胸腰椎压缩性骨折有限元模型的建立及过伸复位治疗的生物力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建脊柱胸腰段以及胸腰椎单纯压缩性骨折的三维非线性有限元模型并进行有效性验证,在此基础上探讨过伸复位法治疗胸腰椎压缩性骨折的机制。
     方法:依据一例青年男性志愿者脊柱胸腰段超薄CT扫描数据,重建T_(11)-L_2的三维几何形状,自动划分单元网格,根据CT值对骨骼结构的材料属性进行分级定义。手工建立椎间盘的大体模型,划分精细的单元网格,椎间盘各部分之间进行布尔运算。根据解剖学资料建立各组韧带单元,采用6点阶段线性法模拟韧带的力一位移曲线定义韧带单元的材料属性。在关节突关节处添加不同厚度的软骨单元和接触对,模拟关节接触的力学行为。脊柱胸腰段三维非线性有限元模型构建完毕后,施加与尸体标本力学实验相同的静态力矩载荷,模拟脊柱胸腰段的各种运动,对模型的有效性进行验证。在验证有效的脊柱胸腰段三维非线性有限元模型上以施加位移的方式模拟椎体压缩骨折的受伤机制建立T_(12)、T_(12)L_1椎体压缩性骨折的有限元模型,并依据1例临床T_(12)椎体压缩性骨折患者的超薄CT扫描数据直接建立T_(12)椎体压缩性骨折的有限元模型,并对两个模型加载进行有效性验证。在以正常原始资料所建的T_(12)椎体压缩性骨折的有限元模型上于不同的过伸支点模拟临床过伸复位手法,分析复位过程中受伤椎骨不同部位的应力和位移改变。
     结果:构建的脊柱胸腰段三维非线性有限元模型包含T_(11)-L_2的四个椎骨、3个椎间盘及相应韧带、关节软骨等重要结构。对模型施加生理载荷后,在前屈、后伸、旋转和侧屈运动中的关节活动范围与尸体实验结果接近。在较小载荷范围内,模型获得了较大的运动范围,随着载荷的增加,运动范围的增加量趋于稳定。模型表现出明显的非线性力学行为。两个T_(12)椎体压缩性骨折有限元模型的结构相当,加载后表现出相似的非线性力学行为。骨折模型在不同的过伸支点施加复位载荷后表现出了不同的复位效果,当过伸支点在T_(12)棘突顶点处时其位移改变最明显,受伤椎骨各部位的力学特性最稳定,但是小关节承受了较大的应力。
     结论:所建脊柱胸腰段和胸腰椎骨折三维非线性有限元模型的生物力学特征基本上符合人体真实的运动规律,可以进一步用于脊柱胸腰段的相关生物力学实验。应用正常原始资料构建相关疾病有限元模型的方法切实可行。过伸复位的支点应选在受伤椎骨的棘突顶点,复位过程中小关节承受较大的应力,可能并发小关节损伤而引起后期的腰背痛。
Objective: To construct and validate the effectiveness of the 3-D nonlinear finite element models of thoracolumbar and thoracolumbar vertebral compression fractures and investigate the biomechanical mechanism of the treatment about thoracolumbar vertebral compression fractures by hyperextending.
     Methods: Reconstructed the 3-dimensional bone-geometry of T_(11)-L_2 based on the ultrathin CT scan datas of a young male volunteer.After automatic element meshing, we defined material property of bones by CT value based grading method. We constructedthe volumeof 3 discs and performed refined meshing by hand. The every part of the disc carry out boolean operating.All ligament-elements were constructed according to their anatomic research datas, whose material property were defined by their forcedisplacement curve that modeled with 6 point staged linear method. The elements of cartilages and contact pairs were constructed on the joint surfaces of the zygapophysial joints to simulate contact behavior of joints. After the 3-D nonlinear finite element model of thoracolumbar was constructed, this model was applied static moment load that equals to cadaver mechanic experiment, to simulate various movements of thoracolumbar and validate the effectiveness of this model. After validation of this finite element model of thoracolumbar to establish the 3-D nonlinear finite element models of the compression fractures of T_(12) and T_(12)L_1 by imposing displacement and simulating the injury mechanism of thoracolumbar vertebral compression fractures. Then establish the 3-D nonlinear finite element models of the compression fractures of T_(12) based on the ultrathin CT scan datas of one patient of the compression fractures of T_(12). Validated the effectiveness of the two models by applying static moment loads. Simulate the clinical reduction approach of hyperextension at the different fulcrum of the 3-D nonlinear finite element models of the compression fractures of T_(12) based on the original datas from the normal human. Analysing the changes of stress and displacement about the different parts of the injured vertebra in the entire reduction.
