作用于Ras/Raf/MEK/ERK信号通路的多靶点抗肿瘤药物的设计、合成及药理活性初筛
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究发现在真核细胞中都有Ras/Raf/MEK/ERK信号传导通路,Ras信号通路在细胞的增殖,分化,凋亡,转移,代谢等过程中有着非常重要的地位,而且大部分肿瘤细胞中都存在Ras信号通路的上调,随着Ras信号通路的作用机制研究的逐渐透彻,这条通路上的Ras,Raf,MEK,ERK等重要激酶成为了研发治疗肿瘤药物的重要作用靶点。属于多因素疾病的肿瘤,单一靶点药物往往难以起到治疗的作用,对某一种酶或受体具有较强选择性和药效作用的单靶点药物,也不一定能够真正的达到治疗疾病的目的,而作用于多个靶点的药物其结构中含有作用于多个靶点的药效结构,可以产生多种药理活性,从而达到治疗肿瘤的目的[1]。
     本课题以控制Ras/Raf/MEK/ERK信号通路中的关键信号蛋白—Ras蛋白活化所需的法尼基转移酶为中心,并选择与Ras关系密切同时在这个信号通路上起关键作用的Raf-1激酶为辅助靶点,利用计算机辅助药物设计的方法,采用药效团模型法,设计出同时作用于FTase和Raf-1激酶的多靶点作用药物,以期对肿瘤细胞产生较大的抑制作用,从而找到高活性、低毒性的用于特殊肿瘤的多靶点抗肿瘤药物。
     本文利用catalyst软件构建了新型的Raf-1激酶抑制剂的药效团模型,结合课题组已构建的FTIs药效团模型,设计出了六个目标化合物,这些目标化合物对这两个靶点都具有很好的预测活性,且未见文献报道。采用合适的合成路线,合成出6个目标化合物,利用1H-NMR、13C-NMR、UV进行结构确认,用HPLC确定纯度。使用MTT的实验方法对目标化合物进行了体外药理活性的筛选,选取了与Ras/Raf/MEK/ERK信号通路密切相关的肝癌细胞HepG-2和胰腺癌细胞pcmc-1,测试目标化合物对这两种细胞的抑制活性。实验结果表明目标化合物对HepG-2和pcmc-1都具有较好的抑制活性,其中化合物B1的对HepG-2和pcmc-1的IC50值为48.46μmol/ml、15.43μmol/ml。将目标化合物的实测活性值与预测值活性值的进行比较,发现实测活性值与预测值活性值的变化趋势具有一致性,表明所构建的药效团模型具有一定的预测性和可靠性,对多靶点抗肿瘤药物的设计具有一定的指导意义。
     本课题的创新之处:(1)针对不同靶点作用的多靶点抗肿瘤药物具有活性强、副作用小的优势,有可能最终成为有效的抗肿瘤药物,也是当前抗肿瘤药物的研究方向。本课题选取Ras/Raf/MEK/ERK信号通路上的FTase和Raf-1激酶作为靶点,利用计算机辅助药物设计技术,设计多靶点的抗肿瘤药物;(2)对目标化合物进行类药性分析,提高目标化合物的成药性;(3)目标化合物以氨甲苯酸为起始原料,合成过程简单,产率较高,得到6个未见报道的新型结构化合物;(4)提出利用计算机辅助药物设计技术设计多靶点作用药物的理念和方法,并进行了证实。
Ras/Raf/MEK/ERK signaling pathway exsits in all eukaryotic cells.This signaling pathway taked an important role in cell proliferation, differentiation, apoptosis, metastasis and metabolic and increases in most tumor cells.The important kinases Ras, Raf, MEK and ERK in this signaling pathway becomes the crucial targets for the investigation of anti-tumor agents. Tumor belongs to one of multifactorial diseases. Single targets agents that have a strong selectivity and efficacy on a particular enzyme or receptor usually have little effect on tumor therapy. It’s difficult for single targets to achieve the pursose of tumor therapy. In the case that they contain efficacy structures affecting on multiple targets, multi-targets agents may produce a variety of pharmacological activities so as to cure cancer.
