腐殖填料滤池有机物降解行为及动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐殖填料生物滤池(Humified media Filter,即HF工艺)是以腐殖填料构筑的,介于无机砂滤池和生物滤池之间的污水处理新工艺。HF工艺已投入农村生活污水分散处理工程应用,但在实际运行过程中,仍存在总氮去除率不高,占地面积偏大等的问题。针对以上问题,对系统有机物降解行为特征展开研究,了解腐殖填料的表面性质,结合腐殖填料宏观水力学性质的差异,初步探索腐殖填料宏观与微观指标相结合的评价体系建立方法,结合各腐殖填料生物滤池有机物去除率、系统内生物种群及生物总量的差别,分析腐殖填料生物滤池COD降解特征。通过腐殖填料滤池及附着生长完全混合系统的运行,建立腐殖填料生物滤池动力学模型,为构建腐殖填料生物滤池的理论体系奠定基础,服务于系统填料改性及工艺优化,提升工艺效能。
     腐殖填料生物滤池有机物降解行为研究主要从填料微观结构研究、宏观水力学性能考察、COD降解特征研究及腐殖填料生物滤池动力学模型的建立四个部分展开。主要研究结果如下:
     (1)观察四种填料的扫描电镜图发现,河沙及煤炭表面粗糙程度较小,主要由颗粒状物质构成;泥炭和腐殖垃圾表而粗糙构成方式相似,均以团聚体三维空间结构为主。采用X射线光电子能谱仪对填料进行分析后发现,四种填料均有Si、C、O及V等元素的存在;同时,腐殖垃圾表面有K元素,煤炭表面有Al、Zn,河沙表面有Zn、K的存在。对四种填料进行傅里叶变换红外光谱分析后发现,四种填料表面均含有羟基类、乙烯类化合物,均有Si-O-Si基团的存在;泥炭及煤炭中还可能分别含有脂肪族类及具有二个双键的五元环杂环化合物。四种填料比表面积的大小顺序为泥炭>腐殖垃圾>煤炭>河沙,阳离子交换容量大小顺序为腐殖垃圾>泥炭>煤炭>河沙。
     (2)在清水和模拟污水的条件下,各滤池饱和水力渗透系数的大小顺序均为泥炭>腐殖垃圾>河沙>煤炭。清水条件下,各生物滤池渗透系数较高,进水变为模拟污水后大幅下降,除煤炭外其他生物滤池的水力渗透系数仍相当可观。
     (3)结合各腐殖填料生物滤池有机物去除效率、生物种群及生物量等的差异,分析各生物滤池有机物降解特征。稀释平板涂布法分离出各生物滤池中发挥主要作用的微生物共三种,各系统菌落数量有差异,但种类相同。三种腐殖填料生物滤池在进水有机物浓度为500mg/L及1000mg/L时均有较理想的有机物去除效率。三种腐殖填料生物滤池中泥炭构筑的腐殖填料生物滤池有机物比降解速率最小,因而微生物比增长速率最小,微生物增长和自身氧化最易趋向于动态平衡,对应的饱和水力渗透系数最大,滤池最不易发生堵塞,最有利于腐殖填料生物滤池长期稳定运行,证明泥炭是一种优良的生物介质。
     (4)采用泥炭作为处理构筑物,在泥炭浓度为10g/L的完全混合系统中,根据Monod模式计算得半速率常数Ks=178.6mg/L、最大比降解速率Vmax=1.29×10-4d-1,结合滴滤池系统不同COD浓度下去除效率,最终建立泥炭腐殖填料生物滤池的动力学模型:Se/So=exp(-2.04×10-9C/F),并通过实验进行了验证。
Humified media Filter constructed by humified filler is a new decentralized treatment structure. At present, Humified media Filter has been put into practical application of sewage treatment. However, two defects appeared in the running process. The one is the low total nitrogen removal efficiency, and the other is the large cover area. To solve the above problems, macro and micro indicators were investigated to establish an evaluation system. Also, COD removal efficiency and biomass in the filter were surveyed to tell out characteristics of organic matter removal. At last, a dynamic model was built. All the experiments are beneficial for the theory system setting up, which will serve for the filler modification and process optimization in Humified media Filter.