     Results: This 3-D nonlinear finite element model of thoracolumbar included four vertebraes,three discs, the ligaments and all joint cartilages and ligaments. By applying physiological load, the range of movement of flexion, extension, rotation and flexor was similar to results of cadaver mechanic experiment.This model gained large range of movement within small load range. With increasing load, the increment of range of movement trended to constant. This model showed apparent nonlinear mechanic feature.The structures of 2 finite element models of the compression fractures of T_(12) are similar and they showed simila rnonlinear mechanic feature. This model of compression fracture showed the different reseting-effects after imposing reseting-load at different fulcrum. The change of displacement is the most obvious when the reseting-fulcrum is at the top of spinous process of T_(12) vertebral, the mechanic feature of various parts of the injured vertebral is the most stable, but the stress of the zygapophysial joints is larger.
     Conclusion: The biomechanical feature of the 3-D nonlinear finite element models of thoracolumbar and thoracolumbar vertebral compression fractures is mainly consistent with true human movement pattern. The models can be further used in biomechanical experiment of thoracolumbar vertebral.The method of establishing the 3-D nonlinear finite element models of the compression fractures based on the ultrathin CT scan datas of normal human is feasible. The reseting-fulcrum should be elected at the top of the spinous process of the injured vertebra, the stress of the zygapophysial joints is large in the course of the reseting, this is one of the reasons of injury of zygapo-physial joints and later low back pain.
引文
[1]刘尚礼.重视胸腰段骨折治疗[J].中华创伤杂志,2006; 22 (1) : 5-7.
    [2]宋海涛,贾连顺.胸腰椎骨折的分类[J].创伤外科杂志,2001;3(4):313-315.
    [3]Panjabi MM,Summers DJ,Pelker RR,et a1.Three-dimensional load displacement curves due to forces on the cervical spine[J].J Orthop Res.1986;4(2):152-161.
    [4]Panjabi MM,Goel VK,Takata K.Physiological strains in the lumbar spinal ligaments.an in vitro biomechanical study 1981 Volov Award in Biomechanics[J].Spine.1982;7(3):192-203.
    [5]郭照江.哈维启示录-纪念哈维发现血液循环390周年.医学与哲学,2006;27(8):65-66.
    [6]Hollowell JP,Reinartz J,Pintar FA,et al.Failure of synthes anterior cervical fixation device by fracture of Morscher screws:a biomechanical study[J].J Spinal Disord.1994;7(2):120-125.
    [7]Wilke HJ,Kettler A,Claes LE.Are sheep spines a valid biomechanical model for human spines [J]?Spine.1997,15;22(20):2365-2374.
    [8]Shen FH,Samartzis D,Herman J,et al.Radiographic assessment of segmental motion at the atlantoaxial junction in the Klippel-Feil patient[J].Spine.2006 Jan15;31(2):171-177.
    [9]RCourant.variational method for solutions of problems of equilibrium and vibration[J].Am.Math.Soc.1943;49(3):1-23.
    [10]Turner,M.J,Clough,R.W,Martin,H.C,et al.Stiffness and deflection analysis of complex structures[J].J Aero,Sci,1956;23(6):805-823.
    [11]商跃进主编.有限元原理与ANSYS应用指南[M].第1版,北京:清华大学出版社,2005: 2-17.
    [12]王勖成,邵敏.有限单元法基本原理和数值方法[M].第2版,北京: 清华大学出版社,1997: 27.
    [13]Liu YK,Ray G,Hirsch C.The resistance of the lumber spine to direct shear[J].Orthop Clin North Am, 1975;6(1):33-49.
    [14]余列道,杨国敬,张力成.胸腰段三维非线性有限元建模及临床意义[J].浙江创伤外科,2002;7(5):281-283.