     The protein Ras is the crucial signaling protein in the Ras/Raf/MEK/ERK signaling transduction.This investigation chosed the Farnesyltransferase which can catslytic non-activated Ras-GDP to activated Ras-GTP as the main target and Raf-1 kinase which has a close relationship with Ras and plays an key role in this transduction simultaneously as the secondary target.Six multi-targets compounds which have an effect on FTase an Raf-1 kinases at the same time were designed by the use of computer aided drug design in the hope that they could have stronger inhibitory effect on tumor cells .The ultimate goal is to find the high activity and low toxicity multi-targets agents for specific cancer.
     A new pharmacophore model of Raf-1 kinase inhibitors were constructed by the sofeware catalyst in the investigation. The six targets compounds matched with phar–macophore model of FTIs and Raf-1 kinase very well and had good predictive acti–vity(none was reported).The targets compounds were screened in vitro by the use of MTT. Hepatoma cells HepG-2 and pancreatic cancer cells pcmc-1 were chosed because of their close relationship with the Ras/Raf/MEK/ERK signaling transduction. The target compounds had a good inhibition effect on these two kinds of tumor cells. The IC50 of compound B1 affecting on HepG-2 and pcmc-1 were 48.46μmol/ml and 15.43μmol/ml respectively. Comparising the actual activity with the predicted activity, it was found that their mutative trends were consistent. This result indicated that the pharmacophore model of FTIs and Raf-1 kinase inhibitors has a certain predictability and reliability. The investigation has some guiding significance in some degree to the design of new anti-tumor agents.
     The innovations of this investigation: (1) multi-targets anti-tumor agents which have effect on different targets take the advantages of strong activity and little side effects. The investigation designed multi-targets agents affecting on FTase and Raf-1 kinases by the use of CADD. (2) analysising the medicine of the guiding compounds increased their druggability. (3) the guiding compounds were easy to be synthesized and have not been reported in other literature. (4) the methods were proposed and confirmed that multi-targets anti-tumor agents can be designed by the use of CADD.
引文
[1]姜凤超,多靶点作用药物及其设计,药学学报,Acta Pharmaceutica Sinica 2009, 44(3):282-287.
    [2]Wilhelm S M, Carter C, Tang L, etal: BAY-43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis [J].Cancer Res,2004,64 (19): 7099-109.
    [3]Schaich M, Illmei T. Mdrl: gene expression and mutations in Ras proto-oncogene in acute myeloid leukemia.Leuk Lymphoma, 2002, 43: 1345-1354.
    [4]F.Tamanoi, C.L.Gau, C.Jiang, H. Edamatsu, J, etal: Protein farnesylation in mamalian cells: effecs of farnesyltransferase inhibitors on cancer cells, Cell.Mol. Life Sci. 2110, 58:1636-1649.
    [5] Crul M,Klerk de G J, Swan M, etal:Phase1 clinical and phannacologics tudyo fc hro nico rala dministrationo fth efa mesyl pro teintr ansferasein hibitorR115777 in a dvanced cancer [J], Science, 2002, 20 (11): 2726.
    [6]顾华丽,田字彬,ras基因突变与肿瘤的关系, 2005,l4:41.
    [7]李峻岭,张湘茹,针对Ras蛋白法尼基转移酶的肿瘤靶向治疗,ONCOLOGY PROGRESS, 2004, 2:5.
    [8] Schulze A, Lehmann K, Jefferie HB, etal: Analysis of the transcriptional program induced by Raf in epithelial cells [J] Genes Dev, 2001, 15: 981-994.
    [9] Alavi A, Hood JD, Frausto R, etal: Role of Raf in vascular protection from distinct apoptotic stimuli [J], Science, 2003, 301:94-96.
    [10]OdabaeiG, ChaterjeeD, JazirehiAR, etal: Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, nand pivotal role in apoptosis [J].AdvCancer Res, 2004, 91:169-200.
    [11]邓小强,向明礼,贾若,等:选择性的激酶ATP竞争性抑制剂设计研究进展,药学学报,2007 ,42 (12) :12325-12361.
    [12 ]梁桂兆,梅虎,周原,等:计算机辅助药物设计中的多维定量构效关系模型化方法,化学进展,2006 ,18 (1) :120-127.
    [13]葛月宾,王丽君,廖矛川:计算机辅助药物设计的应用,科技创业.
