结构缺陷和损伤对桁架拱桥极限承载力的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已建公路钢筋混凝土桁架拱桥大多存在如下病害:下弦杆拱脚处横向开裂;弦杆端部节点裂缝;桁架拱片歪扭;横系梁、横拉杆、横隔板竖向开裂;桥面板裂缝、破碎;伸缩缝破损或者缺少;人行道变形下垂,位于两跨接缝处人行道和拉杆横向裂缝。有必要研究在役钢筋混凝土桁架拱桥存在多种缺陷和损伤情况下的极限承载力,为确定其实际承载能力和进行安全性评估提供依据。
     本文综述了国内外拱桥承载力研究状况,缺陷和损伤对拱结构影响的研究进展,分析比较了拱桥极限承载力不同分析方法,以某桁架拱桥为工程背景,对该类有缺陷和损伤钢筋混凝土桁架拱桥的极限承载力进行了分析研究。
     论文根据钢筋混凝土桁架拱桥的各杆件均以承受轴力为主、节点处弯矩较小的受力特点,基于钢筋与混凝土共同工作、协调变形原理,推导出适合于钢筋混凝土桁架单元分析的理想弹塑性复合材料拉压不对称本构关系;按比拟杆—附加弹簧模型简化等效桩土相互作用;对钢筋混凝土桁架拱桥建立考虑非线性效应的有限元分析数值模型。分别采用线弹性、几何非线性及双重非线性等分析方法对三种不同结构形式桁架拱桥进行了极限承载力对比分析,研究了非线性效应对于钢筋混凝土桁架拱桥承载力分析结果的影响程度。结果表明,钢筋混凝土桁架拱桥极限承载力分析,更宜采用考虑几何非线性和材料非线性的双重非线性分析方法。荷载作用工况对拱桥极限承载力有很大影响,给出了不同荷载工况下结构的破坏过程及破坏模式,并归纳出两种最不利的荷载工况。
     通过数学方法,从条件随机变量出发,推导出缺陷随机分布方式;论文基于双重非线性分析方法,研究了具有不同的面内、面外缺陷分布形式桁架拱桥的极限承载力。对于三种结构形式的桁架拱桥,将一阶特征值屈曲模态作为结构的面内、外缺陷分布形式,随着缺陷幅值的增大,结构极限承载力不断下降;在缺陷幅值控制在跨径的1/1500以内时,缺陷对结构的极限承载力影响很小;当缺陷幅值超过跨径的1/1500后,随着缺陷幅值的增大,极限承载力会有很大下降。与面内缺陷相比,当缺陷幅值在跨径的1/500以内时,同样的缺陷幅值,面外缺陷对于极限承载力的影响要小于面内缺陷;但是,当缺陷幅值超过跨径的1/500以后,同样的缺陷幅值,面外缺陷对于极限承载力的影响要大于面内缺陷。无论面内缺陷分布方式还是面外缺陷分布方式,特征值屈曲形式的缺陷分布不一定是最不利的缺陷分布方式,如六阶随机缺陷分布方式对极限承载力的影响就大于特征值屈曲形式的缺陷分布方式。但是,一者高阶的缺陷分布方式出现的概率较小,再者特征值屈曲形式的缺陷分布方式对极限承载力的影响要大于绝大多数随机缺陷分布方式,所以,大多数情况下,可以近似地认为特征值屈曲形式的缺陷分布方式接近于最不利的缺陷分布方式。
     损伤程度的增大,引起结构刚度的下降,导致结构变形的增大;而且随着损伤程度越大,结构变形的增大速率越大,呈非线性变化。随着损伤程度的增大,结构的极限活荷载系数成线性下降。通过规律性分析,得出有损伤结构极限活荷载系数λ=λ0(1-1.1×η)。实桥非线性分析与简化分析结果对比表明,含缺陷、损伤桁架拱桥结构简化分析方法与非线性分析所得极限活荷载系数相差较小,本文推导的简化分析方法可以作为在一定缺陷和损伤情况下,桁架拱桥结构极限承载力近似计算方法。综合目前国内外常见的几种结构稳定安全系数定义,给出了适合于在役旧钢筋混凝土桁架拱桥的结构稳定安全系数定义方法及最低容许值为5的建议。我国现行《公路桥涵施工技术规范》(JTJ041-2000)所给拱肋施工允许偏差略显保守,轴线横向偏位的允许范围可略大于竖向偏位的允许范围。
     本文的研究有助于了解桁架拱桥的破坏形式、破坏过程,和影响该类桁架拱桥极限承载力的主要因素,并为在役拱桥运营多年后有缺陷和损伤桁架拱桥极限承载能力评估、超载能力和安全性评价等提供了有益的经验和建议。
Most of the as-built reinforced concrete trussed arch bridges on highways in our contry have following defects:transverse crack in lower chord near arch spring; crack at the end nodes of chords; distortion of the truss pieces; vertical crack in straining beams, tie rods, and transverse diaphragms; crack even crush of deck slabs; breakage or lack of expansion and contraction joints; deflection of sidewalks; transverse crack in sidewalks and tie rods near the joint seams between two span. It is necessary to study the ultimate load bearing capacity of reinforced concrete trussed arch bridge in service which contains multiple defects and damage, and provide basis in order to determine the actual bearing capacity and conduct safety evaluation.
