莫尔条纹纳米级细分关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光栅传感器具有量程大、适应环境能力强、成本低等优势,广泛应用在精密位移测量、数显数控、大行程精密定位、精密加工和微电子等行业中。目前各行业对光栅位移测量提出了大量程纳米级等更高要求。
     莫尔条纹细分是光栅纳米级测量的关键。对于高密度光栅采用低倍细分就可以实现纳米级测量,而低密度光栅则需要高倍细分才能实现纳米级测量。低密度光栅具有量程大、成本低等优势,本文选择了线低密度光栅传感器作为研究对象。目前国内外莫尔条纹细分法主要集中在光学法和电子法,存在的主要问题是受莫尔条纹信号质量的影响大、误差修正困难等。本文针对莫尔条纹细分和栅距误差修正等关键问题进行了研究,提出了新的细分方法和栅距测量方法,完成的工作如下:
     首先研究了小波细分法。该方法是对光栅传感器的输出信号进行细分,由于传感器的光学部分是固定的,因此是通过高倍电子细分实现纳米级测量。为了能够适应传感器输出的质量较差的信号,对输出信号的非等幅、非正交进行了校正。
     采用菲涅尔衍射理论对光栅传感器的光学结构建模,基于透射原理的低密度光栅在实现纳米级测量时,其干涉和衍射效应的影响不能忽略,通过建立光栅调制光场的数学模型分析了低密度光栅的光强变化规律。光强与栅距、指示光栅和标尺光栅之间的距离、标尺光栅和光电转换器之间的距离等因素有直接关系,当光栅传感器运行时,这些影响因素是变化的,因此光栅传感器的输出波形非常复杂。光栅传感器在测量过程不一定是匀速运行,特别是启动、停止和换向的过程中,信号具有随机性。采用随机理论对输出信号进行了分析,结果表明信号的频率、幅值不是宽平稳的,相位是宽平稳的。本文根据光栅信号的随机性提出了小波细分法。
     小波细分法先将光栅输出的信号调制到小波基的相位和频率上,再对调制后的信号进行小波变换,那么脊最大对应的相位反映位移值,脊最大对应的尺度反映频率值即速度值。调制的小波基和小波基在变换的过程中可获得最大的相似性,能够提高测量的准确性。该方法解决了选择小波基的难题,无论应用在哪个领域,无需重新选择小波基,具有较强的实用性。同时根据相邻时刻相位差的正负和调制的小波基信号频率的增减可实现辨向。基于同步数据采集卡和构建了实验系统,采集光栅传感器的输出信号并进行了非正交校正和滤波预处理,实验验证了小波细分法的可行性。因为调制相位和频率均属于相位细分,比幅值细分法具有更好的抗干扰性。
     其次研究了基于采集的空间莫尔条纹信号的细分方法。该方法是利用替换传统的传感器内部的四个光电管,可获得整周期的空间莫尔条纹光强信号,同时提高了空间分辨力。在分析栅线刻划误差和采集误差的基础上,基于一个周期的空间莫尔条纹信号提出了单谱线算法和相位校正相结合的细分方法,通过计算莫尔条纹的相位差实现位移测量。基于构建了实验系统,实验验证了该方法的可行性。该方法具有只需一路信号、不受四路信号幅值不等、直流分量不等、非正交等问题影响的优点。
     最后研究了栅距测量及其误差修正方法。栅距是光栅位移精密测量的基准,测出栅距值是进一步提高位移测量精度的关键。根据光栅莫尔条纹的动态特性,提出在光栅传感器运行过程中将栅距量转换为时间量的测量方法。基于高阶累积量估计莫尔条纹信号经过两个距离固定的光电管的时间延迟来获得传感器的运行速度,基于最小二乘原理确定莫尔条纹信号的相邻两个最小值来获得光栅栅距所对应的时间,由运行速度与栅距所对应时间的乘积确定栅距值。实验结果表明对栅距的光栅传感器测量,误差小于,验证了方法的可行性。该方法能够实现每个栅距的测量,通过对每个栅距的误差进行修正可减少累积误差和细分误差,为光栅大量程高精度测量奠定了基础。
Grating sensor has such advantages as long range, strong ability to adapt to the environment and low cost, which is widely used in precision displacement measurement, digital readouts and numerical controls, long stroke precision positioning, precision processing and microelectronics industry, etc. Current industries put forward higher requirements of nanoscale and long range and so on to grating displacement measurement.