    [15]程立明,陈仲强,张美超,等.胸腰段后凸畸形对相邻椎间盘力学影响的三维有限元分析[J].中国临床解剖学杂志,2003; 21 (3) : 273-276.
    [16]李健,徐晖,程立明,等.胸腰段椎体压缩性骨折三维有限元模型的建立及其意义[J].中国临床解剖学杂志,2003;23(2):199-201.
    [1]Du Ping-an,Gan E-zhong,Yu Ya-ting.Finite Element Mothod :Principle,Modeling and application(M).Beijing,National Defence Industry Press,2004:1-6.
    [2]Liu YK,Ray G,Hirsch C,The resistance of the lumber spine to direct shear[J].Orthop Clin North Am, 1975;6(1):33-49.
    [3]Gilbertson LG;Goel VK,Kong WZ,et al.Finite element mothods in spine biomechanics research [J].Crit Rev Biomed Eng,1995;23(5-6):411-473.
    [4]Teo EC,Lee KK,Ng HW,et al.Determination of lode transmission and contact force at facet joints ofL_2-L_3segment using finite element mothod[J].Journal of Musculoskeletal Research, 2003; 7(2):97-109.
    [5]Rohlmann A,Zander T,Schmidt H,et al.Analysis of the influence of disc degenerate on the mechanical behaviour of a lumbar motion segment using finite element mothod[J].J Biomech,2006;39(13):2484-2490.
    [6]Kopperdahl DL,Morgan EF,Keaveny TM.Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone[J].J Orthop Res.2002; 20(4): 801-805.
    [7]Burstein AH,Reilly DT,Martens M.Aging of bone tissue:mechanical properties[J].J Bone joint Surg Am, 1976;58(1):82-86.
    [8]Puttlitz CM,Goel VK,Clark CR,et al.Biomechanical rational for the pathology of rheumatoid arthritis in the craniovertebral junction[J].Spine,2000;25(13):1607-1616.
    [9]Shirazi-adl SA,Shrivastava SC,Ahmed AM.Stress analysis of the lumbar discbody unit in compression,A three-dimensional nonlinear finite element study[J].Spine,1984;9(2):120-134.
    [10]CHEN Zhi-ing,CHEN Qi-xin,LI Fang-cai,et al.Correlation between the concave angle of vertebral end-plate and lumbar disc degeneration[J].China Journal of Orthopaedics and Traumatology,2004;7(17):396-399.
    [11]Lu YM,Hutton WC,Gharpuray VM.Do bending,twisting,and diurnal fluid changes in the disc affect the propensity to prolapse?A viscOelastic finite element method model[J].Spine,1996;21(22):2570-2579.
    [12]Goel VK,Kim YE,Lim TH,et al.An analytical investigation of the mechanics of spinal instrumentation[J].Spine,1988;13(9):1003-1011.
    [13]Evans FGtrength of biological materials[M].Baltiomore:Williams and Wilkins,1970:57.
    [14]Wu HC,Yao RF.Mechanical behavior of the human annulus fibrosus[J].J Biomech,1976;9(1):l-7.
    [15]Brown T,Hanste RJ,Yorra AJ.Some mechanical tests on the lumbosacral spine with particular reference to intervertebral discs[J].J Bone Joint Surg Am,1957;39(5):1135-1164.
    [16]Markolf KL.Deformation of the thoracolumbar intervertebral joints in response to external load:a biomechanical study using autopsy material[J].J Bone Joint Sung Am,1972;54(3):511-533.
    [17]Virgin WJ.Experimental investigations into the physical properties of the intervertebral disc[J].J Bone Joint Surg Br,1951;33(4):607-611.
    [18]Tencer AF,Ahmed AM,Burke DL.Some static mechanical properties of the lumbar intervertebral joint:intact and injured[J].Biomech Eng,1982;104(3):193-201.
    [19]Schltz AB,Warwich DN,Berkson MH,et al.Mechanical properties of human lumbar spine motion segments parti responses in flexion,extension, lateral bending, and torsion [J].J Biomech Eng,1979;12(101):46-52.
    [20]Markolf KL, Morris JM.The structural components of the intervertebra disc.A study of their contributions to the ability of the disc to withstand compressive forces [J].J Bone Joint Surg Am,1974;56(4):675-687.