     Studies on Humified media Filter were carried out from four aspects:analyses on micro structure of filler, comparison of saturated hydraulic permeability coefficients, degradation characteristics of COD removal and the dynamic model building. The key findings are outlined below.
     SEM images showed that aged refuse and peat were constituted of reunion bodies with three-dimensional space structure. Coal and sand which had less rough surface mainly were made up of small particles. XPS maps displayed that Si, C, O and V could be found on all the four kinds of filler. Besides, K could be found in aged refuse, A1 and Zn in peat, and Zn and K in sand. FT-IR analyses told out the hydroxyl, vinyl compounds and Si-O-Si group's existence in all the four kinds of filler. Specific surface area from high to low was in sequence of peat, aged refuse, coal and sand. And CEC was in the descending order of aged refuse, peat, coal and sand. Combing microstructure analyses, peat and aged refuse are more suitable for Humified media Filter.
     Saturated hydraulic permeability coefficients were measured under clear water and simulation wastewater. All the four biofilters displayed very high saturated hydraulic permeability coefficients under clear water. The descending sequence is peat, aged refuse, coal and sand. Saturated hydraulic permeability coefficients of each biofilter all plunged under the simulation wastewater, keeping the same order with that under clear water.
     The organic matter removal efficiency, biological species and biomass are investigated to make clear the characteristics of organic matter removal. Three kinds of microorganism were found in all four biolfilters, which played a main function in the organic matter degradation process. In laboratory research, all the biofilters filled with aged refuse, peat and coal displayed ideal organic matter removal rates when inlet concentrations were 500mg/L and 1000mg/L. In contrast to the other two biofilters (aged refuse and coal), the organic matter specific removal rate of biofilter filled with peat was lowest, and the hydraulic permeability coefficient was highest, which leads to the minimum blockage. Biofilter filled with peat was most likely to run stably in long-term, and peat was proved to be excellent humus filler.
     Through the operation of completely mixed system and Humified media Filter, a dynamic model was built. Half rate constant Ks and maximum specific degradation rate Vmax are obtained from completely mixed system according the Monod mode. The half rate constant Ks equals to 178.6mg/L, and the maximum specific degradation rate Vmax was 1.29X 10-4d-1. The dynamic model of Humified media Filter could be expressed by the equation of Se/So= exp(-2.04 x 10-9 C/F).
引文
[1]孙瑞敏.我国农村生活污水排水现状分析[J].能源与环境,2010,5:33-34.
    [2]孙兴旺,马友华,王桂苓,等.中国重点流域农村生活污水处理现状及其技术研究[J].中国农学通报,2010,26(18):384-388.
    [3]张鑫,付永胜,范兴建,等.农村生活污水排放规律及处理方法分析[J].广东农业科学,2008,8():139-142.
    [4]苏东辉,郑正,王勇,等.农村生活污水处理技术探讨[J].环境科学与技术,2005,28(1):79-81.
    [5]Zhou Q X, Zhang Q R, Sun T H. Technical innovation of land treatment systems for municipal wastewater in northeast China[J]. Pedosphere.2006,16(3):297-303.
    [6]梁祝,倪晋仁.农村生活污水处理技术与政策选择[J].中国地质大学学报(社会科学版),2007,7(3):18-22.
    [7]马秋清,郝建国,周晓婧.农村生活污水处理现状及模式选择[J].科技资讯,2007,99:237-238.
    [8]Chen Z M, Chen B, Zhou J B, et al. A vertical subsurface-flow constructed wetland in Beijing [J]. Communication in Nonlinear Science and Numerical Simulation.2008,13(9):1986-1997.
    [9]Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems [J]. Water Research.1998,32(2):393-399.
    [10]Cakmak B, Apaydin H. Review. Advances in the management of the wastewater in Turkey:natural treatments or constructed wetlands [J]. Spanish Journal of Agricultural Research.2010,8(1):188-201.