    [14]Ram Thaimattam,Pankaj Daga, Shaikh Abdul Rajjak etal, 3D-QSAR CoMFA, CoM SIA studies on substituted ureas as Raf-1 kinase inhibitors and its confirm ation with structure-based studies, Bioorganic & Medicinal Chemistry ,2004, 12: 66415–6425.
    [15]Octerloney McDonald, Karen Lackey, Ronda Davis-Ward, etal: Aza-stilbenes as potent and selective c-RAF inhibitors, Bioorganic & Medicinal Chemistry Letters, 2006, 16: 5378–5383.
    [16] Timothy B. Lowinger*, Bernd Riedl, Jacques Dumas and Roger A. Smith: Design and Discovery of Small Molecules Targeting Raf-1 Kinase, Current Pharma ceutical Design, 2002, 8: 2269-2278.
    [17] Michael J. Alberti, Elizabeth P. Auten, Karen E. Lackey: Discovery and in vitro evaluation of potent kinase inhibitors: Pyrido[10,20:1,5]pyrazolo[3,4-d]pyrimidines Bioorganic & Medicinal Chemistry Letters, 2005, 15: 3778–3781.
    [18] Roger A. Smith, a,* James Barbosa, b Cheri L. Blum,c: Discovery of Heterocyclic Ureas as a New Class of Raf KinaseInhibitors: Identification of a Second generation Lead by aCombinatorial Chemistry Approach, Bioorganic & Medicinal Chemistry Letters, 2001, 11: 2775–2778.
    [19] Uday R. Khire, Donald Bankston, James Barbosa, etal: Omega-carboxypyridyl substituted ureas as Raf kinase inhibitors: SAR of the amide substituent, Bioorg anic & Medicinal Chemistry Letters, 2004, 14: 783–786.
    [20] Tian Zhu, a Yu Jiao, Ya-Dong Chen,b Xuan Wang, Pharmacophore identification of Raf-1 kinase inhibitors, Bioorganic & Medicinal Chemistry Letters , 2008, 18:2346–2350.
    [21] Eun Young Song a, Navneet Kaur a, Mi-Young Park a, Synthesis of amide and ureaderivatives of benzothiazole as Raf-1 inhibitor, European Journal of Medicinal Chemis -try , 2008, 43:1519-1524.
    [22] Achim H. Krotz, Douglas L. Cole and Vasulinga T. Ravikumar*: Synthesis of an Antisense Oligonucleotide Targeted againstC-raf Kinase: Ecient Oligonucleotide Synthesis withoutChlorinated Solvents, Bioorganic & Medicinal Chemistry, 1999, 7:435-439.
    [23] Karen Lackey,* Michael Cory, Ronda Davis, etal: The Discovery of Potent cRaf Kinase Inhibitors, Bioorganic & Medicinal Chemistry Letters, 2000, 10:223-226.
    [24] Hui-Fang Li a, Tao Lu a, Tian Zhu a,etal: Virtual screening for Raf-1 kinase inhibitors based on pharmacophore model of substituted ureas, European Journal of Medicinal Chemistry xxx (2008) 1–10.
    [25]Edward HK, L D: Pharmaceutical profiling in drug discovery [J].Drug Discov Today,2003,8(7):316.
    [26]章承继,李炜,仇缀百:化合物类药性的虚拟判断方法研究,China Pharm J, 2004, 39: 9.
    [27]Erhart PW, Medicinal chemisty in the new millennium [J], Pure ApplyChem, 2002, 74(5): 703.
    [28]Ajay A, Walters WP, Mureko MA: Can we learn to distingutsh between”drug-like”And“nondrug-like”[J]. J Med Chem, 1998, 41(18): 3314.
    [29]La AP, Screening for human ADME/Tox drug properties in drug discovery [J], Drug Discov Today, 2001, 6(7): 357.
    [30]Lipinski CA, Chris Lipinski discusses life and chemistry after the rule of five [J], Drug Discov Today, 2003, 8(7): 12.
    [31]Lipinski CA, Lombardo F, Dominy B W, etal: Adv.Drug.Deliv.Rev, 2001, 46(1/3): 3-26.
    [32]刘艾林,杜冠华:化合物类药性预测方法的研究,China Pharm J, 2003, 38: 9.
    [33]于世均,郭宏,LiAlH4和NaBH4的还原反应,辽宁师范大学学报(自然科学版),26 :1.