     Moire fringe subdivision is the key to the grating nanoscale measurement. High density grating can achieve nanoscale measurement only with low subdivision, but the low density grating needs high subdivision to achieve nanoscale measurement. Low density grating has such advantages as long range and low cost, low density grating sensor of50lines/mm is chosen as the research object. At present, Moire fringe subdivision methods at home and abroad mainly focus on the optical and electronic method, which has such main problems as serious effect by Moire fringe signal quality and difficult error correction, etc. The key problems of Moire fringe subdivision and pitch error correction are studied, and the new subdivision method and the pitch measurement method are proposed, completed work as follows:
     Firstly, wavelet subdivision method is studied. The method subdivides grating sensor's output signal, because the optical part of sensor is fixed, the nanoscale measurement is achieved by high electronic subdivision. The unequal amplitude and non-orthogonality are corrected in order to adapt to the poor quality signal of sensor output.
     The optical structure model of grating sensor is built with Fresnel diffraction theory, low density grating based on the transmission principle can't ignore the influence of interference and diffraction effect when it achieves nanoscale measurement, and the light intensity variation law of low density grating is analyzed by establishing the mathematical model of modulated light field by grating. Light intensity has directly relationship with such factors as the pitch, the distance between index grating and scale grating, the distance between scale grating and the photoelectric converter and so on, those influence factors are change with the movement of the grating sensor, so the output waveform of grating sensor is very complicated. The moving speed of grating sensor is not always a constant speed in the measuring process, especially in the process of start, stop and the reversing process, the signal is random. The output signals are analyzed with random theory, the results show that the frequency and amplitude is not wide-sense stationary and phase is wide-sense stationary. The wavelet subdivision method is proposed based on the randomness of grating signal.
     Wavelet subdivision method modulates the phase and frequency of the wavelet base function with grating output signal and then completes wavelet transform to modulated signal, phase corresponding to the maximum ridge reflects the displacement, and scale corresponding to the maximum ridge reflects the frequency that is the speed value. Modulated wavelet base and wavelet base can obtain the biggest similarity in the process of transform, which can improve the measurement accuracy. The method solves the problem to choose wavelet base, it is not necessary to choose the wavelet base again, whatever the method is applied in any the field, practicability is strong. At the same time identification direction can be realized according to the positive and negative of the phase difference of the adjacent moments and increase and decrease of modulated wavelet base signal frequency. The experiment system is constructed based on the synchronous data acquisition card and Lab VIEW, which can acquire the grating sensor output signal and preprocess the non-orthogonal correction and filtering, experiments verify the feasibility of wavelet subdivide method. The phase modulation and frequency modulation belong to phase subdivision, which has better anti-interference performance than the amplitude subdivision.
     Secondly, subdivision method is studied based on the space Moire fringe signal acquired by CCD. The method uses CCD to replace the four photoelectric cells inside traditional sensor, which can obtain the integral period space Moire fringe light intensity signal, and improve the space resolution. On the basis of the analysis of the pitch lines error and CCD acquisition error, subdivision method of the single spectral line algorithm and phase correction is proposed with a period of space Moire fringe signal, which realizes the displacement measurement through calculating the phase difference of Moire fringe. The experiment system is constructed based on FPGA, experiments verify the feasibility of subdivide method. This method has advantages of calculating with one way signal and unaffecting by unequal amplitude, non-orthogonal problems of the four way signals.