    [21]Andersson GB, Schultz A.B.Effects of fluid injection on mechanical properties of intervertebral discs [J].J Biomech,1979;12(6):453-458.
    [22]刘尚礼.重视胸腰段骨折治疗[J].中华创伤杂志,2006;22(1):5-7.
    [23]刘宏建,杜靖远.沙袋垫枕法治疗胸腰段稳定型屈曲压缩性骨折[J].中国中医骨伤科杂志,2003; 11 (2) : 38-39.
    [24]徐又佳,郑祖根,董启榕,等.不同复位方式恢复第一腰椎骨折后椎前高度的实验研究[J].中华骨科杂志,2000;20(11):672-676.
    [25]宋海涛,贾连顺.胸腰椎骨折的分类[J].创伤外科杂志,2001;3(4):313-315.
    [26]Goel VK,Gibertson LG.Applications of the finite element method to thoracolumbar spinal research-past,present and future [J].Spine, 1995; 20 (15):1719-1727.
    [27]Yoganandan N,Kumaresan S,Voo L,et al.Finite element applicasions in human cervical spine modeling [J].Spine,1996;21(15):1824-1834.
    [28]于开平,周传月.HyperMesh从入门到精通[M].第1版,北京:科学出版社,2005.5:前言.
    [29]刘雷,沈根标,张聪,等.破坏载荷下老年人椎间盘退变对胸腰椎应力分布影响的研究[J].中国老年学杂志,2000; 20 (1) : 24-25.
    [30]余列道,杨国敬,张力成.胸腰段三维非线性有限元建模及临床意义[J].浙江创伤外科,2002; 7 (5) : 281-283.
    [31]关海山,韩来春,马迅,等.有限元研究肌肉力对胸腰椎节段椎体应力的影响[J].中国药物与临床,2007;7(12):904-907.
    [32]Rho JYHobatho MC,Ashman RB.Relations of mechanical properties to density and CT numbers in human bone[J].Med Eng Phys.1995;17(5):347-55.
    [1]刘尚礼.重视胸腰段骨折治疗[J].中华创伤杂志,2006; 22 (1) : 5-7.
    [2]刘宏建,杜靖远.沙袋垫枕法治疗胸腰段稳定型屈曲压缩性骨折[J].中国中医骨伤科志,2003; 11 (2) : 38-39.
    [3]徐又佳,郑祖根,董启榕,等.不同复位方式恢复第一腰椎骨折后椎前高度的实验研究[J].中华骨科杂志,2000;20(11):672-676.
    [4]宋海涛,贾连顺.胸腰椎骨折的分类[J].创伤外科杂志,2001; 3 (4) :313-315.
    [5]Mcafee PC,Levine AM,Anderson PA,et al.Surgical management of thoracolumbar factures [J].AAOS instructional Course Lecture, 1995;44(3):47-55.
    [6]陈晓亮.脊柱外科实用图谱[M].第1版,北京:人民卫生出版社,2003: 46-47.
    [7]Singh K,Vaccaro AR,Eichenbaum MD, et al .The surgical management of thoracolumbar injuries[J].J Spinal Cord Med,2004;27( 2): 95-101.
    [8]Mclain RF.The biomechamics of long versus short fixation for thoracolunbar spine fractures[J].Spine, 2006;31(11 Suppl):70-79.
    [9]Schroeder Y,Wilson W,Huyghe JM,etal.Osmoviscoelastic finite element model of the intervertebral disc [J].EurSpine J,2006;15(Suppl)3:361-371.
    [1]徐又佳,郑祖根,董启榕,等.不同复位方式恢复第一腰椎骨折后椎前高度的实验研究[J].中华骨科杂志,2000; 20 (11) : 672-676.
    [2]宋海涛,贾连顺.胸腰椎骨折的分类[J].创伤外科杂志,2001; 3 (4) :313-315.
    [3]Mcafee PC,Levine AM,Anderson PA,et al.Surgical management of thoracolumbar factures [J].AAOS instructional Course Lecture, 1995;44(3):47-55.
