Zhonghua Yi Xue Za Zhi 2008; 88:1418-1421.
    18. Ramirez, J. A., Sanchez, L. A., Marin, M. L., Lyon, R. T., Parsons, R. E., Suggs, W. D., and Veith, F. J. c-MYC oncoprotein production in experimental vein graft intimal hyperplasia. J Surg Res 1996; 61:323-329.
    19. Bennett, M. R., Littlewood, T. D., Hancck, D. C., Evan, G. I., and Newby, A. C. Down-regulation of the c-myc proto-oncogene in inhibition of vascular smooth-muscle cell proliferation:a signal for growth arrest? BioChem J 1994; 302 (Pt 3):701-708.
    20. Arenz, C., and Schepers, U. RNA interference:from an ancient mechanism to a state of the art therapeutic application? Naturwissenschaften 2003; 90:345-359.
    21. Hannon, G. J. RNA interference. Nature 2002; 418:244-251.
    22. Napoli, C., Lemieux, C., and Jorgensen, R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 1990; 2:279-289.
    23. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411:494-498.
    24.满国彤,凤志慧,张同琳,周孝思.人、猪、鼠血管内皮及平滑肌细胞培养与纯化方法的改进.中国组织化学与细胞化学杂志2001.6;第10卷第2期.
    25.吕丹瑜,董静霞,毕振伍,王光明,李英.平滑肌细胞的体外培养.解剖学杂志200年第28卷第5期2005.11.
    26. Bennett, M. R., Anglin, S., McEwan, J. R., Jagoe, R., Newby, A. C., and Evan, G. I. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest 1994; 93:820-828.
    27. Conte, M. S., Mann, M. J., Simosa, H. F., Rhynhart, K. K., and Mulligan, R. C. Genetic interventions for vein bypass graft disease:a review. J Vasc Surg 2002; 36: 1040-1052.
    28. Banno, H., Takei, Y., Muramatsu, T., Komori, K., and Kadomatsu, K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg 2006; 44:633-641.
    29.曹贵松,曲.景.应用c-myc反义寡核苷酸防治自体静脉移植物内膜增生的实验研究.第二军医大学学报1999 Nov;20(11).
    30. Paddison, P. J., and Hannon, G. J. RNA interference:the new somatic cell genetics? Cancer Cell 2002; 2:17-23.
    31. de Nigris, F., Sica, V, Herrmann, J., Condorelli, G., Chade, A. R., Tajana, G., Lerman, A., Lerman, L. O., and Napoli, C. c-Myc oncoprotein:cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell Cycle 2003; 2:325-328.
    1. Akowuah, E. F., Sheridan, P. J., Cooper, G. J., and Newman, C. Preventing saphenous vein graft failure:does gene therapy have a role? Ann Thorac Surg 76: 959-966,2003.
    2. Haraguchi, T., Okada, K., Tabata, Y., Maniwa, Y, Hayashi, Y, and Okita, Y. Controlled release of basic fibroblast growth factor from gelatin hydrogel sheet improves structural and physiological properties of vein graft in rat. Arterioscler Thromb Vasc Biol 27:548-555,2007.
    3. Shah, P. J., Bui, K., Blackmore, S., Gordon, I., Hare, D. L., Fuller, J., Seevanayagam, S., and Buxton, B. F. Has the in situ right internal thoracic artery been overlooked? An angiographic study of the radial artery, internal thoracic arteries and saphenous vein graft patencies in symptomatic patients. Eur J Cardiothorac Surg 27: 870-875,2005.
    4. Parang, P., and Arora, R. Coronary vein graft disease:pathogenesis and prevention. Can J Cardiol 25:e57-62,2009.
    5. Suggs, W. D., Olson, S. C., Madnani, D., Patel, S., and Veith, F. J. Antisense oligonucleotides to c-fos and c-jun inhibit intimal thickening in a rat vein graft model. Surgery 126:443-449,1999.
    6. Schwartz, S. M., deBlois, D., and O'Brien, E. R. The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445-465,1995.
    7. Jevon, M., Ansari, T. I., Finch, J., Zakkar, M., Evans, P. C., Shurey, S., Sibbons, P. D., Hornick, P., Haskard, D. O., and Dorling, A. Smooth muscle cells in porcine vein graft intimal hyperplasia are derived from the local vessel wall. Cardiovasc Pathol.
    8. Amirak, E., Zakkar, M., Evans, P. C., and Kemp, P. R. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells. BioChem Biophys Res Commun 391:818-823.
    9. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487-517,1995.
    10. Owens, G. K., Kumar, M. S., and Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767-801,2004.
    11. Sterpetti, A. V., Cucina, A., D'Angelo, L. S., Cardillo, B., and Cavallaro, A. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 113:691-699,1993.
    12. Zwolak, R. M., Adams, M. C., and Clowes, A. W. Kinetics of vein graft hyperplasia:assciation with tangential stress. J Vasc Surg 5:126-136,1987.
    13. Coller, H. A., Grandori, C., Tamayo, P., Colbert, T., Lander, E. S., Eisenman, R. N., and Golub, T. R. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Prc Natl Acad Sci U S A 97:3260-3265,2000.
