相干场成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相干场成像技术是一种利用相干场与被测目标相互调制,从返回的接收信号中提取被测目标空间频谱信息和运动参数信息进行计算探测的技术。该技术可主要应用于空间目标的识别与遥测等领域。本文较全面的介绍了相干场成像技术。依次从理论、影响分析、设计三个方面对相干场成像技术进行讨论,并提出了从相干场成像系统接收信号中提取目标运动速度矢量的方法。本文的主要研究内容包括:
     1.介绍了相干场成像与测速技术研究的背景和意义,总结了相干场成像技术国内外研究发展概况。
     2.结合相干场成像技术原理介绍了相干场成像过程与数据处理方法,对成像原理的物理实质与处理方法的特点进行了进一步分析与讨论。
     3.介绍了相干场成像系统组成,分别总结了发射系统和接收系统主要参数设计原则与工程实现方法。设计了一组具体的相干场成像系统参数进行成像仿真,仿真结果对技术原理与数据处理方法进行验证。
     4.分析影响实际相干场成像系统成像性能的主要因素。按照影响作用机理进行分类,分别分析与仿真各类因素对系统成像的影响程度。为了抑制移频误差对成像的影响,提出一种基于离散频谱校正的改进信号解调算法。
     5.设计并搭建一套室内实验系统,开展成像实验验证相干场成像技术原理与数据处理方法。
     6.提出从相干场成像探测信号中获取目标速度矢量的方法。进行相干场测速技术的原理与误差分析,介绍了速度提取算法并进行测速仿真研究。利用改进的相干场探测实验系统进行测速精度实验研究。
     理论和实验研究的结果表明,相干场成像技术通过良好的系统设计研制和采用一些影响因素抑制方法,可以实现对远距离暗弱目标进行高分辨率计算成像。利用相干场探测系统还可以从探测信号中提取目标运动信息,实现对远距离目标高精度测速。说明了相干场成像技术有着巨大的发展潜力与广阔的应用前景。
The coherent field imaging technology is a computational detection approachthat uses coherent fields demodulated by measured target. Space frequencyspectrums and motion parameters of the target can be extracted from the back signals.The technology can be mainly used in the field of space target identification andtelemetry. In this paper, a comprehensive introduction to the coherent field imagingtechnology is given. A method of extracting target velocity vector from the receivedsignal of the coherent field imaging system is proposed.
     This work makes the following contributions to coherent field imagingtechnology:
     Firstly, the background and significances of coherent field imaging technologyresearch is introduced. The State-of-the-art is summarized.
     Secondly, the coherent field imaging process and data processing method areexplained combined with the principle of the technique. The physical essence of theimaging principle is further discussed. The characteristics of the data processing areanalyzed.
     Thirdly, the constitution of coherent imaging system is introduced. Thetransmitter and receiver parameter design principles and engineering realizationmethods are summarized respectively. A set of simulation system is designed toverify the technology principles and data processing methods by imaging simulation.
     Fourthly, the main factors that affect the coherent field imaging systemperformance are analyzed. According to the mode of action, the factors are classifiedand imaging effects are simulated. In order to suppress the frequency shift error, wepropose an improved signal demodulation algorithm based on the discrete spectrumcorrection.
     Fifthly, a laboratory experiment system is designed and built on which theprinciple of coherent field imaging technology and data processing methods are verified by imaging experiments.
     Lastly, a method of velocity extraction from detected signal of coherentimaging system is proposed. The error analysis is given. The velocity extractionalgorithm is introduced, and a velocity measurement experiment is simulated by themethod. The accuracy of the measuring technology is experimentally studied on animproved coherent field detection experiment system.
     Theoretical and experimental results of the study show that the coherent fieldimaging technology can highly-resolution image a distance and faint target withproper system design and some effect suppression methods. The coherent fielddetection system can also extract the target motion information from the detectedsignal. The technology can be used on high-precision velocity measurement of along range target. Coherent field imaging technology has great developmentpotential and application prospects.
引文
[1]Randy A. Kimble. Status and performance of HST wide field camera. SPIE.2004,5487:266-280.
    [2]姜文汉,王红,凌宁等.61单元自适应光学系统.量子电子学报,1998,15(2):193-199.
    [3]J. W. Hardy. Adaptive Optics–a progress review.Proc.SPIE.1991,1542:1-16.