    [11]Mark Wang, Michael Webber, Brian Finlayson Jon Barnett. Rural industries and water pollution in China [J]. Journal of Environment Management.2008,86(4):648-659.
    [12]洪嘉年.农村污水处理处理和处置方案初探[J].给水排水,2004,30(7):31-33.
    [13]王德永,张丽娟,陈明.农村生活污水处理模式的研究[J].中国西部科技,2010,9(28):37-40.
    [14]张增胜,杨耀芳,徐功娣,等.农村生活污水分散处理技术研究进展[J].污染防治技术,2008,21(6):65-67.
    [15]田娇,王玉军,梁小萌,等.农村污水分处理技术现状及发展前景[J].环境科学与管理,2010,35(5): 83-85.
    [16]Mark A Shanmon, Paul W Bohn, Menachem Elimelech, et al. Science and technology for water purification in the coming decades [J]. Nature.2008,452(2):301-320.
    [17]刘峰,苏宏智,秦良.中国农村生活污水处理技术的研究现状[J].污染防治技术,2010,23(5):24-26.
    [18]Harmon S H, Eberhard R, Mark H C, et al. Evaluation of onsite sewage treatment and diaposal systems in shallow karst terrain[J]. Water Research.2008,42(9):2585-2597.
    [19]何起利,邱琳,陈德全.新农村生活污水处理设施问题初探[J].环境科学与管理,2010,35(5): 103-105.
    [20]何安吉,黄勇.农村生活污水处理技术研究进展及改进设想[J].环境科技,2010,23(3):68-71.
    [21]Philipp W, Eveborn D, Karrman E R, et al. Environmental system analysis of four on-site wastewater treatment options [J]. Resources Conservation and Recycling.2008,52(8):1153-1161.
    [22]王君如,杨健.分散性污水处理技术研究进展[J].油气田环境保护,2005,15(4):24-27.
    [23]张克强.农村污水处理技术[M].中国农业科学技术出版社,2006:67-69.
    [24]王捷,张宏伟,贾辉,等.分散式污水处理与再利用技术研究进展[J].中国给水排水,2006,22(20):14-17.
    [25]余浩.水解池一滴滤池一人工湿地处理农村生活污水研究[D].南京:东南大学,2006.
    [26]赵由才,柴晓利,牛冬杰.矿化垃圾基本特性研究[J].同济大学学报(白然科学版),2006,34(10):1360-1364.
    [27]阳小霜,赵由才.生活垃圾填埋场矿化垃圾的开采与综合利用[J].有色冶金设计与研究,2007,28(2-3):151-154.
    [28]钱小青,牛冬杰,楼紫阳,等.填埋场矿化垃圾资源综合利用研究进展[J].环境卫生工程,2006,14(2):62-64.
    [29]李雄,徐迪民,赵由才,等.生活垃圾堆放场及填埋场矿化垃圾综合利用研究进展[J].环境卫生工程,2006,13(6):52-55.
    [30]李华,赵由才.填埋场稳定化垃圾的开采、利用及填埋场土地利用分析[J].环境卫生工程,2000,8(2):56-57.
    [31]郭亚丽.生活垃圾填埋场稳定化垃圾反应床处理城市污水的工艺与机理研究[D].上海:同济大学环境工程学院,2002:40-41.
    [32]Zhao Y C, Wang L C, Huang R H, et al. A comparison of refuse attenuation in laboratory and field scale lysimeters [J]. Waste Management.2002,22:29-30.
    [33]Zhao Y C, Shao Fang. Use of an aged-refuse biofilter for the treatment of feedlots[J] wastewaters. Environmental Engineering Science.2004,21(3):349-350.
    [34]吴军.稳定化垃圾生物反应床处理老港填埋场渗滤液的中试研究[D].上海:同济大学环境工程学院,2002:40-41.
    [35]石磊.矿化垃圾生物反应床处理填埋场渗滤液的工艺及机理研究[D].上海:同济大学环境工程学院,2005:34-35.
    [36]Zhao YC, Li H, Wu J, et al. Treatment of leachate by aged-refuse-based biofilter[J]. Journal of Environmental Engineering:ASCE.2002,128(7):662-663.