    14. de Nigris, F., Sica, V., Herrmann, J., Condorelli, G., Chade, A. R., Taj ana, G., Lerman, A., Lerman, L. O., and Napoli, C. c-Myc oncoprotein:cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell Cycle 2:325-328,2003.
    15. Mannion, J. D., Ormont, M. L., Magno, M. G., O'Brien, J. E., Shi, Y., and Zalewski, A. Sustained reduction of neointima with c-myc antisense oligonucleotides in saphenous vein grafts. Ann Thorac Surg 66:1948-1952,1998.
    16. Kerner, B., Teichmann, B., and Welte, K. Dexamethasone inhibits tumor necrosis factor-induced granulcyte colony-stimulating factor production in human endothelial cells. Exp Hematol 20:334-338,1992.
    17. Ramirez, J. A., Sanchez, L. A., Marin, M. L., Lyon, R. T., Parsons, R. E., Suggs, W. D., and Veith, F. J. c-MYC oncoprotein production in experimental vein graft intimal hyperplasia. J Surg Res 61:323-329,1996.
    18. Hilker, M., Langin, T., Hake, U., Schmid, F. X., Kurczynski, W., Lehr, H. A., Oelert, H., and Buerke, M. Gene expression profiling of human stenotic aorto-coronary bypass grafts by cDNA array analysis. Eur J Cardiothorac Surg 23: 620-625,2003.
    19. Cole, M. D., and McMahon, S. B. The Myc oncoprotein:a critical evaluation of transactivation and target gene regulation. Oncogene 18:2916-2924,1999.
    20. Dominguez-Sola, D., Ying, C. Y, Grandori, C., Ruggiero, L., Chen, B., Li, M., Galloway, D. A., Gu, W., Gautier, J., and Dalla-Favera, R. Non-transcriptional control of DNA replication by c-Myc. Nature 448:445-451,2007.
    21. Karshovska, E., Zernecke, A., Sevilmis, G., Millet, A., Hristov, M., Cohen, C. D., Schmid, H., Krotz, F., Sohn, H. Y., Klauss, V., Weber, C., and Schober, A. Expression of HIF-1 alpha in injured arteries controls SDF-1 alpha mediated neointima formation in apolipoprotein E deficient mice. Arterioscler Thromb Vase Biol 27:2540-2547, 2007.
    22. Kikuchi, K., McDonald, A. D., Sasano, T., and Donahue, J. K. Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation 111:264-270,2005.
    23. Banno, H., Takei, Y, Muramatsu, T., Komori, K., and Kadomatsu, K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vase Surg 44:633-641,2006.
    24. Forte, A., Galderisi, U., De Feo, M., Gomez, M. F., Esposito, S., Sante, P., Renzulli, A., Agozzino, L., Hellstrand, P., Berrino, L., Cipollaro, M., Cotrufo, M., Rossi, F., and Cascino, A. c-Myc antisense oligonucleotides preserve smooth muscle differentiation and reduce negative remodelling following rat carotid arteriotomy. J Vase Res 42:214-225,2005.
    25.胡建国,张杨.血管平滑肌肌动蛋白α在移植心脏血管病变及纤维化中的作用.中南大学学报(医学版)2009,34(4)
    26. Suurmeijer, A. J., Clement, S., Francesconi, A., Bcchi, L., Angelini, A., Van Veldhuisen, D. J., Spagnoli, L. G., Gabbiani, G., and Orlandi, A. Alpha-actin isoform distribution in normal and failing human heart:a morphological, morphometric, and biochemical study. J Pathol 199:387-397,2003.
    27. Libby, P., and Pober, J. S. Chronic rejection. Immunity 14:387-397,2001.
    1.刘小清冠心病流行病学研究进展及疾病负担.中华心血管病杂志2008年6期
    2. Akowuah, E. F., Sheridan, P. J., Cooper, G. J., and Newman, C. Preventing saphenous vein graft failure:does gene therapy have a role? Ann Thorac Surg 76: 959-966,2003.
    3. Shah, P. J., Bui, K., Blackmore, S., Gordon, I., Hare, D. L., Fuller, J., Seevanayagam, S., and Buxton, B. F. Has the in situ right internal thoracic artery been overlooked? An angiographic study of the radial artery, internal thoracic arteries and saphenous vein graft patencies in symptomatic patients. Eur J Cardiothorac Surg 27: 870-875,2005.
    4. Jorapur, V., Cano-Gomez, A., and Conde, C. A. Should saphenous vein grafts be the conduits of last resort for coronary artery bypass surgery? Cardiol Rev 17: 235-242,2009.
    5. Goldman, S., Sethi, G K., Holman, W., Thai, H., McFalls, E., Ward, H. B., Kelly, R. F., Rhenman, B., Tobler, G H., Bakaeen, F. G, Huh, J., Soltero, E., Moursi, M., Haime, M., Crittenden, M., Kasirajan, V., Ratliff, M., Pett, S., Irimpen, A., Gunnar, W., Thomas, D., Fremes, S., Moritz, T, Reda, D., Harrison, L., Wagner, T. H., Wang, Y., Planting, L., Miller, M., Rodriguez, Y, Juneman, E., Morrison, D., Pierce, M. K., Kreamer, S., Shih, M. C., and Lee, K. Radial artery grafts vs saphenous vein grafts in coronary artery bypass surgery:a randomized trial. JAMA 305:167-174.
