基于电子云导体模型的成品油油品在线检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国成品油市场正处于高速发展的时期。成品油需求的提升对成品油的输送提出了更高的要求。在众多运输行业之中,成品油管道运输更方便、更快捷、更经济、更安全、更环保。目前,世界成品油管道总长度43万公里,我国已建成品油管道超过1.2万千米。成品油管道运输的技术经济优越性主要体现在成品油的顺序输送上。国外47%的成品油是管道输送的,而我国成品油运输长期依赖铁路,管道运输比例仅为4%,主要是由于我国的成品油管道运输技术相对落后,尚不能实现灵活的多批次、多品种运输,制约了成品油管道运输的经济优越性。
     成品油管道运输技术主要包括:泄漏检测、混油浓度监测、混油段跟踪和油品切割的自动控制。其中,混油浓度监测关系到泄漏检测的定位精度,以及混油段跟踪和油品切割的效果,也是影响我国成品油管道技术发展的关键。本文在课题组前期工作基础上,对成品油管道油品检测技术和电子云导体模型进行深入研究,建立了成品油电子云导体模型,提出了一种基于成品油电子云导体模型的混油浓度计算方法,并设计实验对模型和混油浓度计算方法进行验证。构建了一套基于电子云导体模型的成品油油品在线检测系统。理论证明,该系统不仅能检测管道内油品介质,而且能够对管道内混油浓度进行监测,实现对混油段的跟踪。
     本文主要进行以下几方面的工作:
     1.深入研究电子云导体模型的建立、性质以及影响因素,提出并建立了成品油电子云导体模型,并且考虑到了成油品中的电子云空间相对于单个电子情况下的变化,分析了成品油电子云导体模型的等效体积、形状以及与光波相对位置的影响。
     2.提出了一种对电子云导体折射能的模拟仿真方法,通过ANSYS对电子云导体线圈匝数、线圈大小、电子云导体体积、电子云导体形状、电子云导体与光波磁场相对位置等因素变化对折射能大小以及折射能在电子云导体中分布的影响进行了分析。
     3.提出了一种基于成品油电子云导体模型的混油浓度计算方法,通过明确构成混油的两种单一油品的电子云导体模型、两种油品在混油中的比例以及混油的电子云导体模型之间的关系,进行混油浓度的计算,并对该混油浓度计算方法进行了实验验证。
     4.研制了一套实验装置,通过对单一油品、不同种类油品各种比例混油以及相同种类不同型号油品各种比例的混油进行一系列实验,验证了成品油电子云导体模型的正确性和基于电子云导体模型的混油浓度测量可行性。
     5.设计了一套基于电子云导体模型的成品油油品在线检测系统,详细给出了系统的工作原理和混油的检测原理,理论上证明了该系统可以通过对流经采样点的油品进行在线检测而实现混油浓度的监测,并且根据各个采样点的位置和混油浓度变化的时刻完成对混油段的跟踪。
At present, our country’s product oil market is developing rapidly. The increasing need of product oil demands more highly level of product oil transportation. Pipeline transportation of product oil is more convenient, faster, more economical, more environment-friendly and safer, among transportation industries. So far, product oil pipelines of the world are 430,000 kilometers long in total, while product oil pipelines of our country have been more than 12,000 kilometers long. The economization superiority of the product oil transportation technology is mainly embodied in sequential product oil transportation. 47% of the whole product oil transportation is pipeline transportation in overseas, while our country’s product oil transportation is dependent on railways in a long time, and percentage of pipeline transportation in product oil is just 4%. The principal reason lies in our country’s undeveloped technology of pipeline transportation of product oil, therefore our country can’t flexibly transport product oil in multi-batch and multi-type way, which restricts the economization superiority in product oil pipeline transportation.