    [37]李华.填埋场矿化垃圾生物反应床处理渗滤水的工艺研究[D].上海:同济大学环境工程学院,2000:45-46.
    [38]邵芳.矿化垃圾生物反应床生物降解性能及其在猪场废水处理中的应用研究[D].上海:同济大学环境工程学院,2002:33-37.
    [39]金龙Fenton试剂-矿化垃圾生物反应床联合处理离子交换树脂再生废水研究[D].上海:同济大学环境工程学院,2003:55-65.
    [40]王罗春,赵由才,丁桓如,等.矿化垃圾生物反应床在废水处理中的应用及其存在文的问题[J].城市环境与城市生态,2003,16(增刊):4-6.
    [41]周正伟,吴军,曹丽华,等.腐殖填料生物滤池处理生活污水的效能研究[J].中国给水排水,2010,26(7): 22-25.
    [42]Okubo K, J Matsumoto, et al. Biological clogging of sand and changes of organic constituents during artificial recharge [J]. Water Research.2008,17(7):813-821.
    [43]王宝贞.水污染控制工程[M].北京:高等教育出版社,1990:186-188.
    [44]崔程颖,马利民,张选军,等.人工快速渗滤系统对污染物的去除机制[J].环境污染与防治,2007,29(2):95-98.
    [45]何江涛,张达政,陈鸿汉,等.污水渗滤土地处理系统中的复氧方式及效果[J].水文地质工程地质,2003,30(189):103-106.
    [46]李止昱,何腾兵,杨小毛,等.人工快速渗滤系统的研究与应用[J].中国给水排水,2004,20(10):30-32.
    [47]张刚,张乃明.农村生活污水土地处理技术研究进展[J].环境科学导刊,2010,29(4):67~71.
    [48]林克朋,奉均衡,朱南文.污水土地处理存在的主要缺点及其解决方法[J].环境科学与管理,2008,33(11):76-80.
    [49]张清敏,徐濮编泽.扫描电子显微镜和X射线微区分析[M].天津:南开大学出版社,1998:14-22.
    [50]廖乾初,蓝芬兰.扫描电镜分析技术与应用[M].北京:机械工业出版社,1990:102-103.
    [51]毛立娟,王孝平,高原,等.氮气吸附BET法测定纳米材料比表面积的比对实验[J].现代测量与实验室管理,2010,5:3-5.
    [52]P. Klobes, K. Meyer, R. G. Mumro. Porosity and specific surface area measurements for solid materials[J]. NLST,2000,28(4):28-33.
    [53]林庆文,刘瑾,邓盾.乙醇吸附法在碳分子筛比表面积测定中的应用[J].石油化工,2010,39(5):558-561.
    [54]童祜嵩.颗粒密度与比表面积测量原理[M].上海:上海科技文献出版社,1989:277-285.
    [55]孙红专,陈秋兰,杨剑虹.棕漠土阳离子交换量测定方法对比研究[J].现代林业科技,2007,3:76-77.
    [56]张彦雄,李丹,张佐玉,等.两种十壤阳离子交换量测定方法的比较[J].贵州林业科技,2010,38(2):45-49.
    [57]下玉平,朱宝龙,陈强.软粘十扫描电镜和能谱分析试验[J].西华大学学报(自然科学版),2010,29(5): 63-65.
    [58]赵扬,徐厚吕,鲁淑群,等.滤饼微观结构及其测量结果的分析研究[J].流体机械,2010,38(8):31-37.
    [59]隽英华,武志杰,陈利军,等.东北4种典型土壤粘粒矿物的初步表征[J].光谱学与光谱分析,2010,30(7):1918-1921.
    [60]曹立礼,邓宗武编译.聚合物表面分析[M].北京:化学工业出版社,2001:100-102.
    [61]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988:131-132.
    [62]潘承璜,赵良仲.电子能谱基础[M].北京:科学出版社,1981:99-103.
    [63]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社,1992:95-98.
    [64]朱应军,郑明东.炼焦用精煤中硫形态的XPS分析方法研究[J].选煤技术,2010,3:55-57.