     Finally, measurement and error correction method of grating pitch are studied. Grating pitch is the benchmark of accurate grating displacement measurement, and the pitch value is the key to further improve displacement measurement accuracy. According to the dynamic characteristic of the grating Moire fringe, the measurement method to convert pith quantity to time quantity is proposed in the movement process of grating sensor. Based on the high order cumulant principle the time delay within which the Moire fringe signal passes through the two fixed distance photoelectric cells is measured, and then the sensor moving speed can be obtained, the time corresponding to grating pitch can be obtained according to the two adjacent minimum values of the Moire fringe signal that are determined based on the least square principle, the pitch value is determined according to the product of the moving speed and the corresponding time of pitch. The experimental results show that the measuring error is less than0.08μm for the grating sensor with the pitch of20μm, which verifies the feasibility of the method. This method can measure each pitch, and reduce the accumulation error and subdivision error based on each pitch error correction, which laid a foundation for large range and high precision measurement.
引文
[1]叶盛祥.光电位移精密测量技术.成都:四川科学技术出版社,2003.
    [2]Walker C A. Historical review of Moire interferometry. Experimental Mechanics,1994,34(4):281-299.
    [3]李谋.位置检测与数显技术.北京:机械工业出版社,1993.
    [4]Tverdokhleb P E, Shchepetkin Y A. Method of optical tomography for studying the amplitude and phase components of a volume golographic grating. Optoelectronics, Instrumentation and Data Processing,2013,49(1):57-66.
    [5]王国超,颜树华,高雷等.光栅干涉位移测量技术发展综述.激光技术.2010,34(5):661-664,716.
    [6]Xu ZH G, Taylor H K, Boning D S et al. Large-area and high-resolution distortion measurement based on Moire fringe method for hot embossing process. Optics Express,2009,17(21):18394-18407.
    [7]朱沛,张大伟,黄元申等.精密定位光栅尺的研究进展.激光杂志,2010,31(1):1-3.
    [8]赵双双.微光学集成的高精度MOEMS加速度传感器研究:(博士学位论文).杭州:浙江大学,2013.
    [9]Takaki T, Omasa Y, Ishii I et al. Force visualization mechanism using a Moire fringe applied to endoscopic surgical instruments. IEEE International Conference on Robotics and Automation, Anchorage, AK, USA,2010:3648-3653.
    [10]Ri S, Muramatsu T, Saka M et al. Accuracy of the sampling Moire method and its application to deflection measurements of large-scale structures. Experimental Mechanics,2012,52(4):331-340.
    [11]Zabit U, Bernal O D, Bosch T et al. MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation. Optics Letters,2011,36(5):612-614.
    [12]黄强先,余惠娟,黄帅等.微纳米三坐标测量机测头的研究进展.中国机械工程,2013,24(9):1264-1272.
    [13]Chan H M, Yen K S, Ratnam M M. Crack displacement sensing and measurement in concrete using circular grating Moire fringes and pattern matching. Ninth International Symposium on Laser Metrology, Singapore,2008:715529-715536.
    [14]Abolhassani M. Pixel size determination of a monitor using Moire'fringe. Optical Engineering,2010,49(3):033608-033614.
    [15]Chaubey S, Joshi P, Kumar M et al. Design and development of long-period grating sensors for temperature monitoring. Sadhana-Academy Proceedings in Engineering Sciences,2007,32(5):513-519.
    [16]荣烈润.纳米测量技术的现在与未来.金属加工(冷加工),2013,(8):75-79.
    [17]曾召利,张书练.精密测量中的纳米计量技术.应用光学,2012,33(5):846-854.
    [18]Brecher C, Weinzierl M. New approaches for an automated production in ultra-precision machining. International Journal of Advanced Manufacturing Technology,2010,47(1-4):47-52.
    [19]Leach R K, Boyd R, Burke T et al. The European nanometrology landscape. Nanotechnology,2011,22(6):062001-0620015.