    [4]王艳平.高分辨率成像技术研究[硕士学位论文].成都:电子科技大学,2006.
    [5] ShaoM, ColavitaM. M. The orbit of phieygni measured with long-baseline opticalinterferometry: Component masses and absolute magnitudes.ARAA,1992b,30:457-498.
    [6]Roger Jennison. The Michelson stellar interferometer: a phase sensitive variationof the optical instrument, Proc. Phys. Soc.1961,78:596–599.
    [7] Meinel A.B. Aperture synthesis using independent telescope. Applied Optics,1970,9(11):2501-2504.
    [8]王海涛,周必方.光学综合孔径干涉成像技术.光学精密工程.2002,10(5):434-442.
    [9]龙伟军,王治乐,周彦平.光学综合孔径望远镜成像分析及计算机仿真.光学学报.2004,24(8):1009-1014.
    [0] N.D.Ustinov, A.V.Anufriev, A.L.Vol'pov. Active aperture synthesis in observationof objects via distorting media. Kvantovaya Elektron.1987,14:187-189.
    [11]B.F.Campbell, L.Rubin, R.B.Holmes. Synthetic-aperture imaging through anaberrating medium: experimental demonstration.Applied Optics,1995,34(26):5932-5937.
    [12]R.B Holmes, S. Ma, A. Bhowmik, et al. Analysis and simulation of asynthetic-aperture technique for imaging through a turbulent media. JOSAA,1996,13(2):351-364.
    [13] K.R.MacDonald, J.K.Boger, M.Fetrow, et al. An Experimental Demonstration ofFourier Telescopy.SPIE,1999, Vol.3815,Digital Image Recovery and SynthesisIV:23-29.
    [14] Peter Alekseevich Bakut. Theoretical studies of Fourier telescopy for deep spaceimaging. International Information Academy,1999.1-44.
    [15] R. B. Holmes, T. Brinkley. Reconstruction of images of deep space objects usingFourier telescopy. SPIE,1999, Vol3815:11-22.
    [16] T. J. Brinkleya, D. Sand1er. Effect of atmospheric turbulence and jitter on Fouriertelescopy imaging systems. SPIE,1999, Vol3815:42-48.
    [17] Mikhail Be1en'kii, Kevin Hughes, Tim Brinkley. Effect of turbulence ondownlink and horizontal path on high-order coherence moments in Fouriertelescopy system.Proceedings of SPIE2002, Vol.4821:62-73.
    [18] Mikhail Belen'kii, Kevin Hughes, Tim Brinkley. Residual turbulent scintillationeffect and impact of turbulence on the Fourier telescopy system. SPIE,2004, Vol5160:56-67.
    [19] R. B. Holmes. Description and simulation of an active imaging techniqueutilizing two speckle fields: iterative reconstructors. J. Opt. Soc. Am. A,2002,Vol.19, No.3:458-471.
    [20] P. A. Bakut, and Mandrosov,"Properties of Fourier-telescopic images of theremote rough objects", in Digital Image Recovery and Synthesis1V Timothy J.Schulz, Paul S. Idell, Editors, Pros. of SPIE,1999, Vol.3815:49-57.
    [21] V.L.Gamiz, R.B.Holmes, S.R.Czyzak, et al. GLINT: Program overview andpotential science objectives. SPIE,2000, Vol4091:304-315.
    [22]Stephen. D.Ford, DavidG.Voela, Victor L. Gamiz.GLINT(Geo LightImagingNational Testbed)Past,Present,and Future. SPIE,1999,Vol.3815:2-11.
    [23] Marcia Ann Thornton, Jerry R. Oldenettel, Dane W. Hult, et al. GEO LightImaging National Testbed (GLINT) heliostat design and testing status.SPIE,2002,Vol.4489:78-88.
    [24] J. Mathis, J. Stapp, E. Louis Cuellar, et al. Field Experiment Performance of thereceiver elements for a Fourier telescopy imaging system. Unconventionalimaging,Proc. of SPIE.2005, Vol.58960F:1-12.
    [25] E. Louis Cuellar, James Stapp, Justin Cooper. Laboratory and field experimentaldemonstration of a Fourier telescopy imaging system. UnconventionalImaging,Proc. of SPIE2005,Vol.58960D:1-15.