     The main technology of pipeline transportation of product oil is as follows: Leakage Detection, Oil Mixture Concentration Detection, Oil Mixture Area Track, Oil Mixture Area Cutting Automation Control. Oil Mixture Concentration Detection affects positioning accuracy of Leakage Detection and the result of Oil Mixture Area Track and Oil Mixture Area Cutting. Furthermore Oil Mixture Concentration Detection is the key to our country’s technology development of product oil pipeline transportation.
     Based on the previous team work, this dissertation involves the in-depth study on the Detection Technology of Pipeline Product Oil and the IMEC (Inductor Model of Electron Cloud). This dissertation also constructs the IMEC of product oil and proposes a method based on the IMEC of product oil to calculate the oil mixture concentration and designs experiment to test and verify the IMEC of product oil and the method of calculating the oil mixture concentration and sets up an Online Detection System of Product Oil based on IMEC of product oil. It has been proved theoretically that this system can detect not only the product oil medium in the pipeline but also the oil mixture’s concentration in the pipeline, and can track the oil mixture field.
     The major study of this dissertation covers the following aspects:
     1. It involves the in-depth study on the construction of the IMEC and its properties and influencing factors and proposes and constructs the IMEC of product oil and analyzes the influences induced by the equivalent volume, shape and relative location to the light waves of IMEC of product oil with the changes of electron cloud space in product oil relative to a single electron into consideration;
     2. It proposes a method to simulate the Refraction Power of the Inductor of Electron Cloud and through the software ANSYS, analyzes changes of the value of refraction power and the distribution of refraction power in IMEC induced by the changes of the IMEC’s coil’s turns, IMEC’s coil’s size, IMEC’s volume, IMEC’s shape and IMEC’s relative location to magnetic field of light waves;
     3. It proposes a method to calculate the oil mixture concentration based on the IMEC of product oil, which can calculate the oil mixture concentration with the clearness of the relation between the IMEC of the two types of pure product oil comprising the oil mixture, the proportion of the two pure product oil in oil mixture and the IMEC of oil mixture and has tested and verified the method;
     4. It designs and produces a set of experiment device and tests and verifies the correctness of the Inductor Model of Electron Model of product oil and the feasibility of the Oil Mixture Concentration Detection based on the IMEC of product oil;