    [20]马爱民,马忠臣.超精密测量技术的应用进展.机械工程师,2013,(6):3-5.
    [21]Heilmann R K, Chen C G, Konkola P T et al. Dimensional metrology for nanometre-scale science and engineering:towards sub-nanometre accurate encoders. Nanotechnology,2004,15(10): S504-S511.
    [22]Cai L T, Tabata H, Kawai T. Probing electrical properties of oriented DNA by conducting atomic force microscopy. Nanotechnology,2001,12(3):211-216.
    [23]Kim S,Lee S,Oshima Y et al. Scanning Moire'fringe imaging for quantitative strain mapping in semiconductor devices.Applied Physics Letters,2013,102(16):161604-161618.
    [24]Rakotondrabe M. Bouc-wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Transactions on Automation Science and Engineering,2011,8(2):428-431.
    [25]卢国纲.绝对式光栅尺和编码器是当代位移传感器发展主流-CIMT2011精密位移传感器评述.世界制造技术与装备市场,2011,(4):56-60.
    [26]郭瑞,罗福源,游有鹏.鉴频式莫尔条纹信号细分方法研究.现代电子技术,2013,36(1):99-104.
    [27]刘逊.机床用光栅测量技术的最新发展.数控机床市场,2004,(11):74-77.
    [28]Yen K S, Ratnam M M.Simultaneous measurement of3-D displacement components from circular grating Moire fringes:an experimental approach. Optics and Lasers in Engineering,2012,50(6):887-899.
    [29]陈本永,李达成.纳米测量技术的挑战与机遇.仪器仪表学报,2005,26(5):547-550.
    [30]邹自强.论纳米光栅测量技术.纳米技术与精密工程,2004,2(1):8-15.
    [31]刘忍肖,高洁,葛广路.我国纳米标准样品研究进展.中国标准化,2012,(10):80-84.
    [32]Patorski K, Wielgus M, Ekielski M et al. AFM nanomoire technique with phase multiplication. Measurement Science&Technology,2013,24(3):035402-035410.
    [33]Li Y J, Xie H M, Chen P W et al. Theoretical analysis of Moire fringe multiplication under a scanning electron microscope. Measurement Science&Technology,2011,22(2):025301-0253012.
    [34]Yacoot A, Koenders L. From nanometre to millimetre:a feasibility study of the combination of scanning probe microscopy and combined optical and x-ray interferometry. Measurement Science&Technology,2003,14(9):N59-63.
    [35]Jourlin Y, Jay J, Parriaux O. Compact diffractive interferometric displacement sensor in reflection. Precision Engineering.2002,26(1):1-6.
    [36]Chu X CH, Lv H B, Zhao SH H. Research on long-range grating interferometry with nanometer resolution. Measurement Science&Technology.2008,19(1):017001-017006.
    [37]Torcal-Milla F J, Sanchez-Brea L M, Bernabeu E. Talbot effect with rough reflection gratings. Applied Optics,2007,46(18):3668-3673.
    [38]Van Gorp B, Onaran A G, Degertekin F L. Integrated dual grating method for extended range interferometric displacement detection in probe microscopy. Applied Physics Letters,2007,91(8):083101-083103.
    [39]苏绍璟.大量程纳米级光栅位移测量理论及关键技术研究:(博士学位论文).长沙:国防科技大学,2001.
    [40]楚兴春.纳米光栅干涉位移测量关键技术的研究:(博士学位论文).长沙:国防科技大学,2005.
    [41]Chen B CH, Basaran C. Far-field modeling of Moire interferometry using scalar diffraction theory.Optics and Lasers in Engineering,2012,50(8):1168-1176.
    [42]Oliva M, Michaelis D, Fuchs F et al. Highly efficient broadband blazed grating in resonance domain. Applied Physics Letters.2013,102(20):203114-203117.