    [34] Sumaira Umbreen, Manfred Brockhaus, Helmut Ehrenberg, etal: Norstatines from Aldehydes by Sequential Organocatalytic -Amination and Passerini Reaction [J]European Journal of Organic Chemistry, 2006, 20: 4585-4595.
    [35] Ueno Yoshihito, Watanabe, Yuuji, Shibata Aya, etal: Synthesis of nuclease -resistant siRNAs pessessing unibersal overhangs [J], Bioorganic& Medicinal Chemistry, 2009, 17(5): 1974-1981.
    [36] Tan, Yun-Chou, Gan, Xin-Min, etal: Synthesis and Coordination Chemistry of 1, 3-Bis (diphenylphosphinomethyl) benzene p,p-Dioxide [J] Inorganic Chemisry, 2001, 40(21): 2910-2913.
    [37] Lebedev,A.V,lebedeva,A.B,Sheludyakov,V.D,etal:Organosilicon synthesis of isocyan ates:Synthesis of aliphatic,carbocylic,aromatic,and alkylaromatic(isocya-nato) carbo -xylic acid esters [J] Russian Journal of General Chemistry, 2006, 76(7): 1069- 1080.
    [38] Boije af Gennas,Gustav;Talman,Virpi;Aitio,Olli,etal:Design,Synthesis,and Biological Axtivity of Isophthalic Acid Derivatives Targeted to the C1 Domain of Protein Kinase C [J], Medicinal Chemisry, 2009, 52(13): 3969-3981.
    [39] Kuntz, Kevin, Uehling, David Edward, etal: Preparation of imidazopyridines as inhibitors of IGF-1R and IR and one or both of EGFR and ErbB2 kinases for treating neoplasm. Patent. U. S. Pat. Appl. Publ, 20080300242.
    [40] Sun, Yan-feng; Gong, Guo-liang; Sheng, Xue-bin, etal: Research on synthesis of 3-amino-2-hydroxy-4-methoxybenzophenone and its alkyl deribatives, Dalian ligong Daxue Xuebao, 2006, 46(6): 792-796.
    [41]黄文林,朱孝峰,信号转导[M],人民卫生出版社.
    [42] Hepatocellular Carcinoma: Raf-1 activation linked to pathogenesis [J]. Medical Devices & Surgical Technology Week.Atlanta, 2004, 12: 217.
    [43] Carlomagno F,Anaganti S,Guida T,et al.BAY 43-9006 inhibition of oncogenic RETmutants [J]. J Natl Cancer Inst, 2006, 98(5): 326-334.
    [44] Liu L, Cao Y, Chen C, etal. Sorafenib blocks the raf/mek/erk pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5 [J]. Cancer Res, 2006, 66(24): 11851-11858.
    [45] Sandler A, Gray R, Perry MC, etal: Paclitaxel carboplatin alone or with bevacizum ab for non-small cell cacer [J], Engl Med, 2006, 355(24): 2542-2550.
    [46] Crous Bou M, Porta M, Lopez T, etal: Lifetime history of alcohol consumption and K-Ras mutations in pancreatic ductal adenocarcinoma [J], Environ Mol Mutagen, 2009, 50(5): 421-430.
    [47]付鲜花,黄建瑾*:实体肿瘤中Ras基因突变及其临床意义[J]实体肿瘤,2010,1(25):89-91.
    [48] LiD, Xie K, Wolff R, etal: Pancreatic cancer [J], Lancet, 2004, 363(9414): 1049-1057.
    [49]朱一婧,《法尼基转移酶抑制剂的设计、合成及药理活性初筛》,论文,2009: 55-60.
    [1]Wilhelm S M, Carter C, Tang L, et al. BAY-43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J] Cancer Res, 2004, 64(19): 7099-109.
    [2]Schaich M, Illmei T: Mdrl gene expression and mutations in Ras proto-oncogene in acute myeloid leukemia. Leuk Lymphoma, 2002, 43: 1345-1354.
    [3]Bret B Friday, Alex A. Adjei: K-ras as a target for cancer therapy. Biochimia et -Biophysica Acta, 2005, 1756: 127-144.
    [4] Crul M,Klerk de G J, Swan M, et al. Phase工clinical and phannacologics tudyo fchro -nicoral administration of the famesyl protein transferasein hibitor R115777 in advanced cancer. J oncol, 2002, 20 (11): 2726.