     5. It designs a set of detection system of the product oil based on the IMEC of product oil, and elaborates on the working principle of the system and the detecting principle of oil mixture, and proves theoretically that this system can monitor the oil mixture concentration through the online test of the product oil in sampling sites and can track the oil mixture area at all the times according to the location of every sampling site and changes of the oil mixture concentration.
引文
[1] Tiratsoo, John, Performance of European cross-country oil pipelines continues to improve, Global Pipeline Monthly, 2008, v 4, n 9
    [2]余洋,2007年中国油气管道发展综述,国际石油经济,2008(3):45~51
    [3] Yarlagadda, Rakesh; Affan Badar, M.; Blyukher, Boris, A review on oil and gas pipeline safety, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, 2008, p 739-750
    [4]王疆戈,世界油气管道现状,中国石化,2004(7):18~19
    [5]郑朝霞,国内外管道运输情况综述,物流技术,2003(2):10~11
    [6]贾进,成品油管道运输的发展趋势,综合运输,2003(12):43~45
    [7]李春光,我国成品油管道运输的现状及发展思路,当代石油化工,2004(8):16~18,31
    [8]李旭东,杨晓峰,何东海,梁新军,发展我国成品油管道的战略思考,石油规划设计,2007,28(2):12~14,21
    [9]袁方,成品油管道技术现状及发展趋势,2006(3):29~32
    [10]范继义,油库事故分析与控制,石油商技,1996(2):59~61
    [11]中国管道运输面面观,中国水运,2007年第3期
    [12]王疆戈,中国主要管道分布情况,中国石化,2004(7):8~9
    [13]郑敏,朱成果,我国油气资源及对国民经济发展的影响研究,中国矿业,2006,15(11):9~11
    [14]杨筱蘅,输油管道设计与管理,山东:中国石油大学出版社,2006
    [15]张树奎,金永兴,大力发展管道运输提高持续发展能力,南通航运职业技术学院学报,2005,4(3):66~68
    [16]蒲明,中国油气管道发展现状及展望,国际石油经济,2009(3):40~47
    [17]李影,李国义,马文鑫,我国油气管道建设现状及发展趋势,中国西部科技,2009,8(14):6~8
    [18]张奇兴,我国管道运输的现状和发展,中国石化,1998(8),37~39
    [19]宋艾玲,梁光川,王文耀,世界油气管道现状与发展趋势,2006,25(10):1~6
    [20]臧铁军,臧天红,我国管道运输的发展概况,管道技术与设备,1998(4):1~4
    [21]李世荣,宋艾玲,张树军,我国油气管道现状与发展趋势,油气田地面工程,2006,25(6):7~8
    [22]钱建华,关于中国石化油气管道发展的思考,油气储运,2003,22(9):18~21
    [23]王功礼,王莉,油气管道技术现状与发展趋势,石油规划设计,2004,15(4):1~7
    [24]周国雄,管道工业综述,国外油气储运,1990(1),60~63
    [25]冯耀荣,陈浩,张劲军等,中国石油油气管道技术发展展望,油气储运,2008,27(3):1~8
    [26]余洋,中国油气管道发展现状及前景展望,国际石油经济,2007(3):27~33
    [27]吴元亚,从油气储运发展看“管道经济”的形成,石油天然气学报,2007,29(3):489~491
    [28]李祥勇,我国成品油管道建设及发展趋势,石油库与加油站,2008,17(2):7~10
    [29]刘俊宝,我国成品油物流发展现状与建议,物流港,2006(3):76~78
    [30]刘俊宝,如何发展我国的成品油物流,油气储运, 2006(6): 36~37
    [31]梁翕章,成品油管道与原油管道的差异,油气储运,2002,21(3):1~4
    [32]袁方,成品油管道输送的优势及发展,石油库与加油站,2006,15(4):37~39
    [33]刘玉梅,东北入关成品油管道建设探讨,油气田地面工程,2006,25(12):20
    [34]屈平,我国成品油管道建设进展及促进措施,焊管,2006,29(5):17~20
    [35]杨承汉,我国成品油管道运输发展的几个问题,油气储运,1994,13(2):8~11
    [36]唐海燕,成品油管道经济流速的确定,石油规划设计,2007,18(2):33~34,43
    [37]邓万全,珠三角地区建设成品油管道的必要性和实施方案探讨,当代石油石化,2005,13 (11):42~44
    [38]曾多礼,成品油管道的安全问题及对策,油气储运,2004 ,23(9):45~47
    [39]梁永图,宫敬,康正凌,杨发富,王永红,成品油管道优化运行研究,2004 ,28(4):97~101
    [40]张增强,兰成渝成品油管道投产技术,油气储运,2004,23(6):32~35
    [41]张力液,加拿大的省际管道,油气储运,1997,16(5):1~4
    [42]马志祥,梅云新,我国油气长输管道的技术现状及差距分析,油气储运,2004,23(3):1~4