    [43]Post D. Moire interferometry:advances and applications. Experimental Mechanics.1991,31(3):276-280.
    [44]李贵子,贾德强.基于FPGA实现光栅莫尔条纹高倍细分.机械研究与应用,2012,(5):101-102.
    [45]金喜平,刘雪艳,葛岷.锁相倍频式光栅检测系统及其应用.制造技术与机床,2000,(11):32-34.
    [46]杨孟华.光栅数显装置的集成化设计及数字锁相环的研究:(硕士学位论文).沈阳:沈阳工业大学,2002.
    [47]吴宏圣,曾琪峰,乔栋等.提高光栅莫尔条纹信号质量的滤波方法.光学精密工程,2011,19(8):1944-1949.
    [48]李红军,吴凡,刘恩海.计量光栅信号质量综合评价系统.光电工程,2002,29(4):35-38.
    [49]陈勇,陈慧宝,孙桂清等.光栅莫尔条纹信号质量的提高及其采集方法.上海大学学报,2004,10(2):129-132.
    [50]Handbook, www.heidenhain.com.cn.2012-9-1.
    [51]尚平,夏豪杰,费业泰.衍射式光栅干涉测量系统发展现状及趋势.光学技术,2011,37(3):313-316.
    [52]汤天瑾CMOS光栅测量系统研究:(硕士学位论文).杭州:浙江大学,2005.
    [53]马修水,费业泰,陈晓怀等.一种新型纳米光栅传感器的理论研究.仪器仪表学报,2006,27(2):159-164.
    [54]马修水,费业泰,陈晓怀等.纳米测量精度光栅传感器研究综述.制造技术与机床,2006,(9):69-72.
    [55]夏豪杰.高精度二维平面光栅测量系统及关键技术研究:(博士学位论文).合肥:合肥工业大学,2006.
    [56]徐从裕,余晓芬.非同步采样法的光栅纳米测量.计量学报,2008,29(4):293-296.
    [57]徐从裕,余晓芬.基于互补函数算式的光栅快速细分方法.电子测量与仪器学报,2006,20(3):6-9.
    [58]余文新,胡小唐,邹自强.一种高分辨率和高频响的光栅纳米测量细分方法.天津大学学报,2002,35(1):1-4.
    [59]余文新,胡小唐,邹自强.光栅纳米测量中的系统误差修正技术研究.计量学报,2002,23(2):101-105.
    [60]节德刚,刘延杰,孙立宁等.基于双光栅尺的高速高精度位移测量方法.光学精密工程,2007,15(7):1077-1083.
    [61]金喜平,刘玉庆,杨怀国等.高速单片机光栅数显表.沈阳工业大学学报,1989,11(4):1-8.
    [62]金喜平,李书平,刘永胜等.高速高精度光栅数显装置的研究与设计.沈阳工业大学学报,1994,16(2):18-25.
    [63]郭雨梅,关蕊,钟媛.基于径向基神经网络的光栅细分方法.沈阳工业大学学报,2011,33(2):193-197.
    [64]常丽,李健强.基于CCD和FPGA的光栅位移测量系统.仪表技术与传感器,2010,(5):103-105.
    [65]陈瑞芬,刘清.减小光栅测量系统随机误差的研究.传感器与微系统,2006,25(10):22-24.
    [66]王君立,隗海林,刘琳.改善莫尔条纹细分精度的硬件实现.传感技术学报,2005,18(1):209-211.
    [67]郑智伟,陈洪芳.通用型光栅信号处理系统的研制.工具技术,2012,46(2):62-65.
    [68]何频,郭连湘.光栅数显系统的设计与实现.计量与测试技术,2004,(4):6-9.
    [69]刘清.用遗传神经网络对光栅传感器信号高精度细分研究.仪器仪表学报,2004,25(5):652-655.
    [70]夏瑞雪,陈晓怀,卢荣胜等.新型纳米三坐标测量机误差检定方法的研究.电子测量与仪器学报,2010,24(3):250-256.