    [4]Kostuik JP Ducker TB,Hadler NM.Thoracolumbar fracture.in:Frymoyer JW ed.The Adule Spine,New York:Raven Press, 1991:1269-1330.
    [5]孟和,顾志华.骨伤科生物力学[M].第二版,北京,人民卫生出版社,2004: 371,
    [6]毕胜,李义凯,汪爱媛,等.不同推拿手法下腰椎小关节应力变化的观察[J].中国康复医学杂志,2001; 16 (3) : 144.
    [7]毕胜,李义凯,赵卫东,等.推拿手法治疗腰椎间盘突出症的机制[J].中国康复医学杂志,2001; 16 (1) : 8.
    [8]张勇,毕胜,赵卫东,等.腰椎旋转手法对髓核内压力和神经根位移的影响[J].颈肩痛杂志,2001; 22 (3) : 184.
    [9]毕胜,李义凯,赵卫东,等.模拟腰部斜扳手法的生物力学研究[J].中国运动医学杂志,2002; 21 (3) : 323.
    [10]张美超,肖进,李义凯,等.腰椎小关节接触模型的有限元分析[J].第一军医大学学报,2002; 22 (9) : 836.
    [11]程方荣,崔红新,王学昌,等.用有限元法研究桡骨远端伸直型骨折的机理[J].中医正骨,2005;17(6):21-22.
    [12]程方荣,崔红新,王学昌,等.儿童与成人桡骨远端屈曲型骨折产生机制的比较研究[J].中国骨伤,2007;20(6):386-388.
    [13]杜志雄,严金林,严斌,等.倒悬旋转手法时腰椎各结构的应力分布 [J].时珍国医国药,2007;18(4):785-787.
    [14]徐海涛,张美超,徐达传,等.三种前屈角度下坐位旋转手法对腰椎间盘作用的有限元分析[J].中国疗养医学;2008; 17 (2) : 65-67.
    [15]黄志,袁国庆,马奔.单纯性胸腰段压缩性骨折采用快速过伸复位法治疗体会[J].中国综合临床,2001; 17 (5) : 391.
    [16]范炳华,绍岳军,吕容坤,等.垫枕在胸腰椎压缩性骨折中作用原理的光弹研究I [J].中国临床康复,2002;6(2):202-203.
    [17]孟和,顾志华.骨伤科生物力学[M].第二版,北京,人民卫生出版社,2004:324.
    [18]周学龙.胸腰椎骨折筋伤与腰背痛关系的临床研究[J].中医正骨,2 0 04; 16 (2):5-6.
    [19]熊昌源,孙昌慈,郭金星,等.垫枕练功法治疗脊柱胸腰段屈曲压缩性骨折疗效分析[J].湖北中医杂志,1989; (6) : 36-37.
    [1]徐又佳,郑祖根,董启榕,等.不同复位方式恢复第一腰椎骨折后椎前高度的实验研究[J].中华骨科杂志,2000;20(11):672-676.
    [2]宋海涛,贾连顺.胸腰椎骨折的分类[J].创伤外科杂志,2001; 3 (4) :313-315.
    [3]刘尚礼.重视胸腰段骨折治疗[J].中华创伤杂志,2006;22(1):5-7.
    [4]刘宏建,杜靖远.沙袋垫枕法治疗胸腰段稳定型屈曲压缩性骨折[J].中国中医骨伤科志,2003; 11 (2) : 38-39.
    [5]Mcafee PC,Levine AM,Anderson PA,et al.Surgical management of thoracolumbar factures[J].AAOS instructional Course Lecture, 1995;44(3):47-55.
    [6]Kostuik JP,Ducker TB,Hadler NM.Thoracolumbarfracture.in:Frymoyer JW ed.The Adule Spine,New York:Raven Press,1991:1269-1330.
    [7]Shirahama M.Surgical treatment of vertically unstable sacral fractures using a new plate[J].Kurume Med J,2005;52(1):9-18.
    [8]海涌,马华松,邹德威.脊柱胸腰段骨折研究进展[J].临床骨科杂志,1999; 2 (2):153-155.
    [9]Roberson JR ,Whitesides TE.Surgical reconstruction of late post-traumatic thoracolumbar kyphosis[J].Spine, 1985;10(3):307-312.