    [43] Susana Relvas, Henrique A. Matos, Ana Paula F. D. Barbosa-Povoa, Joao Fialho, and Autonio S. Pinheiro, Pipeline scheduling and inventory Management of a multiproduct distribution oil system, American Chemical Society, 2006,45: 7841~7855
    [44] Rejowski R. Jr., Pinto, J. M., Scheduling of a multiproduct pipeline system, Computers and Chemical Engineering, 2003,27: 1229~1246
    [45] Techo R., Holbrook, D.L., Computer scheduling the world’s biggest product pipeline, Pipeline Gas Journal, 1974,4(27)
    [46]李迎旭,谷俊标,吴明,成品油顺序输送交替过程中流量的调节,石油机械,2005,33(6):20~22
    [47]张其敏,陈宁,成品油顺序输送管道优化设计,油气储运,2004,23(3):5~7
    [48]邢晓凯,张连文,成品油顺序输送最佳循环周期的确定方法,管道技术与设备,2002(3): 3~4,6
    [49]朱坤锋,许莉,胡柏松,成品油顺序输送批次和罐容的优化设计,油气储运,2003,22(11):10~15
    [50]上远新,张劲军,含蜡原油与成品油顺序输送工艺方案研究,油气储运,2001,20(11):17~20
    [51]吕高稳,冯先强,张大鹏,浅谈原油顺序输送过程中混油量的计算,天然气与石油,2007,25(1):11~12
    [52]吕世昌,张泽溥译,成品油顺序输送最优化,北京:石油工业出版社,1989
    [53]许宝兴,孙建斌,油品顺序输送及其相关技术问题,油气储运,2000,19(6):14~15
    [54]王昆,陈保东,郭淑娟等,管道顺序输送产生混油的问题研究,油气储运,2007,26(8):8~12
    [55]李勇,鲁宁线顺序输送混油量产生分析与计算,油气储运,2005,14(3):42~44
    [56] Waspodo, Pertamina, Transportation of high pour point oil through long hilly terrain pipe line, a case study in Kalimantan Indonesia, SPIE International Thermal Operations and Heavy oil Symposium and Western Regional Meeting”The Power of Technology”,2004,113~124
    [57] Arakawa M., Kagawa T., Takeuchi M., Rokuka T., Someya T., A study on effects of mixing different gases in pipes, Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing,2008: 1046~1049
    [58] Ho. Clifford k., Orear jr.Leslie, Wright Jerome L., Mckenna Sean A., Contaminant mixing at pipe joints: Comparison between laboratory flow experiments and computational fluid dynamics models, Annual Water Distribution Systems Analysis Symposium, 2006,153
    [59] Li, Junfeng ; Wang, Yanling, Study on Reliability of Oil Gathering and Transportation Pipeline System, PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON RISK AND RELIABILITY MANAGEMENT, 2008, 789-792
    [60] Relvas, Susana; Barbosa-Povoa, Ana Paula F.D.; Matos, Henrique A., Heuristic batch sequencing on a multi-product oil distribution system, Computers and Chemical Engineering, 2009, 712-730
    [61] Gong, Jing; Kang, Zhengling; Yan, Dafan, Research on contamination caused by the topographical difference in batch transportation, Innovative Projects and Emerging Issues, 2004, 2171-2176
    [62] MirHassani, S.A.; Ghorbanalizadeh, M., The multi-product pipeline scheduling system, Computers & Mathematics with Applications, v 56, n 4, Aug. 2008, 891-897
    [63] Pinto, J. M., Joly, M., Moro, L. F. L., Planning and scheduling models for refinery operations, Computers and Chemical Engineering, 2000, 24: 2259