    [71]张金龙,刘阳,郭怡倩等.纳米级超精密定位工作台的研究.机械工程学报,2011,47(9):187-192.
    [72]Nakadate S, Tokudome T, Shibuya M. Displacement measurement of a grating using Moire modulation of an optical spectrum. Measurement Science&Technology,2004,15(8):1462-1466.
    [73]Vikram C S, Caulfield H J. Interference fringe analysis based on centroid detection. Applied Optics,2007,46(22):5137-5141.
    [74]李湘宁.工程光学.北京:科学出版社,2005.
    [75]祝绍箕,邹海兴,包学诚等.衍射光栅.北京:机械工业出版社,1986.
    [76]孟超.高精度光栅测量系统的误差修正理论与技术的研究:(博士学位论文).天津:天津大学,1996.
    [77]李琳.基于光栅衍射光干涉的位移测量技术研究:(博士学位论文).长春:中国科学院研究生院,2010.
    [78]胡广书.数字信号处理.北京:清华大学出版社,2003.
    [79]詹慧琴,古军.虚拟仪器设计.北京:高等教育出版社,2008.
    [80]诸葛晶昌.光栅传感器数据采集存储与离线分析系统的设计:(硕士学位论文).天津:天津科技大学,2006.
    [81]万秋华.莫尔条纹动态细分误差的傅里叶分析评估方法.电子测量与仪器学报,2012,26(6):548-552.
    [82]李弼程,罗建书.小波分析及其应用.北京:电子工业出版社,2005.
    [83]Prigozhin G, Burke B, Bautz M et al. CCD charge injection structure at very small signal levels IEEE Transactions on Electron Devices,2008,55(8):2111-2120.
    [84]Chang R S, Sheu J Y, Lin H CH et al. Analysis of CCD Moire pattern for micro-range measurements using the wavelet transform. Optics and Laser Technology,2003,35(1):43-47.
    [85]于洋.CCD数据采集系统及其CDS降噪技术的研究:(硕士学位论文).秦皇岛:燕山大学,2004.
    [86]张林,李永新,胡学友.基于相关双采样技术的CCD视频信号处理研究.宇航计测技术,2007,27(2):33-37.
    [87]罗通顶,李斌康,郭明安等.科学级CCD远程图像采集系统.光学精密工程,2013,21(2):496-502.
    [88]牟研娜,王鹏,尹娜.CCD信号采样位置选取方法的研究,航天返回与遥感,2011,32(1):45-50.
    [89]王大凯彭进业.小波分析及其在信号处理中的应用.北京:电子工业出版社,2006.
    [90]张德丰MATLAB语言高级编程.北京:机械工业出版社,2010.
    [91]Chen B CH, Basaran C. Continuous wavelet transform based nanoscale strain field measurement using Moire interferometry with phase shifting.Proceedings of the ASME InterPack Conference2009, San Francisco, CA, United states,2012:647-654.
    [92]Liu H, Carteright A N, Basaran C. Experimental verification of improvement of phase shifting Moire interferometry using wavelet-based image processing. Optical Engineering,2004,43(5):1206-1214.
    [93]崔骥,李怀琼,陈钱.光栅莫尔条纹信号的细分与辨向新技术.光学技术,2000,26(4):294-296.
    [94]李怀琼,陈钱,王钰.新型光栅信号数字细分技术及其误差分析.计量学报,2001,22(4):281-283.
    [95]曹卫锋,张梅,文方等.高速高精度光栅位移传感器辨向与细分算法的设计.组合机床与自动化加工技术,2010,(9):27-33.
    [96]何安国,喻洪麟,朱传新等.光栅莫尔条纹细分及辨向方法研究.光电工程,2007,34(10):45-49.
    [97]应卓瑜,梁坚,邵亮等.基于CPLD的辨向细分电路设计.传感技术学报,2005,18(1):143-145,161.