     This paper reviews research conditions of bearing capacity of arch bridge, and research outcome about the infection of defects and damage to the arch structure. Analysing and comparing the different analytical methods of ultimate load bearing capacity of trussed arch bridge. Under the background of one trussed arch bridge, the ultimate load bearing capacity of reinforced concrete trussed arch bridge with defects and damage has been studied.
     Because all staffs of RC trussed arch bridge mainly bear axial forces, and only bear very small bending moment near the nodes, so spatial beam cells can be adopted to simulate the structure in the paper; moreover based on the theory that the steel and concrete can work together and distort in phase, the steel and concrete of RC trussed structure can be equal to one ideal elastic-plastic combined material with dissymmetrical constitutive relation of stress-press, the constitutive relation deduced by the paper can benefit to the same kind of RC trussed structure. Furthermore, the reciprocity of peg and soil is equaled to pole-spring model. Three kinds of trussed arch bridges with different structural forms are contrasted and analyzed, considered linearity, geometric nonlinearity, and dual nonlinearity respectively(both geometric nonlinearity and material nonlinearity), and the nonlinear influence on the analysis effects of RC trussed multi-arch bridges is studied. The analysis effects indicate:In order to get accurate results, the influence of geometric and material nonlinearity must be considered when the ultimate load bearing capacity of RC trussed arch bridges is studied. Loading form of the arch bridge has great influence on ultimate load bearing capacity, given the structure failure process and damage model under different load operating forms, and sumed up the most two adverse load forms.
     By mathematical methods, from the conditional random variables, the randomly distributed modes of defects are deduced. Based on dual nonlinear analysis method, the ultimate load bearing capacity of trussed arch bridge with different distributive defects in plane and out plane is studied. For the three structural forms of the trussed arch bridge, the first buckling mode as the mode of defect distribution in plane and out plane, with the defect amplitude increase, the ultimate load bearing capacity of structure falls; when defect amplitude less than 1/1500 of the span, the defects have little effect on the ultimate load bearing capacity; when the defect amplitude more than 1/1500 of the span, along with the defect amplitude increases, the ultimate bearing capacity will be greatly decreased. Compared with the in-plane defects, when the defect amplitude less than the 1/500 of the span, to the same defect amplitude, the ultimate bearing capacity of the trussed bridge with out-plane defects is less than that with in-plane defects; However, when the defect amplitude more than the 1/500 of the span, to the same defect amplitude, the ultimate bearing capacity of the trussed bridge with out-plane defects is more than that with in-plane defects. Regardless of the distribution mode of in-plane defects or out-plane defects, eigenvalue buckling mode as the distribution mode of defects is not necessarily the most unfavorable distribution mode, such as the 6th-order distribution mode of random defects impacts more on the ultimate bearing capacity than that eigenvalue buckling distribution mode does. However, a high-level distribution mode of random defects happens almost impossible, on the other hand, eigenvalue buckling mode as the distribution impacts more on the ultimate bearing capacity than that the vast majority distribution modes of random defects, so in most cases, eigenvalue buckling mode as the distribution mode of defects is close to the most unfavorable distribution mode.