    [5]李峻岭,张湘茹,针对Ras蛋白法尼基转移酶的肿瘤靶向治疗,ONCOLOGY PROGRESS, Sept 2004, Vol.2, N o.5
    [6] F. Tamanoi, C. L. Gau, C. Jiang, H. Edamatsu J, et al: Protein farnesylation in mamm alian cells: effect of farnesyltransferase inhibitors on cancer cells, Cell. Mol. Life Sci, 2110, 58:1636-1649.
    [7]D.W.End, G.Smets, A.V.Todd, T.L.Applegate, C.L.Fuery, P.Angibaud, et al: Characteri zation of the antitumor effects of the selective farnesyl protein transferase inhibitor R115 777 in vivo and in vitro, Cancer Res. 2001, 61: 131-137.
    [8]H. Edamasu, C.L.Gau, T.Nemoto, L. Guo, F. Tamanoi: CDK inhibitors, roscovitine andolomoucine, synergize with farnesyltransferase inhibitor(FTI) to induce efficient apoptosis of human cancer cell lines, Oncogene , 2000, 19: 3059-3068.
    [9]R.R.Hoover, F.X.Mahon, J.V.Melo, G.Q.Daley: Overcoming ST1571 resistance with the faunesyl transferase inhibitor SCH66336, Blood, 2002, 100: 1068-1071.
    [10] James A. McCubrey, Linda S. Steelman, William H, et al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance Biochimica et Biophysica Acta, 2007, 1773: 1263-1284.
    [11]Mason, C.S, Springer, C.J, Cooper, RG, et: Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J, 1999, 18: 2137-2148.
    [12] Carro MP, May WS: Protein kinase C mediated phosphorylation directly activate Raf-1 in murine hematopoietic cells, J Biol Chem, 1994, 269(20): 1249.
    [13] Sakatsume M, Stancato LF, David M, et al: Interferon activation of Raf-1 is jak1-dependent and p21-dependent, [J] Bio Chem, 1998, 273 (5): 3021.
    [14]Schulze A, Lehmann K, Jefferies HB, e tal: Analysis of the transcriptional program induced by Raf in epithelial cells [J] Genes Dev, 2001, 15: 981-994.
    [15] Alavi A, Hood JD, Frausto R, etal: Role of Raf in vascular protection from distinct apoptotic stimuli [J], Science, 2003, 301:94-96.
    [16] Odabaei G, Chaterjee D, Jazirehi AR, et al: Raf-1 kinase inhibitor protei n: structure, function, regulation of cell signaling, and pivotal role in apop tosis [J]. Adv Cancer Res, 2004, 91: 169-200.
    [17] T.L.Chan, W.Zhao, S.Y.Leung, etal: BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas, Cancer Res, 2003, 63: 4878-4881.
    [18] S.Wang, R.N.Ghosh, S.P.Chellappan: Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell Cycle regula -tion, Mol. Cell. Biol, 1998, 18: 7487-7498.
    [19] A.Cuadrado, J.T.Bruder, M.A.Heidaran, H.App, et al: H-ras and raf-1 co-operate in transformation of NIH3T3 fibroblasts, Oncogene, 1993, 8: 2443-2448.
    [20] A.M.Pfeifer, G.E.MarkⅢ, et al: Cooperation of c-raf-1 and c-myc protoongenes in thee neoplastic transformation of simian virus 40 large tumor antigenimmorta -lized human bronchial epithelial cells, Proc.Natl.Acad.Sci.U.S.A, 1989, 86: 1007 5-10079.
    [21] J.M.Kurie, H.C.MorseⅢ, M.A.Principato, J.S.Wax, J, et al: v-myc and v-raf act synergistically to induce B-cell tumors in pristine-primed adult BALBC mice, Oncogene, 1990, 5: 577-582.
    [22] L.K.Rushworth, A.D.Hindley, E.O.Neill, W.Kolch: Regulation and role of Raf-1/B-Raf heterodimerization, Mol. Cell. Biol. 2006, 26: 2262-2272.
    [23] Wilhelm SM, Carter C, Tang L etal: BAY43-9006exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis, Cancer Res, 2004, 64: 7099-7109.
    [24] Nagar B, Bormmann W, Pellicena P et al: Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571), Cancer Res, 2002, 62: 1938-1942.