    6. Nolte, A., Secker, S., Walker, T., Greiner, T. O., Neumann, B., Simon, P., Ziemer, G, and Wendel, H. P. Veins are no arteries:even moderate arterial pressure induces significant adhesion molecule expression of vein grafts in an ex vivo circulation model. J Cardiovasc Surg (Torino) 52:251-259.
    7. Parang, P., and Arora, R. Coronary vein graft disease:pathogenesis and prevention. Can J Cardiol 25:e57-62,2009.
    8. Yla-Herttuala, S., and Alitalo, K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 9:694-701,2003.
    9. Zwolak, R. M., Adams, M. C., and Clowes, A. W. Kinetics of vein graft hyperplasia:assciation with tangential stress. J Vasc Surg 5:126-136,1987.
    10. Sterpetti, A. V., Cucina, A., D'Angelo, L. S., Cardillo, B., and Cavallaro, A. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 113:691-699,1993.
    11. Owens, G K., Kumar, M. S., and Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767-801,2004.
    12. Halka, A. T., Turner, N. J., Carter, A., Ghosh, J., Murphy, M. O., Kirton, J. P., Kielty, C. M., and Walker, M. G The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol 17:98-102,2008.
    13. Small, J. V., and Gimona, M. The cytoskeleton of the vertebrate smooth muscle cell. Acta Physiol Scand 164:341-348,1998.
    14. Schwartz, S. M., deBlois, D., and O'Brien, E. R. The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445-465,1995.
    15. Suggs, W. D., Olson, S. C., Madnani, D., Patel, S., and Veith, F. J. Antisense oligonucleotides to c-fos and c-jun inhibit intimal thickening in a rat vein graft model. Surgery 126:443-449,1999.
    16. von Smitten, K. Breaking strength and suture holding capacity of syngeneic aortic vein grafts in the rat. Acta Chir Scand 147:545-549,1981.
    17. Stenman, S., Foidart, J. M., Paavolainen, P., and von Smitten, K. Collagens, laminin, fibronectin, and cytoskeletal composition of cells in syngeneic aortal vein grafts in the rat. Res Exp Med (Berl) 185:355-366,1985.
    18. Tennant, M., Barker, A., Storrie, A. E., and McGeachie, J. K. Novel microsurgical model of experimental vascular neointimal hyperplasia. Microsurgery 14:102-106, 1993.
    19. Kudo, F. A., Muto, A., Maloney, S. P., Pimiento, J. M., Bergaya, S., Fitzgerald, T. N., Westvik, T. S., Frattini, J. C., Breuer, C. K., Cha, C. H., Nishibe, T., Tellides, G., Sessa, W. C., and Dardik, A. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vasc Biol 27:1562-1571,2007.
    20. Reimers, D., Gutierrez Diaz, J. A., Cuevas, P., Dujovny, M., Diaz, F. G, and Ausman, J. I. Possible role of endothelium in the orientation of smooth muscle cells in experimental neointima. Acta Anat (Basel) 121:140-146,1985.
    21. Libby, P., and Pober, J. S. Chronic rejection. Immunity 14:387-397,2001.
    22. Blain, B., Zhang, F., Jones, M., Richards, L., Fischer, K., Dorsett-Martin, W., and Lineaweaver, W. C. Vascular grafts in the rat model:an anatomic study. Microsurgery 21:80-83,2001.
    23. Liu, S. Q., and Fung, Y. C. Changes in the organization of the smooth muscle cells in rat vein grafts. Ann Biomed Eng 26:86-95,1998.
    24. Danielisova, V., Chavko, M., and Schubert, P. H. Effect of propentofylline (HWA 285) on metabolic and functional recovery in the spinal cord after ischemia. Neuropharmacology 33:199-204,1994.
    25. Haraguchi, T., Okada, K., Tabata, Y, Maniwa, Y, Hayashi, Y, and Okita, Y. Controlled release of basic fibroblast growth factor from gelatin hydrogel sheet improves structural and physiological properties of vein graft in rat. Arterioscler Thromb Vasc Biol 27:548-555,2007.
    26. de Graaf, R., Kloppenburg, G., Tintu, A., Rouwet, E., Kitslaar, P., van Hooff, J., Bruggeman, C., and Stassen, F. The new immunosuppressive agent FK778 attenuates neointima formation in an experimental venous bypass graft model. Vascul Pharmacol 50:83-88,2009.
    27. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494-498,2001.
    28. de Nigris, F., Sica, V, Herrmann, J., Condorelli, G, Chade, A. R., Tajana, G., Lerman, A., Lerman, L. O., and Napoli, C. c-Myc oncoprotein:cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell Cycle 2:325-328,2003.
    29. Banno, H., Takei, Y, Muramatsu, T., Komori, K., and Kadomatsu, K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg 44:633-641,2006.
    30. Lauritzen, C. A new and easier way to anastomose microvessels. An experimental study in rats. Scand J Plast Reconstr Surg 12:291-294,1978.
    31.陈家军,董念国,孙宗全.肝素与阿魏酸钠对自体移植静脉内膜增生的影响.临床心血管病杂志2005年12月第21卷第12期,2005.