    [26] Brett Spivey, James Stapp, David Sandler, et al. Phase closure and objectreconstruction algorithm for Fourier telescopy applied to fast-moving targets.Unconventional Imaging II, SPIE,2006, Vol.630702:1-16.
    [27] James Stapp, E.Louis Cuellar, Laurence Chen, et al. Simulation of a Fouriertelescopy imaging system for objects in low Earth orbit. UnconventionalImaging II, Proc.SPIE,2006,Vol.630701:1-11.
    [28] Cuellar E.Louise, Cooper Justin, Mathis James, et al. Laboratory demonstrationof a multiple beam Fourier telescopy imaging system. Unconventional ImagingIV. SPIE, Vol.2008,70940G:1-12.
    [29] Daissy H. Garces, William T. Rhodes, Nestor Pena Translavinia. TomographicFourier telescopy. OSA,2010. Diffractive Optics and Imaging, DTuB8.
    [30] William T. Rhodes. Time-average Fourier telescopy: a scheme forhigh-resolution imaging through horizontal-path turbulence. APPLIEDOPTICS.2012, Vol.51, No.4:A11-A16.
    [31]王小伟,黎全,王雁桂,等.傅里叶望远术中的相位闭合分析及其仿真.国防科学技术大学学报.2009,31(1):38-42.
    [32]董磊,刘欣悦,王建立.实验室环境内傅里叶望远镜技术的实现.光学精密工程,2008,16(6):999-1002.
    [33]陈卫,黎全,王雁桂.傅里叶望远术成像系统的实验研究.光学学报,2011,31(3):68-73.
    [34]叶溯.傅里叶望远术目标重建研究[硕士学位论文].成都:电子科技大学,2010.
    [35]董磊,刘欣悦,陈宝钢.傅里叶望远镜外场实验与结果分析.光子学报,2011,40(9):1317-1321.
    [36]董磊,刘欣悦,林旭东.傅里叶望远镜外场实验性能改进和结果分析.光学学报,2012,32(2):02010041-02010047.
    [1]陈卫.傅里叶望远术的理论和实验研究[硕士学位论文].长沙:国防科技大学.2010.
    [2]郁道银,谈恒英.工程光学.第二版.北京:机械工业出版社,2006.
    [3]季家镕.高等光学教程——光学的基本电磁理论.北京:科学出版社,2007.
    [4] Peter Alekseevich Bakut. Theoretical studies of Fourier telescopy for deep spaceimaging. International Information Academy,1999.1-44imaging. InternationalInformation Academy,1999.1-44.
    [5]吴强,郭光灿.光学.合肥:中国科技大学出版社,2001.
    [6]叶其孝,沈永欢.实用数学手册.第二版.北京:科学出版社,2006.
    [7] R.B Holmes, S.Ma, A. Bhowmik, et al. Analysis and simulation of asynthetic-aperture technique for imaging through a turbulent media. JOSAA,1996,13(2):351-364.
    [8] Roger Jennison, A phase sensitive interferometer technique for the measurementof the Fourier transforms of spatial brightness distributions of small angularextent, Monthly Notices of the Royal Astronomical Society,1958, Vol118:276-284.
    [9] Roger Jennison, The Michelson stellar interferometer: a phase sensitive variationof the optical instrument, Proc. Phys,1961, Soc.78,596–599.
    [10]R. B. Holmes, T. Brinkley. Reconstruction of images of deep space objects usingFourier telescopy. SPIE,1999, Vol3815:11-22.
    [11]Brett Spivey, James Stapp, David Sandler, et al. Phase closure and objectreconstruction algorithm for Fourier telescopy applied to fast-moving targets.Unconventional Imaging II, SPIE,2006, Vol.630702:1-16.
    [12]James Stapp, E.Louis Cuellar, Laurence Chen, et al. Simulation of a Fouriertelescopy imaging system for objects in low Earth orbit. Unconventional ImagingII, Proc.SPIE,2006,Vol.630701:1-11.
    [13]王小伟,黎全,王雁桂,等.傅里叶望远术中的相位闭合分析及其仿真.国防科学技术大学学报.2009,31(1):38-42.
    [14]Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab.信号与系统.第二版,刘树棠译.西安:西安交通大学出版社,1997.
    [15]Joseph W. Goodman.傅里叶光学导论.第三版.北京:电子工业出版社,2006.
    [16]维纳.K.英格尔,约翰.G.普罗克斯.数字信号处理(Matlab版).第二版,刘树棠译.西安:西安交通大学出版社,2008.