    [25] Carlos Garcia Echeverria: Protein and lipid kinase inhibitors as targeted anti cancer agents of the Ras/Raf/MEK/ERK and PI3K/PKB pathways, Purinergic Signaling, 2009, 5: 117-125.
    [26] Amiri P, Aikawa ME, Dove J, et al: CHIR-265 is a potent selective inhibitor of c-Raf/B-Raf/mutB-Raf that effectively inhibits roliferation and survival of cancer cell lines with Ras/Raf pathway mutations (abstract4855), Proc Am Assoc Cancer Res 47.
    [27]Joshua T.Dilworth, Janice M.Kraniak, et: molecular targets for emerging antitum or therapies for neurofibromatosis type1, Biochemical phamarmacology, 2006, 17: 1485-1492.
    [28]Timothy B.Lowinger, Brnd Ried et al: design and discovery of small molecules targeting Raf-1 kinase. Current Pharmaceutical Design, 2002, 8: 2269-2278.
    [29]Roger A.Smith, James Barbosa et al: Discovery of heterocyclic ureas as a new class ofRaf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorganic & Chemistry Letters, 2001, 11: 2775-2778.
    [30]Eun Young Song, Navneet Kaur, et al: synthesis of amide and urea derivatives of benzothiazole as Raf-1 inhibitors, European Journal of Medicinal Chemistry 2008, 14: 1519-1524.
    [31]Octerloney McDonald, Karen Lackey, et al: Azastilbenes as potent and selective c-Raf inhibitors, Bioorganic & Medicinal Chemistry Letters, 2006, 16: 5378- 5383.
    [32] Wood. E. G. Kuyper, L. Petrov, K.G. Hunter, R.N. et a1: Discovery and In Vitro Evaluation of Potent TrkA Kinase Inhibitors: Oxindole and Azaoxindoles Bioorg [J] Med Chem Lett, 2004, 14: 953-957.
    [33]. F. George Njoroge, Bancha Vibulbhan, Bridgehead modification of trihalocy clohepta benzopyridine lead to a potent farnesyl protein transferase inhibitor with improve dora -l metabolic stability. Bioorganic & Medicinal Chemistry Letters, 2004, 14: 5899– 5902.
    [34]. Gary T. Wang,Xilu Wang, Weibo Wang, Design and synthesis of o-trifluoro methylbi -phenyl substituted2-amino-nicotinonitriles as inhibitors of farnesyltransferase. Bioor -ganic & Medicinal Chemistry Letters, 2005, 15: 153–158.
    [35]. (a) van Cutsem, E.; van de Velde, H.; Karasek, P.; Clin. Oncol. 2004, 22: 1430–1438; (b) Venet, M.; End, D.; Angibaud, P. Curr. Top. Med. Chem. 2003, 3: 1095–1102; (c) Caponigro, F. Casale, M. Bryce, J. Expert Opin. Invest. Drugs, 2003, 12: 943–954; (d) Norman, P. Curr. Opin. Invest. Drugs , 2002, 3.
    [36]. Relevant studies using tipifarnib as a template: (a) Angibaud, P.; Bourdrez, X.; End, D. W.; Freyne, E.; Janicot, M.; Lezouret, P.; Ligny, Y.; Mannens, G.; Chem. Abstr. 1999, 132: 35705.
    [37]. Qun Li,* Tongmei Li, Keith W. Woods: Benzimidazolones and indoles as non-thiol -farnesyltransferase inhibitors based on tipifarnib scaffold: synthesis and activity, Bioo -rganic & Medicinal Chemistry Letters, 2005, 15: 2918–2922.
    [38]. Patrick Angibaud, Xavier Bourdrez, David W: Substituted azoloquinolines and quina -zolines as new potent farnesyl protein transferase inhibitors. Bioorganic & Medicinal Chemistry Letters, 2003, 13: 4365–4369.
    [39]陆嘉德,郭哗,肿瘤靶向治疗新探:多靶点Raf激酶抑制剂,《中国癌症杂志》,2007,1: 17
    [40]李彪,李晓玫,Raf-1蛋白激酶的研究新进展,基础医学,1999,1: 18.
    [41]姜凤超,多靶点作用药物及其设计,药学学报, 2009, 44(3):282-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700