    32.翟伟,葛晶,Ilhan Inci,王建军.大鼠原位左肺移植模型的改进.山东医药2007年29期
    33. Wu, J., Wadsworth, R. M., and Kennedy, S. Inhibition of inducible nitric oxide synthase promotes vein graft neoadventitial inflammation and remodelling. J Vasc Res 48:141-149.
    34. Cooley, B. C. Murine model of neointimal formation and stenosis in vein grafts. Arterioscler Thromb Vasc Biol 24:1180-1185,2004.
    35. Dietrich, H., Hu, Y., Zou, Y, Huemer, U., Metzler, B., Li, G., Mayr, M., and Xu, Q. Rapid development of vein graft atheroma in ApoE-deficient mice. Am J Pathol 157:659-669,2000.
    36. Hu, Y, Mayr, M., Metzler, B., Erdel, M., Davison, F., and Xu, Q. Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions. Circ Res 91:e13-20,2002.
    37. Cheng, J., Wang, Y, Ma, Y, Chan, B. T., Yang, M., Liang, A., Zhang, L., Li, H., and Du, J. The mechanical stress-activated serum-, gluccorticoid-regulated kinase 1 contributes to neointima formation in vein grafts. Circ Res 107:1265-1274.
    38. Davies, M. G, Kim, J. H., Dalen, H., Makhoul, R. G, Svendsen, E., and Hagen, P. O. Reduction of experimental vein graft intimal hyperplasia and preservation of nitric oxide-mediated relaxation by the nitric oxide precursor L-arginine. Surgery 116: 557-568,1994.
    39. Mazer, C. D., Leong-Poi, H., Chhina, T., Alfardan, Z., Lapierre, H., Wang, Z., Jackson, Z. S., Qiang, B., Mahoney, J., Latter, D., Hare, G. M., Strauss, B. H., and Teitel, J. Recombinant factor Ⅶ affects anastomotic patency of vascular grafts in a rabbit model. J Thorac Cardiovasc Surg.
    40. Luo, Z., Asahara, T., Tsurumi, Y, Isner, J. M., and Symes, J. F. Reduction of vein graft intimal hyperplasia and preservation of endothelium-dependent relaxation by topical vascular endothelial growth factor. J Vasc Surg 27:167-173,1998.
    41. Zurbrugg, H. R., Musci, M., Sanger, S., Gutersohn, A., Mulling, C., Wellnhofer, E., Schaffner, T., and Hetzer, R. Prevention of venous graft sclerosis with clopidogrel and aspirin combined with a mesh tubing in a dog model of arteriovenous bypass grafting. Eur J Vasc Endovasc Surg 22:337-341,2001.
    42. Zurbrugg, H. R., Knollmann, F., Musci, M., Wied, M., Bauer, M., Chavez, T., Krukenberg, A., and Hetzer, R. The bicompound method in coronary artery bypass operations:surgical technique and 3-year patency. Ann Thorac Surg 70:1536-1540, 2000.
    43. Nishibe, T., Manase, H., Miyazaki, K., Ohkashiwa, H., Satoh, Y, Watanabe, S., Takahashi, T., Katoh, H., Okuda, Y, and Tanabe, T. Portal vein reconstruction with conventional polytetrafluoroethylene grafts:an experimental study in dogs. Surg Today 28:391-395,1998.
    44. Hirko, M. K., McShannic, J. R., Schmidt, S. P., Sharp, W. V., Evancho, M. M., Sims, R. L., and Siebert, J. D. Pharmacologic modulation of intimal hyperplasia in canine vein interposition grafts. J Vasc Surg 17:877-887,1993.
    45. Lloyd, C. T., George, S. J., Angelini, G. D., Newby, A. C., and Baker, A. H. A pig model of vein graft disease applications for potential gene therapies. Methods Mol Med 52:233-243,2001.
    46. Mannion, J. D., Ormont, M. L., Magno, M. G., O'Brien, J. E., Shi, Y, and Zalewski, A. Sustained reduction of neointima with c-myc antisense oligonucleotides in saphenous vein grafts. Ann Thorac Surg 66:1948-1952,1998.
    47. Mannion, J. D., Ormont, M. L., Shi, Y, O'Brien, J. E., Jr., Chung, W., Roque, F., and Zalewski, A. Saphenous vein graft protection:effects of c-myc antisense. J Thorac Cardiovasc Surg 115:152-161,1998.
    48. Chung, A. W., Wong, J., Luo, H., Hsiang, Y N., van Breemen, C., and Okon, E. B. Arterialization of a vein graft promotes cell cycle progression through Akt and p38 mitogen-activated protein kinase pathways:impact of the preparation prcedure. Can J Cardiol 23:1147-1154,2007.
    49. Jevon, M., Ansari, T. I., Finch, J., Zakkar, M., Evans, P. C., Shurey, S., Sibbons, P. D., Hornick, P., Haskard, D.O., and Dorling, A. Smooth muscle cells in porcine vein graft intimal hyperplasia are derived from the local vessel wall. Cardiovasc Pathol.
    50. Rajathurai, T., Rizvi, S. I., Lin, H., Angelini, G D., Newby, A. C., and Murphy, G J. Periadventitial rapamycin-eluting microbeads promote vein graft disease in long-term pig vein-into-artery interposition grafts. Circ Cardiovasc Interv 3:157-165.