    [17]丁康,谢明,杨志坚.离散频谱分析校正理论与技术.北京:科学出版社,2008.
    [18] Offelli C, Petri D. The influence of windowing on the accuracy ofmultifrequency signal parameter estimation. IEEE Trans. Instrum. Meas.,1992,41(2):256-261.
    [1]李晓峰.星地激光通信链路原理与技术.北京:国防工业出版社,2007.
    [2] A. Berk, G.P. Anderson, L.S. Bernstein, et al. MODTRAN4radiative transfermodeling for atmospheric correction. Society of Photo-Optical InstrumentationEngineers (SPIE) Conference Series.1999.
    [3]戴永江.激光雷达原理.北京:国防工业出版社,2002.
    [4]王锋.超窄带双折射滤光器技术研究.中国工程物理研究院硕士论文.2007.
    [5] James Stapp, E.Louis Cuellar, Laurence Chen, et al. Simulation of a Fouriertelescopy imaging system for objects in low Earth orbit. Unconventional ImagingII, Proc.SPIE,2006,Vol.630701:1-11.
    [6] Hamamatsu Photonics.“Photomultiplier Tubes”, http://sales.hamamatsu.com/assets/applications/ETD/pmt_handbook_complete.pdf.
    [7] Stephen. D. Ford, David G. Voela, Victor L. Gamiz. GLINT(Geo Light ImagingNational Testbed)Past,Present,and Future. SPIE,1999, Vol.3815:2-11.
    [8] Xiaojiang J. Pan, Dane W. Hult. Technical Assessment of A100W CW FiberLaser Amplifier for Fourier Telescopy Imaging. Proc. of SPIE,2007, Vol.671205:1-11.
    [9] Peter Alekseevich Bakut. Theoretical studies of Fourier telescopy for deep spaceimaging. International Information Academy,1999.1-44.
    [10]Brett Spivey, James Stapp, David Sandler, et al. Phase closure and objectreconstruction algorithm for Fourier telescopy applied to fast-moving targets.Unconventional Imaging II, SPIE,2006, Vol.630702:1-16.
    [11]董磊,王斌,刘欣悦.多光束傅里叶望远镜的关键技术.中国光学与应用光学.2010,3(5):440-445.
    [12]Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab.信号与系统.第二版,刘树棠译.西安:西安交通大学出版社,1997.
    [13]Joseph W. Goodman.傅里叶光学导论.第三版.北京:电子工业出版社,2006.
    [14]马科斯.波恩,埃米尔.沃耳夫.光学原理:光的传播、干涉和衍射的电磁理论.第七版.北京:电子工业出版社,2009.
    [15]周炳琨,高以智,陈倜嵘,等.激光原理(第六版).北京:国防工业出版社,2009.
    [16]E. Louis Cuellar, James Stapp, Justin Cooper. Laboratory and field experimentaldemonstration of a Fourier telescopy imaging system. Unconventional Imaging,Proc. of SPIE2005,Vol.58960D:1-15.
    [17]汪建业,刘晓春,饶瑞中,等.大气相干长度的昼夜观测.强激光与粒子束.2004,16(1):1-4.
    [18]Drakakis, Konstantinos. A Review of The Available Construction Methods ForGolomb Rulers. Advances in Mathematics of Communications.2009,3(3):235–250.
    [19] L.E. Drain著.王仕康,沈熊,周作元,译.激光多普勒技术.北京:清华大学出版社,1985.
    [20]沈熊.激光多普勒测速技术及应用.北京:清华大学出版社,2004.
    [21]掌蕴东,袁萍,毕勇,等.超窄带光学滤波器.激光技术.1999,23(5):257-261.
    [22]王锋,胡晓阳,叶一东.超窄带滤光技术研究进展.激光与光电子学进展.2007,44(6):62-67.
    [23]S. Le Bohec, M. Daniel, W.J. de Wit, et al. Stellar intensity interferometry withair cherenkov telescope arrays. AIP Conf. Proc. The Universe et sub-secondtimescales,2008,984:205-215.
    [24]P. D. Nu nez, S. LeBohec, D.B. Kieda, et al. Stellar intensity interferometry:Imaging capabilities of air Cherenkov telescope arrays”, Proc. SPIE7734,2010,7734-47.