    [10]Knight RQ,Stornelli DP,Chan DP.Comparison of operation versus nonop- eration treatment of Lumbar burst fractures [J].ClinOrthop, 1993; (293):112-121.
    [11]黄志,袁国庆,马奔.单纯性胸腰段压缩性骨折采用快速过伸复位法治疗体会[J].中国综合临床, 2001; 17 (5) : 391.
    [12]何升华,彭俊宇,赵祥.按压法治疗胸腰段压缩性骨折的临床研究[J].中国骨伤,2007;20(11):752-753.
    [13]熊昌源,孙昌慈,郭金星,等.垫枕练功法治疗脊柱胸腰段屈曲压缩性骨折疗效分析[J].湖北中医杂志,1989; (6) : 36-37.
    [14]黄志,袁国庆,马奔.单纯性胸腰段压缩性骨折采用快速过伸复位法治疗体会[J].中国综合临床,2001; 17 (5) : 391.
    [15]Hashimoto T,Kaneda K,Abumi K.Relationship between traumatic spinal canal stenosis and neurological deficits in thoracolumbar burst fractures[J].Spine, 1988;13(11):1268-1272.
    [16]顾云五,肖冠军,董福慧,等.胸腰段脊柱屈曲型压缩骨折“自身复位”疗法的生物力学探讨[J].中华骨科杂志,1984; 4 (1) : 14.
    [17]沈虹.沙袋垫枕配合功能锻炼治疗胸腰段单纯性压缩骨折[J].中国骨伤,2006; 19 (3) : 185.
    [18]李孝林,杨传美,梅启元.仰卧悬吊复位法治疗胸腰段屈曲性骨折30例[J].实用中医药杂志,2007; 23 (11) : 720.
    [19]汤雅全,戴君,朱巧云,等.单人徒手仰卧过伸复位法治疗胸腰椎屈曲压缩骨折[J].中医正骨,1997; 9 (6) : 31-32.
    [20]雷亮,赵显,冯润,等.俯卧过伸牵引加手法复位治疗胸腰椎压缩骨折[J].现代中医药,2007;27(2):30-31.
    [21]毕大卫,尚天裕,高瑞亭.垫枕对胸腰椎压缩性骨折治疗作用的生物力学研究[J].中国中医骨伤科杂志,1991; 7 (3): 11-15.
    [22]赵凡.垫枕练功疗法治疗脊柱骨折的生物力学探讨[J].辽宁中医学院学报,1984; 1 (1) : 59.
    [23]范炳华,绍岳军,吕容坤,等.垫枕在胸腰椎压缩性骨折中作用原理的光弹研究Ⅰ [J].中国临床康复,2002;6(2):202-203.
    [24]范炳华,绍岳军,吕容坤,等.垫枕在胸腰椎压缩性骨折中作用原理的光弹研究Ⅱ [J].中国临床康复,2002;6(4):504-505.
    [25]黄志,袁国庆,马奔.单纯性胸腰段压缩性骨折采用快速过伸复位法治疗体会[J].中国综合临床,2001; 17 (5) : 391.
    [1]陈精一,蔡国忠,电脑辅助工程分析[M].第1版,北京:中国铁道出版社,2001:2.
    [2]Belytschko T,Kulak RF,Schultz AB, et al.Finite element stress analysis of an intervertebral disc[J].J Biomech(Eng),1974;7(1):277-285.
    [3]张德盛,宋跃明.L_3-L_5三维非线性有限元模型的建立及其临床意义[J].生物医学工程学杂志,2006;23(6):1250-1252.
    [4]胡辉莹,钟世镇,张美超,等.人体胸廓三维有限元模型的建立及应力分析研究[J].中国急救医学,2007; 27 (12) : 1098-1101.
    [5]汪学松,吴志宏,王以朋,等.三维有限元法构建青少年特发性脊柱侧弯模型[J].中国组织工程研究与临床康复,2008;12(44):8610-8614
    [6]葛磊,李康华.三维有限元法人工椎间盘力学分析[J].中南大学学报(医学版), 2008; 33 (11) : 1041-1045.
    [7]王华,林博文,黎伟凡.人工腰椎间盘置换的有限元模型[J].中国组织工程研究与临床康复,2008;12(13):2405-2408.