     Increament of damage degree leads to structural stiffness degrading, results in structural deformation increasing; and the larger the damage degree is, the bigger the increase rate of the structural deformation is. As the damage degree increasing, the ultimate bearing capacity declines linearly. Through the regularity analysis, damage ultimate live load factor of the structureλ=λ0(1-1.1×η)can be deduced. The comparison between simplify analysis and dual nonlinear analysis of the real trussed arch bridge with defects and damage shows that, the difference of calculation result by simplify analysis method and by dual nonlinear method is very small. The simplify analysis method dedued in this paper is exact, and can be adopted in the same kind of bridges'structure analysis. Three different definitions of stability assurance coefficient are discussed and the second definitions of stability assurance coefficient is suggested to measure the overall stability level of old RC trussed multi-arch bridges, its lowest allowance value of stability assurance coefficient is suggested to be 5 in the paper. the bias allowance of the arch rib construction is more conservative in " Technical Specifications for Construction of Highway Bridges and Culvers" (JTJ041-2000), and may be appropriate to relax, the horizontal axis deviation of the allowable range may be slightly larger than the vertical deviation of the allowable range.
     The research work benefits to learning about the process until the whole trussed arch bridge structure finally failures and many influence factor on the ultimate load bearing capacity of this kind of old trussed arch bridges; provides many useful experiences and advices on evaluation of ultimate load bearing capacity, overrunning capacity, security evaluation, and so on of trussed arch bridges with defects and damage in service for many years.
引文
[1]中华人民共和国行业标准.公路工程技术标准(JTG B01-2003).人民交通出版社,2004
    [2]中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).人民交通出版社,2004
    [3]江祖铭.公路桥涵设计手册墩台与基础.人民交通出版社,1994
    [4]中华人民共和国行业标准.公路桥涵地基与基础设计规范(JTG D63-2007).人民交通出版社,2007
    [5]凌治平、易经武.基础工程.人民交通出版社,1997
    [6]陈天本.桁式组合拱桥.人民交通出版社,2001
    [7]王国鼎.拱桥连拱计算.人民交通出版社,1995
    [8]王文涛.刚构—连续组合梁桥.北京:人民交通出版社,1995
    [9]项海帆.高等桥梁结构理论.人民交通出版社,2001
    [10]贺拴海.桥梁结构理论与计算方法.人民交通出版社,2003
    [11]周志祥.高等钢筋混凝土结构.人民交通出版社,2002
    [12]江见鲸.钢筋混凝土结构非线性有限元分析.陕西科学技术出版社,1994
    [13]华孝良、徐光辉.桥梁结构非线性分析.人民交通出版社,1997
    [14]戴公连等.桥梁结构空间分析方法与应用.人民交通出版社,2001
    [15]郝文化.ANSYS7.0实例分析与应用.清华大学出版社,2004
    [16]ANSYS非线性分析指南
    [17]雷俊卿.钢筋混凝土桁架拱桥维修与加固研究.东北公路,1996.1.
    [18]邱顺冬.大跨度中承式无推力拱桥极限承载力的分析与研究.同济大学硕士学位论文,2003.
    [19]章庆军.钢管砼拱极限承载力的非线性分析.浙江大学硕士学位论文,2004
    [20]邹存俊.钢管混凝土拱桥极限承载力全过程模拟.广西大学硕士学位论文,2004
    [21]程进、江见鲸、肖汝诚、项海帆.拱桥结构极限承载力的研究现状与发展.公路交通科技,2002.4.
    [22]金伟良.钢筋混凝土拱桥的极限承载力.浙江大学学报,1997.4.
    [23]胡大琳等.拱上拱式结构钢筋混凝土拱桥极限承载力分析.中国公路学报,1993.1.