    [25]Steve Mitchell. Survey of PMT Photocathode Quantum Efficiencies. ECEN5645Spring,2008:1-10
    [26]安毓英,曾晓东.光电探测原理.西安:西安电子科技大学出版社,2004.
    [1] E. Louis Cuellar, James Stapp, Justin Cooper. Laboratory and field experimentaldemonstration of a Fourier telescopy imaging system. Unconventional Imaging,Proc. of SPIE2005,Vol.58960D:1-15.
    [2]叶溯,刘艺,吴健.傅里叶望远术中天线阵列配置对成像质量的影响.强激光与粒子束.2011,23(3):611-616.
    [3]刘扬阳,吕群波,张文喜.大气湍流畸变对空间目标清晰干涉成像仿真研究.物理学报.2010,61(12):124201~1-124201~9.
    [4]叶溯.傅里叶望远术目标重建的研究[硕士学位论文].成都:电子科技大学.2010.
    [5]吴健,杨春平,刘建斌.大气中的光传输理论.北京:北京邮电大学出版社,2005.
    [6] Fante R L. Electromagnetic beam propagation in turbulent media. Proceedings ofIEEE,1975,63(12):790-811.
    [7]李晓峰.星地激光通信链路原理与技术.北京:国防工业出版社,2007.
    [8]李永亮.星地激光通信中光束传输仿真和链路特性关键技术研究[博士学位论文].合肥:中国科学技术大学,2011.
    [9]周磊,任戈,谭毅,等.利用极大似然法统计回波信号实现光束闭环瞄准实验研究[J].中国激光,2012,39:0308003.
    [10]沈熊.激光多普勒测速技术及应用.北京:清华大学出版社,2004.
    [11]俞宽新,丁晓红,庞兆广.声光原理与声光器件.北京:科学出版社,2011.
    [12]郝爱花,毛智礼,葛海波.声光技术在激光技术领域中的应用研究.西安邮电大学学报,2005,10(3):111-114.
    [13]尚建华,任立红,徐海芹等,基于双声光移频器的外差式激光多普勒测振计.光子学报,1999,19(10):1368-1374.
    [14]丁康,郑春松,杨志坚.离散频谱能量重心法频率校正精度分析及改进.机械工程学报.2010,46(5):43-48.
    [15]黄云志,徐科军.基于相位差的频谱校正方法的研究.振动与冲击.2005,24(2):77-86.
    [16]周健,黄华.频谱细化及频谱校正技术在激光多普勒测速仪中的应用.激光与红外.2010,40(2):144-151.
    [17]刘昌文,韩静娜,刘杰,等.激光多普勒测速中的频谱校正及其应用.中国激光,2003,30(7):642-646.
    [18]周健,龙兴武,魏国.基于Labview的激光多普勒测速仪的频谱校正.强激光与粒子束,2010,22(1):9-14.
    [19]丁康,谢明,杨志坚.离散频谱分析校正理论与技术.北京:科学出版社,2008.
    [20]维纳.K.英格尔,约翰.G.普罗克斯.数字信号处理(Matlab版).第二版,刘树棠译.西安:西安交通大学出版社,2008.
    [1]于伟莉.激光光斑中心位置计算方法的研究[硕士学位论文].长春:长春理工大学.2008.
    [2]杨杰.数字图像处理及Matlab实现.北京:电子工业出版社,2011.
    [3] William J. Palm著,黄开枝,译. Matlab7基础教程——面向工程应用.北京:清华大学出版社,2007.
    [1]殷纯永.现代干涉测量技术.天津:天津大学出版社,1999.
    [2] Truax, Bruce E, Demarest, Frank C, Sommargren, Gary E.Laser Dopplervelocimeter for velocity and length measurements of moving surfaces. AppliedOptics,1984,67-73.
    [3] Bankman. Analytical model of doppler spectra of coherent light backscatteredfrom rotating cones and cylinders. Optical Society of America.2000,17(3):465-475.
    [4] www.brimrose.com.
    [5]沈熊.激光多普勒测速技术及应用.北京:清华大学出版社,2004.
    [6]孙文瑜.最优化方法.北京:高等教育出版社,2004.
    [7]龚纯,王正林.精通Matlab最优化计算.北京:电子工业出版社,2012.
    [8]谢明,丁康.频谱分析的校正方法.振动工程学报,1994,7(2):172-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700