    [64] Chebouba, A.; Yalaoui, F.; Smati, A.; Amodeo, L.; Younsi, K.; Tairi, A., Optimization of natural gas pipeline transportation using ant colony optimization, Computers and Operations Research, 2009, 1916-1923
    [65] Moura, Arnaldo V.; De Souza, Cid C.; Cire, Andre A.; Lopes, Tony M. T., Planning and scheduling the operation of a very large oil pipeline network, Principles and Practice of Constraint Programming - 14th International Conference, CP 2008, Proceedings, 2008, 36-51
    [66] Melissa Lemos, Marco A. Casanova, Antonio L.Furtado, Process pipeline scheduling, The Journal of Systems and Software, 2008, 81: 307-327
    [67] Lamorgese, A.G.; Mauri, R., Diffuse-interface modeling of phase segregation in liquid mixtures, International Journal of Multiphase Flow, v 34, n 10, October, 2008, 987-995
    [68] Yanlei, Liu; Jinyang, Zheng, Numerical simulation of the diffusion of natural gas due to pipeline failure,Proceedings of the ASME Pressure Vessels and Piping Conference - Operations, Applications and Components, 2008, 319-325
    [69] F.B. Freitas Rachid, J.H. Carneiro de Araujo, R.M. Baptista, Predicting Mixing Volumes in Serial Transport in Pipelines, 2002, 124(2): 528-534
    [70]王昆,陈保东,王占黎,董有志,管道顺序输送中混油及混油量的研究,管道技术与设备,2007(2):8~9,12
    [71]朱莹,王树立,史小军,基于PHOENICS的原油顺序输送管道混油数值模拟,江苏工业学院学报,2008,20(1):40~43
    [72]邓松圣,蒲家宁,对流扩散方程在成品油顺序输送混油分析中的应用,应用数学和力学,1998,19(8):707~714
    [73]张青松,赵会军,赵书华,王树立,基于PHOENICS顺序输送管道混油浓度紊流数值模拟,石油工业计算机应用,2006,14(4):34~36
    [74]陈世一,崔艳星,崔艳雨,成品油顺序输送管道混油量计算方法,油气储运,2007,26(8):16~19
    [75]张青松,王宏,陆焱洪,PHOENICS数值模拟顺序输送管道混油浓度,天然气与石油,2007,25(3):13~15
    [76]戴福俊,胡煊,纪荣亮,西南成品油管道混油量的计算,油气储运,2009,28(2):40~42
    [77]康正凌,宫敬,严大凡,成品油管道输送高差混油模型研究,石油大学学报:自然科学版,2003,27(6):65~67
    [78]赵会军,张青松,张国忠,赵书华,王树立,停输对顺序输送管道混油影响的PHOENICS模拟,西南石油大学学报,2007,29(4):149~151
    [79]唐海燕,徐舜华,顺序输送成品油管道混油量计算公式对比,油气储运,2007,26(10):25~27
    [80]顾建栋,减少西部管道顺序输送中混油的措施,油气田地面工程,2007,26(12):19~20
    [81]唐海燕,顺序输送成品油管道混油量计算公式对比,石油工业技术监督,2007,23(1):30~31
    [82]卫杰,成品油顺序输送的混油机理及减少混油的措施浅析,内蒙古石油化工,2005,31(9):110~113
    [83]黄春芳,臧国安,成品油管道影响混油的因素和减少混油的方法,管道技术与设备,2000(5):11~12,18
    [84]韩淑华,不同因素对混油形成的影响,国外油气储运,1995,13(4):1~6
    [85]石宇,王岳,冯玉国,顺序输送液体隔离塞最优长度的数值计算,天然气与石油,2006,24(1):33~35
    [86]程平,管道输油油品界面检测仪表系统:[硕士学位论文],西安石油大学,2005
    [87]梁新军,雍歧卫,管道顺序输送混油检测技术及发展趋势,中国储运,2008(11):122~124
    [88]雍歧卫,蒋仕章,何德安,蒋明,机动管线顺序输送混油浓度检测装置研究,后勤工程学院学报,2006,22(1):42~44,54
    [89]杨小蘅,张国忠,输油管道设计与管理,山东:石油大学出版社,1995
    [90]王炜,王振友,成品油管道混油检测嵌入式仪器设计,山东理工大学学报,2008,22(1):71~74
    [91]吴蕴韬,界面检测技术在长输管道顺序输送油品中的应用,小型油气藏,2004(2):65~67
    [92]田西宁,王卫强,常青等,一种光学界面检测仪在成品油管道上的应用,管道技术与设备,2008(6):20~22,34
    [93] Li, Xuehui ; Zhang, Xiuling; Liu, Zhongfan; Li, Yanqin, The development of apparent density measuring apparatus of magnetic lubricating oil, Key Engineering Materials, v 373-374, 2008, p 815-819