    [24]Chatterjee P N. on the Deflection Theory of Ribbed Two-Hinged Elastic Arches. Thesis phD., the University of Illinois,1948
    [25]Sadao komatsu, Tatsuro Sakimoto Ultimate Load-bearing capacity of Steel Arches. Journal of the Structural Division, ASCE,1977
    [26]Yong-lin pi and N.S.Trahair, Non-linear Buckling and Post-buckling of Elastic Arches. Engineering Structure,1998,20,7
    [27]谢幼藩、陈克济.拱桥面内稳定性计算的探讨.西南交通大学学报,1982.1
    [28]周文伟.大跨度铁路钢管混凝土拱桥空间稳定极限承载力分析.长沙铁道学院博士论文,1999
    [29]赵雷、张金平等.大跨度钢筋混凝土拱桥施工阶段稳定性分析的非线性问题.四川建筑科学研究,1995.4.
    [30]程进、江见鲸、肖汝诚、项海帆.大跨度拱桥极限承载力的参数研究.中国公路学报,2003.2.
    [31]陈克济.钢筋混凝土拱面内承载力非线性分析.桥梁建设,983.1.
    [32]S.E. Kim, Direct design of truss bridges using advanced analysys, Structure Engineering and Mechanics,1998,6,8
    [33]Chan S L,Gu J X.Exact tangent stiffness for imperfect beam-column members. Journal of Structural Engineering,ASCE,2000,126(9):1094-1102
    [34]Chan S L,Zhou Z H.Second-order elastic analysis of frames using single imperfect element per member.Journal of Structural Engineering, ASCE,1995,121(6):939-945
    [35]李国强、刘玉姝.一种考虑初始缺陷影响的非线性梁单元.计算力学学报,2005,22(1):69-72
    [36]Liew J Y R.Notional load plastic hinge method for frame design.Journal of Structural Engineering,ASCE,1994,120(5):1434-1454
    [37]李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响.土木工程学报,2002,35(1):11-15
    [38]徐艳、胡世德.钢管混凝土模型拱的弹性动力稳定性研究.同济大学学报,2005,33(1):6-10
    [39]Most T,Bucher C,Schorling Y.Dynamic stability analysis of non-linear structures with geometrical imperfections under random loading. Journal of Sound and Vibration,2004,276(1-2):381-400
    [40]Schorling Y,Bucher C.Dynamic stability analysis for structures with geometrical mperfections.In:Structural Safety and Reliability,Rotterdam,1998,771-777
    [41]Schorling Y,Bucher C.Stochastic stability of structures with randomimp erfections. In:Stochastic Structural Dynamics.Rotterdam,1999,343-348
    [42]Nordgren R P,Conte J P.On one-dimensional random fields with fixed end values. Probabilistic Engineering Mechanics,1999,14(4):301-310
    [43]Ikeda K,Murota K,Elishakoff I.Reliability of structures subject to normally distributed initial imperfections.Compurers and Strucrures 1996,59(3):463-469
    [44]SadaoKomatsu, Tatsuro Sakimoto. Ultimate Load Caryring CaPacity of Steel Arehes[J]. Journal of The Struetural Division.1977,103(STIZ):2323-2336
    [45]Tatsuor Sakimoto, Toshitaka Yamao, Sadao Komatsu. ExPerimental Study On The Ultimate Strength of Steel Arehes[J]. Struetural Eng.Earthquake Eng.1979,286:139-149
    [46]刘煌.卢浦大桥的静力与稳定分析[D].同济大学硕士学位论文.2002.3
    [47]ShigeruKURANIsHI, TsuneakiSATo, Mitsuguo TSUKI. Load Carrying CaPaeity of Two Hinged Steel Arch Bridges With Stieffning Deek[J]. Struetural Eng./Earthquake Eng. 1980,300:121·129
    [48]李宏男、李东升.土木工程结构安全性评估健康监测及诊断述评.地震工程与工程振动,2002,22(3):82-90
    [49]欧进平.重大工程结构的智能监测与健康诊断.工程力学(增刊),2002,44-53
    [50]李国豪.桥梁结构的稳定与振动.北京:中国铁道出版社,1996,169-234
    [51]项海帆、刘光栋.拱结构稳定与振动.[M]北京:人民交通出版社,1991