    51. Thomas, A. C., Wyatt, M. J., and Newby, A. C. Reduction of early vein graft thrombosis by tissue plasminogen activator gene transfer. Thromb Haemost 102: 145-152,2009.
    52. Popov, A. F., Dorge, H., Hinz, J., Schmitto, J. D., Stojanovic, T., Seipelt, R., Didilis, V., and Schoendube, F. A. Accelerated intimal hyperplasia in aortcoronary internal mammary vein grafts in minipigs. J Cardiothorac Surg 3:20,2008.
    53. Kutryk, M. J., Foley, D. P., van den Brand, M., Hamburger, J. N., van der Giessen, W. J., deFeyter, P. J., Bruining, N., Sabate, M., and Serruys, P. W. Local intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis:results of the randomized investigation by the Thoraxcenter of antisense DNA using Iccal delivery and IVUS after coronary stenting (ITALICS) trial. J Am Coll Cardiol 39:281-287,2002.
    1. Moran, A., Gu, D., Zhao, D., Coxson, P., Wang, Y. C., Chen, C. S., Liu, J., Cheng, J., Bibbins-Domingo, K., Shen, Y. M., He, J., and Goldman, L. Future cardiovascular disease in china:markov model and risk factor scenario projections from the coronary heart disease policy model-china. Circ Cardiovasc Qual Outcomes 3:243-252.
    2. Nakamura, K., Huxley, R., Ansary-Moghaddam, A., and Woodward, M. The hazards and benefits assciated with smoking and smoking cessation in Asia:a meta-analysis of prospective studies. Tob Control 18:345-353,2009.
    3. Bays, H. E. "Sick fat," metabolic disease, and atherosclerosis. Am J Med 122: S26-37,2009.
    4. Shively, C. A., Register, T. C., and Clarkson, T. B. Scial stress, visceral obesity, and coronary artery atherosclerosis:product of a primate adaptation. Am J Primatol 71:742-751,2009.
    5. Lavie, C. J., Milani, R. V., and Ventura, H. O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 53:1925-1932, 2009.
    6. Gaziano, T. A., Bitton, A., Anand, S., Abrahams-Gessel, S., and Murphy, A. Growing epidemic of coronary heart disease in low-and middle-income countries. Curr Probl Cardiol 35:72-115.
    7. Rastan, A. J., Thiele, H., Schuler, G., and Mohr, F. W. [Coronary artery bypass surgery for the treatment of acute coronary syndromes]. Herz 35:70-78.
    8. Lee, M. S., Yang, T., Dhoot, J., and Liao, H. Meta-analysis of clinical studies comparing coronary artery bypass grafting with percutaneous coronary intervention and drug-eluting stents in patients with unprotected left main coronary artery narrowings. Am J Cardiol 105:1070-1075.
    9. Nishimi, M., and Tashiro, T. Off-pump coronary artery bypass vs percutaneous coronary intervention. Therapeutic strategies for 3-vessel coronary artery disease: OPCAB vs PCI(PCI-Side). Circ J 74:2750-2757.
    10. From, A. M., Al Badarin, F. J., Cha, S. S., and Rihal, C. S. Percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass surgery for multivessel coronary artery disease:a meta-analysis of data from the ARTS II, CARDia, ERACI III, and SYNTAX studies and systematic review of observational data. EuroIntervention 6:269-276.
    11. Nishibe, T., Manase, H., Miyazaki, K., Ohkashiwa, H., Satoh, Y., Watanabe, S., Takahashi, T., Katoh, H., Okuda, Y, and Tanabe, T. Portal vein reconstruction with conventional polytetrafluoroethylene grafts:an experimental study in dogs. Surg Today 28:391-395,1998.
    12. Nolte, A., Seeker, S., Walker, T., Greiner, T. O., Neumann, B., Simon, P., Ziemer, G, and Wendel, H. P. Veins are no arteries:even moderate arterial pressure induces significant adhesion molecule expression of vein grafts in an ex vivo circulation model. J Cardiovasc Surg (Torino) 52:251-259.
    13. Akowuah, E. F., Sheridan, P. J., Cooper, G. J., and Newman, C. Preventing saphenous vein graft failure:does gene therapy have a role? Ann Thorac Surg 76: 959-966,2003.
    14. Parang, P., and Arora, R. Coronary vein graft disease:pathogenesis and prevention. Can J Cardiol 25:e57-62,2009.
    15. Hirko, M. K., McShannic, J. R.,-Schmidt, S. P., Sharp, W. V., Evancho, M. M., Sims, R. L., and Siebert, J. D. Pharmacologic modulation of intimal hyperplasia in canine vein interposition grafts. J Vase Surg 17:877-887,1993.
    16. Suggs, W. D., Olson, S. C., Madnani, D., Patel, S., and Veith, F. J. Antisense oligonucleotides to c-fos and c-jun inhibit intimal thickening in a rat vein graft model. Surgery 126:443-449,1999.
    17. Popma, J. J., Sawyer, M., Selwyn, A. P., and Kinlay, S. Lipid-lowering therapy after coronary revascularization. Am J Cardiol 86:18H-28H,2000.