    [94]唐得刚,王海峰,浅析油品密度在线检测的几种方法,后勤工程学院学报,2004,20(4):42~45
    [95]唐得刚,王海峰,BP网络在油品密度在线检测中的应用,光学精密工程,2004(1):152~154
    [96]查振国,在线检测输油管道中原油密度,计量技术,2001(1):15~16
    [97]李明,陆品,内置型全浸浮子双向测力式液体密度测量法,石油与天然气化工,2000,29(6):319~320
    [98]孙建红,杨璐,谐振式燃油密度传感器振动筒的设计与分析,南京航空航天大学学报,2008,40(1):60~64
    [99]孙建红,杨璐,谐振式燃油密度测量系统中振动筒的频率特性分析,南京理工大学学报:自然科学版,2008,32(1):37~39,45
    [100]杨艳慈,斯可克,静压式密度计及其应用,世界仪表与自动化,2008,12(1):51~52
    [101]王海峰,熊刚,赵小凯,基于超声波特性的油品密度仪设计,声学技术,2007,26(5):887~890
    [102] Sankarappa. T., Prashant Kumar. M., Ahmad Adeel, Ultrasound velocity and density studies in some refined and unrefined edible oils, Physics and Chemistry of Liquids, 2005,43(6): 507~514
    [103] Adamowski Julio C., Buiochi Flavio, Siqelmann Rubens A., Ultrasonic measurement of density of liquids flowing in tubes, Proceedings of IEEE Ultrasonics Symposium, 1995(2): 1105~1108
    [104] Ballintijn Otto, Using inertial measurement systems to obtain pipeline information, Global Pipeline Monthly, 2008,4(8)
    [105] Liu Lan, Matar Omar K., Lawrence Christopher J., Hewitt Geoffrey F., Laser-induced fluorescence(LIF) studies of liquid-liquid flows. Part 1:Flow structures and Phase inversion, Chemical Engineering Science, 2006, 61(12): 4007~4021
    [106] Zellbeck, H.; Bergmann, M.; Roethig, J.; Seibold, J.; Zeuner, A., Method of measuring oil consumption by labelling with radioactive bromine, TriboTest, v 6, n 3, Mar, 2000, p 251-265
    [107] Michael H. Ziccardi, Ian A. Gardner, Jonna A.K. Mazet, Michael S. Denison, Application of the luciferase cell culture bioassay for the detection of refined petroleum products, Marine Pollution Bulletin, 2002, 44: p983-991
    [108] Mortensen M., Orciuch W., Bouaifi M. Andersson B., Mixing of a jet in a pipe, Chemical Engineering Research and Design, 2004, 82 (3): 357~363
    [109]程平,吴九辅,基于荧光光线传感器的油品界面检测系统,工业仪表与自动化装置,2004(1):44-45
    [110] Tjuqum S.A., Johansen G.A., Holstad M.B., A multiple voxel model for scattered gamma radiation in pipe flow, Measurement Science and Technology, 2003, 14(10): 1777~1782
    [111] Tjuqum S.A., Frieling J., Johansen G.A., A compact low energy multibeam gamma-ray densitometer for pipe-flow measurements, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2002(197):301~309
    [112]赵雪英,郭雨梅,一种小电容检测方法,沈阳工业大学学报,2003,25(1):55~57
    [113] Polkanov I.P., Sotnikov A.P., Direct method of spectral analysis of lubricating oils, Chemistry and Technology of Fuels and Oils, 1972, 8: 880~882
    [114] Sato Tetsuo, Kawano Sumio, Iwamoto Mutsuo, Near infrared spectral patterns of fatty acid analysis from fats and oils, Journal of the American Oil Chemists’Society,1991, 68(11): 827~833