    [98]楚兴春,吕海宝,杜列波.莫尔干涉条纹计数细分和辨向技术的研究.光学技术,2004,30(4):475-477.
    [99]李海滨,刘乐,邵暖等.具有倍频、辨向和计数功能的4倍频电路及其FPGA实现.电气传动,2011,41(6):61-64.
    [100]Zhou SH L, Fu Y Q, Tang X P et al. Fourier-based analysis of Moire fringe patterns of superposed gratings in alignment of nanolithography. Optics Express,2008,16(11):7869-7880.
    [101]Fernandes B, Sarmento H. FPGA implementation and testing of a128FFT for a MB-OFDM receiver. Analog Integrated Circuits and Signal Processing,2012,70(2):241-248.
    [102]丁康,谢明,杨志坚.离散频谱分析校正理论与技术.北京:科学出版社,2008.
    [103]Langlois J M P, Al-Khalili D. Phase to sinusoid amplitude conversion techniques for direct digital frequency synthesis. IEE Proceedings:Circuits, Devices and Systems,2004,151(6):519-528.
    [104]杨宏,李国辉,刘立新.基于FPGA的CORDIC算法的实现.西安邮电学院学报,2008,13(1):75-77.
    [105]胡晓东,彭琅,雷明等.一种光栅信号细分算法的FPGA实现.光子学报,2011,40(3):407-412.
    [106]卢少武,唐小琦,马泽龙等CORDIC算法在光栅莫尔条纹细分中的应用.自动化仪表,2010,31(5):23-25.
    [107]徐从裕.单变量递推法莫尔条纹信号误差分离算法.仪器仪表学报,2012,33(8):1708-1713.
    [108]陈晓怀,杜国山,程真英.光栅测量系统的误差研究.电子测量与仪器学报,2012,26(3):187-191.
    [109]Ku Y SH, Liu A SH, Smith N. Through-focus technique for nano-scale grating pitch and linewidth analysis. Optics Express,2005,13(18):6699-6708.
    [110]Ieki A, Matsui K, Nashiki M et al. Pitch-modulated phase grating and its application to displacement encoder. Journal of Modern Optics,2000,47(7):1213-1225.
    [111]付赛,陈海清.一种基于CCD的实时测量光栅常数的方法.应用光学,2005,26(1):53-55.
    [112]黎南,张永安,王敏等.一维周期光栅的菲涅耳衍射研究及光栅常数的测试.激光杂志,2006,27(5):69-70.
    [113]Pan SH P, Liu T SH, Tasi M CH et al. Grating pitch measurement beyond the diffraction limit with modified laser diffractometry. Japanese Journal of Applied Physics,2011,50(6):06GJ04-06GJ07.
    [114]刘洪兴,张巍,巩岩.光栅参数测量技术研究进展.中国光学,2011,4(2):103-110.
    [115]高思田,邵宏伟,王春艳.纳米光栅栅距的精确测量与nan04国际比对.计量学报,2008,29(4A):118-121.
    [116]Pekelsky J R, Eves B J, Nistico P R et al. Imaging laser diffractometer for traceable grating pitch calibration. Measurement Science&Technology,2007,18(2):375-383.
    [117]樊叔维,周庆华,李红.槽型衍射光栅结构参数优化设计研究.光学学报,2010,30(11):3133-3139.
    [118]皇甫堪,陈建文,楼生强.现代数字信号处理.北京:电子工业出版社,2005.
    [119]阚哲,邵富群,李成志等.基于广义互功率谱的温度检测方法.仪器仪表学报,2012,33(6):1344-1350.
    [120]颜华,王金,陈冠男.16通道声波飞行时间测量系统.沈阳工业大学学报,2010,32(1):70-74.
    [121]梁红.空间相关高斯噪声中基于四阶累积量的自适应时延估计方法.西北工业大学学报,2007,25(3):416-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700