    18. Jevon, M., Ansari, T. I., Finch, J., Zakkar, M., Evans, P. C., Shurey, S., Sibbons, P. D., Hornick, P., Haskard, D. O., and Dorling, A. Smooth muscle cells in porcine vein graft intimal hyperplasia are derived from the local vessel wall. Cardiovasc Pathol.
    19. Amirak, E., Zakkar, M., Evans, P. C., and Kemp, P. R. Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells. BioChem Biophys Res Commun 391:818-823.
    20. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487-517,1995.
    21. Owens, G. K., Kumar, M. S., and Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767-801,2004.
    22. Sterpetti, A. V., Cucina, A., D'Angelo, L. S., Cardillo, B., and Cavallaro, A. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 113:691-699,1993.
    23. Zwolak, R. M., Adams, M. C., and Clowes, A. W. Kinetics of vein graft hyperplasia:association with tangential stress. J Vasc Surg 5:126-136,1987.
    24. Schwartz, S. M., deBlois, D., and O'Brien, E. R. The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445-465,1995.
    25. Schachner, T., Zou, Y., Oberhuber, A., Mairinger, T., Tzankov, A., Laufer, G., Ott, H., and Bonatti, J. Perivascular application of C-type natriuretic peptide attenuates neointimal hyperplasia in experimental vein grafts. Eur J Cardiothorac Surg 25: 585-590,2004.
    26. Huynh, T. T., Davies, M. G., Trovato, M. J., Barber, L., Safi, H. J., and Hagen, P. O. Reduction of lipid peroxidation with intraoperative superoxide dismutase treatment decreases intimal hyperplasia in experimental vein grafts. J Surg Res 84:223-232, 1999.
    27. Davies, M. G., Dalen, H., Barber, L., Svendsen, E., and Hagen, P. O. Lazaroid therapy (methylamin Chroman:U83836E) reduces vein graft intimal hyperplasia. J Surg Res 63:128-136,1996.
    28. Wan, S., Yim, A. P., Johnson, J. L., Shukla, N., Angelini, G D., Smith, F. C., Dashwood, M. R., and Jeremy, J. Y. The endothelin 1A receptor antagonist BSF 302146 is a potent inhibitor of neointimal and medial thickening in porcine saphenous vein-carotid artery interposition grafts. J Thorac Cardiovasc Surg 127:1317-1322, 2004.
    29. Sterpetti, A. V., Cucina, A., Randone, B., Palumbo, R., Stipa, F., Proietti, P., Saragosa, M. T., Santoro-D'Angelo, L., and Cavallaro, A. Growth factor production by arterial and vein grafts:relevance to coronary artery bypass grafting. Surgery 120: 460-467,1996.
    30. Huang, B., Dreyer, T., Heidt, M., Yu, J. C., Philipp, M., Hehrlein, F. W., Katz, N., and Al-Fakhri, N. Insulin and local growth factor PDGF induce intimal hyperplasia in bypass graft culture models of saphenous vein and internal mammary artery. Eur J Cardiothorac Surg 21:1002-1008,2002.
    31. Huynh, T. T., Davies, M. G., Barber, L., Svendsen, E., and Hagen, P. O. Local inhibition of tyrosine kinase activity markedly attenuates the development of intimal hyperplasia in experimental vein grafts. J Surg Res 77:104-111,1998.
    32. Hu, Y., Zou, Y., Dietrich, H., Wick, G., and Xu, Q. Inhibition of neointima hyperplasia of mouse vein grafts by locally applied suramin. Circulation 100:861-868, 1999.
    33. Yuda, A., Takai, S., Jin, D., Sawada, Y, Nishimoto, M., Matsuyama, N., Asada, K., Kondo, K., Sasaki, S., and Miyazaki, M. Angiotensin II receptor antagonist, L-158,809, prevents intimal hyperplasia in dog grafted veins. Life Sci 68:41-48, 2000.
    34. Brauner, R., Laks, H., Drinkwater, D. C., Jr., Chaudhuri, G, Shvarts, O., Drake, T., Bhuta, S., Mishaly, D., Fishbein, I., and Golomb, G. Controlled periadventitial administration of verapamil inhibits neointimal smooth muscle cell proliferation and ameliorates vasomotor abnormalities in experimental vein bypass grafts. J Thorac Cardiovasc Surg 114:53-63,1997.
    35. Aguilera, C. M., George, S. J., Johnson, J. L., and Newby, A. C. Relationship between type IV collagen degradation, metalloproteinase activity and smooth muscle cell migration and proliferation in cultured human saphenous vein. Cardiovasc Res 58: 679-688,2003.
    36. Porter, K. E., Loftus, I. M., Peterson, M., Bell, P. R., London, N. J., and Thompson, M. M. Marimastat inhibits neointimal thickening in a model of human vein graft stenosis. Br J Surg 85:1373-1377,1998.
    37. Grube, E., and Bullesfeld, L. Initial experience with paclitaxel-coated stents. J Interv Cardiol 15:471-475,2002.
    38. Hong, M. K., Mintz, G S., Lee, C. W., Song, J. M., Han, K. H., Kang, D. H., Song, J. K., Kim, J. J., Weissman, N. J., Fearnot, N. E., Park, S. W., and Park, S. J. Paclitaxel coating reduces in-stent intimal hyperplasia in human coronary arteries:a serial volumetric intravascular ultrasound analysis from the Asian Paclitaxel-Eluting Stent Clinical Trial (ASPECT). Circulation 107:517-520,2003.