    [115] Hien P. Nguyen, Israel P. Ortiz, Chivalai Temiyasathit, Seoung Bum Kim and Kevin A. Schug, Laser desorption/ionization mass spectrometry fingerprinting of complex hydrocarbon mixtures: application to crude oils using data mining techniques, Rapid Communications in Mass Spectrometry, 2008, 22: 220-2226
    [116] Peiyan Sun, Mutai Bao, Guangmei Li, Xinping Wang, Yuhui Zhao and Lixin Cao, Fingerprinting and source identification of an oil spill in China Bohai Sea by gas chromatography-flame ionization detection and gas chromatography–mass spectrometry coupled with multi-statistical analyses, Journal of Chromatography A, 2009, 1216: 30-836
    [117] Ingvar Eide, Kolbj?rn Zahlsen, A Novel Method for Chemical Fingerprinting of Oil and Petroleum Products Based on Electrospray Mass Spectrometry and Chemometrics, Energy and Fuels, 2005, 19: 964-967
    [118]包木太,文强,崔文林等,六种成品油的正构烷烃色谱指纹提取与鉴别,西安石油大学学报:自然科学版,2007,22(1):87~90
    [119]孙岩,陈世利,一种新型光学管道界面检测仪的研究,电子测量技术,2008,31(7): 124-127
    [120]李官政,光学界面探测仪在成品油管道上的应用,油气储运,2004,23(12):55-57
    [121] Baptista, J.M.; Santos, J.L.; Lage, A.S., Measurement of refractive index in oils using a self-referenced fiber optic intensity sensor, 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2001(2) : 875~880
    [122] ZHUGE Jing-chang,ZENG Zhou-mo,LU Li,LI Jian,ZHANG Yu,Optical sensor for product oil identification,Optics and Precision Engineering,2009,6(17):1479~1484
    [123]刘少炽,原子结构与化学元素周期系,西安:陕西科学技术出版社,1986
    [124]约翰祖霍基,化学原理:了解原子和分子的世界,北京:机械工业出版社,2003
    [125]马科斯玻恩,埃米尔沃尔夫,光学原理,北京:电子工业出版社,2006
    [126] Zhang Tao, Effect of magnetic field of light on refractive index, Chinese Physics, 2004,13(8): 1358~1364
    [127]贾起民,郑永令,电磁学,上海:复旦大学出版社,1987
    [128]张涛,光与电子的电磁感应相互作用,2008,30(6):791~795
    [129] Zhang Tao, Electromagnetic induction between light and electron, http:// www.paper.edu.cn
    [130]张涛,光在介质中的折射,中国科学G辑,2007,37(2):137~145
    [131]张涛,光与电子之间能量交换的一个诱因,物理学报,2009,58(1):234~237
    [132] Zhang Tao, Refraction of light in media, Science in China Series G, 2007, 50(5): 591~600
    [133]张涛,电子云等效体积的含义和计算方法,中国科技论文在线,2007,2(4):287~289
    [134] Zhang Tao, Meaning and calculation of equivalent volume of electron cloud, http:// www.paper.edu.cn
    [135]张涛,光与电子云的电磁感应作用及电子云形状方位对其吸收光能量的影响,http:// www.paper.edu.cn
    [136] John McMurry, Eric Simanek,有机化学基础,北京:清华大学出版社,2008
    [137]邹澎,周晓萍,电磁场与电磁波,北京:清华大学出版社,2008
    [138]阎照文, ANSYS10.0工程电磁分析技术与实例详解,北京:中国水利水电出版社,2006
    [139]孔明礼,ANSYS 10.0电磁学有限元分析实例指导教程,北京:机械工业出版社,2007
    [140]李华昌,实用化学手册,北京:化学工业出版社,2006
    [141]郁道银,谈恒英,工程光学,北京:机械工业出版社,2000
    [142] Jeff Hecht,光纤光学,北京:人民邮电出版社,2004
    [143]雷振山,LabVIEW 7 Express实用技术教程,北京:中国铁道出版社,2004
    [144]饶云江,光纤技术,北京:科学出版社,2006
    [145]吴明,孙万富,周诗岽,油气储运自动化,北京:化学工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700