    [65]林冰,吴平平,周文敏,等.实用付里叶变换红外光谱学[M].北京:中国环境科学出版社,1991:83-85.
    [66]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989:88-95.
    [67]吴章,李长阁.傅里叶变换红外光谱仪在脱脂分析中的应用[J].四川化工与腐蚀控制,2004,4(1):22-24.
    [68]张琪,方海兰,黄懿珍,等.土壤阳离子交换量在上海城市土壤质量评价中的应用[J].土壤,2005,37(6):679-682.
    [69]李华,赵由才.填埋场稳定化垃圾的开采、利用及填埋场土地利用分析[J].环境卫生工程,2000,8(2):56-57.
    [70]钱焕群.工程流体力学(水力学)精讲精练[M].北京:化学工业出版社,2010:139-144.
    [71]韩建刚.土力学与基础工程[M].重庆:重庆大学出版社,2010:140-141.
    [72]周训.地下水科学概论[M].北京:地质出版社,2009:40-45.
    [73]夏金雨,吴军,周正伟,等.腐殖质含量对填料净化污水效能的影响[J].环境工程学报,2009,3(3):422-426.
    [74]崔程颖,马利民,张选军,等.人工快速渗滤系统对污染物的去除机制[J].环境污染与防治,2007,29(2):95-98.
    [75]Martha J. Miller, D. Grant Allen. Modeling transport and degradation of hydrophobic pollutants in biofilter biofilms[J]. Chemical Engineering,2005,113:197-204.
    [76]潘终胜,赵由才,汤金辉,等.大规模矿化垃圾开采工程研究[J].有色冶金设计与研究,2007,28(2):141-143.
    [77]沈萍.微生物学[M].北京:高等教育出版社,2000:80-83.
    [78]王兰.环境微生物学实验方法与技术[M].北京:化学工业出版社,2009:62-63.
    [79]俞慎,李振高.熏蒸提取法测定十壤微生物量研究进展[J].土壤学进展,1994,22(6):42-48.
    [80]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-66.
    [81]张海燕,张旭东,李军,等.土壤微生物量测定方法概述[J].环境污染与防治,2007,29(2):95-98.
    [82]葛洁,张承中,刘立忠,等.填料筛选与表面改性提高生物滴滤塔除含H2S废气能力[J].环境工程, 2010,28(2):95-98.
    [83]陈胜,孙德智,陈桂霞,等.移动床生物膜法处理垃圾渗滤液COD降解动力学[J].化工学报,2007,58(3):733-738.
    [84]哈尔滨建筑工程学院.排水工程(下册)[M].北京:中国建筑工业出版社,1987:76-81.
    [85]李献文,杨西崑,张玉贵,等编译.废水生物处理理论与应用[M].北京:中国建筑工业出版社,1989:351-374.
    [86]史帅.ATP荧光法快检系统实现细菌总数的快速检测[J].食品安全导刊,2004,8(2):51-52.
    [87]姜峰.附着与悬浮生长组合SBR系统处理废水的性能研究[J].成都:四川大学,2005:25-28.
    [88]Yilmaz M. A study on performance characteristics of granular-media trickling filters [J]. Biochemistry and Biotechnology.1992,37(2):209-224.
    [89]Antonio Avalos Ramirez, Sandrine Benard, Anne Giroir-Fndler, et al. Kinetics of microbial growth and biodegradation of methanol and toluene in biofilters and analysis of the energetic indicators [J]. Journal of Biotechnology.2008,138(3-4):88-95.
    [90]Menachem Y. Sklarz, Amit Gross, M. Ines M. Soares, et al. Mathematical model for analysis of recirculating vertical flow constructed wetlands[J]. Water Research.2010,44(6):2010-2020.
    [91]Giorgia Spigno, Mario Zilli, Cristiano Nicolella, et al. Mathematical modeling and simulation of phenol degradation in biofilters[J]. Biochemical Engineering.2004,19(6):267-275.
    [92]Selma C, Ayaz, Lutfi Akca. Treatment of wastewater by natural system [J]. Environment International. 2001,26(3):189-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700