    39. Wang, B., Wang, X., and Duan, Z. Mithramycin inhibits intimal hyperplasia of vein grafts after transplantation of the jugular vein to the abdomainal aorta in rats. Chin J Traumatol 3:172-175,2000.
    40. Poon, M, Marx, S. O., Gallo, R., Badimon, J. J., Taubman, M. B., and Marks, A. R. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 98: 2277-2283,1996.
    41. Rajathurai, T., Rizvi, S. I., Lin, H., Angelini, G. D., Newby, A. C., and Murphy, G. J. Periadventitial rapamycin-eluting microbeads promote vein graft disease in long-term pig vein-into-artery interposition grafts. Circ Cardiovasc Interv 3:157-165.
    42. Yla-Herttuala, S., and Alitalo, K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 9:694-701,2003.
    43. Ramirez, J. A., Sanchez, L. A., Marin, M. L., Lyon, R. T., Parsons, R. E., Suggs, W. D., and Veith, F. J. c-MYC oncoprotein production in experimental vein graft intimal hyperplasia. J Surg Res 61:323-329,1996.
    44.李拥军,管珩,王宗立.血管再狭窄的基因治疗.中国动脉硬化杂志2001年第9卷第1期,2001.
    45. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494-498,2001.
    46. Galea, J., Armstrong, J., Francis, S. E., Cooper, G., Crossman, D. C., and Holt, C. M. Alterations in c-fos expression, cell proliferation and apoptosis in pressure distended human saphenous vein. Cardiovasc Res 44:436-448,1999.
    47. Hilker, M., Tellmann, G., Buerke, M., Moersig, W., Oelert, H., Lehr, H. A., and Hake, U. Expression of the proto-oncogene c-myc in human stenotic aortocoronary bypass grafts. Pathol Res Pract 197:811-816,2001.
    48. Bennett, M. R., Littlewood, T. D., Hancock, D. C., Evan, G. I., and Newby, A. C. Down-regulation of the c-myc proto-oncogene in inhibition of vascular smooth-muscle cell proliferation:a signal for growth arrest? Biochem J 302 (Pt 3): 701-708,1994.
    49.曹贵松,曲景.应用c-myc反义寡核苷酸防治自体静脉移植物内膜增生的实验研究.第二军医大学学报,1999 Nov;20(11).
    50. Coller, H. A., Grandori, C., Tamayo, P., Colbert, T., Lander, E. S., Eisenman, R. N., and Golub, T. R. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A 97:3260-3265,2000.
    51. Dominguez-Sola, D., Ying, C. Y., Grandori, C., Ruggiero, L., Chen, B., Li, M., Galloway, D. A., Gu, W., Gautier, J., and Dalla-Favera, R. Non-transcriptional control of DNA replication by c-Myc. Nature 448:445-451,2007.
    52. de Nigris, F., Sica, V., Herrmann, J., Condorelli, G., Chade, A. R., Tajana, G., Lerman, A., Lerman, L. O., and Napoli, C. c-Myc oncoprotein:cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell Cycle 2:325-328,2003.
    53. Yu, M. L., Wang, J. F., Wang, G. K., You, X. H., Zhao, X. X., Jing, Q., and Qin, Y. W. Vascular Smooth Muscle Cell Proliferation Is Influenced by let-7d MicroRNA and Its Interaction With KRAS. Circ J 75:703-709.
    54. Sedding, D. G., Trobs, M., Reich, F., Walker, G., Fink, L., Haberbosch, W., Rau, W., Tillmanns, H., Preissner, K. T., Bohle, R. M., and Langheinrich, A. C. 3-Deazaadenosine prevents smooth muscle cell proliferation and neointima formation by interfering with Ras signaling. Circ Res 104:1192-1200,2009.
    55.周玉杰,周爱儒.反义N-rasl基因对血管损伤后平滑肌细胞增殖的影响.中华医学杂志,1997,77:220-223.
    56. Owada, K., Sanjyo, N., Kobayashi, T., Kamata, T., Mizusawa, H., Muramatsu, H., Muramatsu, T., and Michikawa, M. Midkine inhibits apoptosis via extracellular signal regulated kinase (ERK) activation in PC12 cells. J Med Dent Sci 46:45-51,1999.
    57. Banno, H., Takei, Y., Muramatsu, T., Komori, K., and Kadomatsu, K. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg 44:633-641,2006.
    58. Luo, Z., Asahara, T., Tsurumi, Y, Isner, J. M., and Symes, J. F. Reduction of vein graft intimal hyperplasia and preservation of endothelium-dependent relaxation by topical vascular endothelial growth factor. J Vasc Surg 27:167-173,1998.
    59. Davies, M. G, Kim, J. H., Dalen, H., Makhoul, R. G., Svendsen, E., and Hagen, P. O. Reduction of experimental vein graft intimal hyperplasia and preservation of nitric oxide-mediated relaxation by the nitric oxide precursor L-arginine. Surgery 116: 557-568,1994.