    [8]Ng HW,Teo EC,Lee KK, et al.Finite element analysis of cervical spinal instability under physiologic loading[J].Journal of Spinal Disorders and Techniques,2003;16(1):55-65.
    [9]Schroeder Y,Wilson W,Huyghe JM,et al.Osmoviscoelastic finite element model of the intervertebral disc[J].EurSpine J,2006;15(Suppl)3:361-371.
    [10]Silva MJ,Keaveny TM,Hayes WC.Loud sharing between the shell and centrum in the lumbar vertebral body[J].Spine,1997;22(2):140-150.
    [11]Eswaran SK,Gupta A,AdamsMF,etal.Cortical and trabecular load sharing in the human vertebral body[J]J Bone MinerRes,2006;21(2):307-314.
    [12]Overaker DW,Langrana NA,Cuitino AM.Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core[J].JBiomech Eng,1999;121(5):542-550.
    [13]Shirazi-AdlA.Nonlinear stress analysis of the whole lumbar spine in torsion-mechanics of facet articulation[J].J Biomech,1994;27(3):289-299.
    [14]Whyne CM,Hu SS,Klisch S,et al.Effect of the pedicle and posterior arch on vertebral body strength predictions in finite element modeling[J].Spine,1998;23(8):899-907.
    [15]Zander T,Rohlmann A,Calisse J,et al.Estimation of muscle forces in the lumbar spine during upper-body inclination[J].Clin Biomech,2001;16(1):73-80.
    [16]Brolin K,Halldin P,Leijonhufvud I.The effect of muscle activation on neck response[J].Traffic InjPrev,2005;6(1):67-76.
    [17]Zander T,Rohlmann A,BergmannG,et al.Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit[J].Biomed Tech(Berl),2004;49(1-2):27-32.
    [18]Lim TH,Kwon H,Joen CH,et al.Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anaterior cervical spine fusion[J].Spine,2001;26(8):951-956.
    [19]Kim Y.Prediction of mechanical behaviours at interfaces between bone and two interbody cages of lumbar spine segments[J].Spine,2001; 26(13):1437-1442.
    [20]Puttlitz CM,Goel VK,Traynelis VC, et al.A finite element investigation of upper cervical instrumentation [J].Spine, 200 1; 26(22):2449-245 5.
    [21]Lim TH, Eck JC, An HS, et al.Biomechanics of transfixation in pedicle screw instrumentation [J].Spine, 1996; 21(18):2224-2229.
    [22]Lim TH,Kim JG,Fujiwara A, et al.Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation [J].Spine; 2001,26(22):2498 -2503.
    [23]Jeffrey LS, Vijay KG,Nicole MG,et al.Anterior plate and bone graft load sharing in the cervical spine-a finite element investigation[R],presented at the twenty-first annual meeting of the american society of biomechanics university of Pittsburgh, 1999; 21-23.
    [24]张美超,黄文华,王柏川,等.应用有限元法评价颈前路碟形钢板的力学性能[J].第一军医大学学报,2001;21(10):740-742.
    [25]Dooris AP,Goel VK,Grosland NM,et al.Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc[J].Spine, 2001;26(6):122-129.
    [26]毕胜,张德文,张明,等.模拟腰部推拿手法三维有限元模型分析[J].军医进修学院学报,2002;23(1):67-69.
    [27]徐海涛,徐达传,李云贵,等.坐位旋转手法时退变腰椎间盘内在应力和位移的有限元分析[J].中国康复医学杂志,2007;22(9):769-771.
    [28]徐海涛,徐达传,张美超,等.坐位旋转手法时L_(4-5)变形和位移的研究[J].中国临床解剖学杂志,2008;26(3):321-324.
    [29]王国林,张美超,李义凯,等.三种腰椎前屈状态下坐位腰椎旋转手法比较研究[J].颈腰痛杂志,2008;29(1):24-26.
    [30]陈浩,徐海涛,张美超,等.坐位旋转手法对腰椎内在应力的实时监测[J].中国临床解剖学杂志,2005; 23 (4) : 420-322.
    [31]桂志雄,严金林,严斌,等.倒悬旋转手法时腰椎各结构的应力分布 [J].时珍国医国药,2007;18(4):785-787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700