    60. Kudo, F. A., Muto, A., Maloney, S. P., Pimiento, J. M., Bergaya, S., Fitzgerald, T. N., Westvik, T. S., Frattini, J. C., Breuer, C. K., Cha, C. H., Nishibe, T., Tellides, G., Sessa, W. C., and Dardik, A. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vase Biol 27:1562-1571,2007.
    61. Tian, X. D., Zhou, N. K., Li, B. J., Xiao, C. S., Liu, X., Liang, C. Y, Zhang, T., and Gao, C. Q. Effects and mechanisms of non-restrictive external stent for prevention of vein graft restenosis in a rabbit model. Chin Med J (Engl) 123: 2400-2404.
    62. Mehta, D., George, S. J., Jeremy, J. Y, Izzat, M. B., Southgate, K. M., Bryan, A. J., Newby, A. C., and Angelini, G D. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting. Nat Med 4:235-239,1998.
    63. Tian, X. D., Gao, C. Q., Zhou, N. K., Li, B. J., Xiao, C. S., Liu, X., and Zhang, T. [Effect of non-restrictive external stent on the expression of platelet-derived growth factor in vein grafts of rabbits]. Zhonghua Yi Xue Za Zhi 88:1418-1421,2008.
    64. Quasnichka, H., Slater, S. C., Beeching, C. A., Boehm, M., Sala-Newby, G. B., and George, S. J. Regulation of smooth muscle cell proliferation by beta-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res 99:1329-1337,2006.
    65. Wakino, S., Kintscher, U., Kim, S., Jackson, S., Yin, F., Nagpal, S., Chandraratna, R. A., Hsueh, W. A., and Law, R. E. Retinoids inhibit proliferation of human coronary smooth muscle cells by modulating cell cycle regulators. Arterioscler Thromb Vasc Biol 21:746-751,2001.
    66. Matsumoto, T., Komori, K., Yonemitsu, Y, Morishita, R., Sueishi, K., Kaneda, Y, and Sugimachi, K. Hemagglutinating virus of Japan-liposome-mediated gene transfer of endothelial cell nitric oxide synthase inhibits intimal hyperplasia of canine vein grafts under conditions of poor runoff. J Vasc Surg 27:135-144,1998.
    67. Zheng, X., Zhang, X., Feng, B., Sun, H., Suzuki, M., Ichim, T., Kubo, N., Wong, A., Min, L. R., Budohn, M. E., Garcia, B., Jevnikar, A. M., and Min, W. P. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury. Am J Pathol 173:973-980,2008.
    68. Karshovska, E., Zernecke, A., Sevilmis, G., Millet, A., Hristov, M., Cohen, C. D., Schmid, H., Krotz, F., Sohn, H. Y, Klauss, V., Weber, C., and Schober, A. Expression of HIF-1 alpha in injured arteries controls SDF-1 alpha mediated neointima formation in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 27:2540-2547, 2007.
    69. Li, S. D., Chono, S., and Huang, L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 16:942-946,2008.
    70. Conte, M. S. Molecular engineering of vein bypass grafts. J Vasc Surg 45 Suppl A: A74-81,2007.
    71. Kibbe, M. R., Nie, S., Yoneyama, T., Hatakeyama, K., Lizonova, A., Kovesdi, I., Billiar, T. R., and Tzeng, E. Optimization of ex vivo inducible nitric oxide synthase gene transfer to vein grafts. Surgery 126:323-329,1999.
    72. Kikuchi, K., McDonald, A. D., Sasano, T., and Donahue, J. K. Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation 111:264-270,2005.
    73. Kallenbach, K., Salcher, R., Heim, A., Karck, M., Mignatti, P., and Haverich, A. Inhibition of smooth muscle cell migration and neointima formation in vein grafts by overexpression of matrix metalloproteinase-3. J Vasc Surg 49:750-758,2009.
    74. Di Micco, G., Forte, A., Cipollaro, M., Renzulli, A., De Feo, M., Rossi, F., Cascino, A., and Cotrufo, M. Surgical injury of rat arteries:genetic control of the remodelling process. Eur J Cardiothorac Surg 22:266-270,2002.
    75.王淳,马文锋,王新文,孙成林,段志泉.反义c-myc寡核苷酸对大鼠自体移植静脉内膜增生的影响.中华实验外科杂志2000年7月第17卷第4期
    76. Haraguchi, T., Okada, K., Tabata, Y., Maniwa, Y., Hayashi, Y., and Okita, Y. Controlled release of basic fibroblast growth factor from gelatin hydrogel sheet improves structural and physiological properties of vein graft in rat. Arterioscler Thromb Vasc Biol 27:548-555,2007.
    77. Qiu, X. F., Dong, N. G., Sun, Z. Q., Hu, P., Su, W., and Shi, J. W. [Controlled release of siRNA nanoparticles loaded in a novel external stent prepared by emulsion electrospinning attenuates neointima hyperplasia in vein grafts]. Zhonghua Yi Xue Za Zhi 89:2938-2942,2009.
    78. Johnson, T. W., Wu, Y. X., Herdeg, C., Baumbach, A., Newby, A. C., Karsch, K. R., and Oberhoff, M. Stent-based delivery of tissue inhibitor of metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler Thromb Vasc Biol 25:754-759,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700