    [52]吴恒立.拱式体系的稳定计算.[M]北京:人民交通出版社,1979
    [53]刘光栋、罗汉泉.杆系结构稳定.[M]北京:人民交通出版社,1988
    [54]沈世钊、陈听.网壳结构的稳定性.北京:科学技术出版社,1999,52-60
    [55]叶继红,沈祖炎.初始缺陷对网壳结构动力稳定性能的影响.土木工程学报,1997,30(1):37-42
    [56]黄为民,赵惠麟.具有随机几何缺陷的单层网壳临界荷载的确定.空间结构,1994,1(2):26-32
    [57]唐敢,尹凌峰,马军,赵惠麟.单层网壳结构稳定性分析的改进随机缺陷法.空间 结构,2004,10(4):44-48
    [58]Ghanem R QSpanos P D.Stochastic finite elements:A Spectral Approach.New York: Springer-Verlag,1992,15-184
    [59]现代应用数学手册(概率统计与随机过程卷).[M]北京:清华大学出版社,2000
    [60]Vanmarcke E.Random Fields:Analysis and Synthesis.Cambridge:MIT Press,1983,43-153
    [61]Chan S L,Huang H Y,Fang L X. Advanced Analysis of Imperfect Portal Frames with Semi-rigid Base Connections.Journal of Engineering Mechanics,ASCE,2005,131(6): 633-640
    [62]Ikeda K,Murota K,Elishakoff I.Reliability of structures subject to normally distributed initial imperfections.Compurers and Strucrures 1996,59(3):463-469
    [63]Zhang J,Ellingwood B.Orthogonal series expansions of random fields in reliability analysis.Journal of Engineering Mechanics,1994,120(12):2660-2677
    [64]Vanmarcke E.Random Fields:Analysis and Synthesis.Cambridge:MIT Press,1983,43-153
    [65]易壮鹏.几何缺陷对拱结构力学性能的影响[D].湖南大学博士学位论文,2007.
    [66]Walter J.Austin,.FIn—PlaneBendingAndBueklingofArehes[J].JournalofThe Struetural Division.1971,97(STS):1575-1593
    [67]Walter J.Austin, FTimothyJRossElasticBucklingofArehesUnderSynrnretrical Loading [JI. JournalofTheStrueturalDivision.1976,102(STS):1085-1095
    [68]Godden, W.GTheLateralBueklingofTiedArehes[J].IeeProeeedings, Eng.Divisions (HPHSW).1954,3, (8):496-514
    [69]Tatsuro SAKIMOTO, Sadao KOMATSU. Ultimate Strength of Steel Arehes Under ateral Loads[J]. Structural Eng./Earthquake Eng.1979,292:83-94
    [70]崔飞,袁万城,等.基于静态应变及位移测量的结构损伤识别法[J].同济大学学报,2000,28(2):5-8.
    [71]Stubbs N, Kim J T. Damage localization in structures without baseline modal parameters [J].AIAA Journal,1996,34(8):1644-1649
    [72]Hassiotis S. Identification of damage using natural frequencies and Markov parameters [J]. Computer and Structures,2000,74(2):365-373.
    [73]马宏伟,杨桂通.结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4):513-527.
    [74]董聪.基于动力特性的结构损伤定位方法[J].力学与实践,1999,20(4):62-63.
    [75]邓焱,严普强.桥梁结构损伤的振动模态检测[J].振动测试与诊断,1999,19(3):157-163.
    [76]唐雪松、张建仁、李传习.基于损伤理论的钢筋混凝土拱结构破坏过程的数值模拟[J],2006,23(2):115-125
    [77]Vandiver J K. detection of Structural Failure on Fixed Platform by Measurement of Dynamic Response. Proceedings of the 7th Annual offshore Technology Conference, 1975:243-252.
    [78]Vandiver J K. detection of Structural Failure on Fixed Platform by Measurement ofDynamic Response. Journal of Petroleum Technology,1977,29(5):305-310.
    [79]Begg R D, Mackenzie A C, Dobbs J C et al. Structural Integrity Monitoring Using Digital Processing of Vibration Signals. Proceedings of the 8th Annual offshore Technology Conference,1976:305-311.
    [80]Salawu O S. Detection of Structural Damage through Changes in Frequencies:A Review.Engineering Structures.1997,19(9):718-723.
    [81]Farrar C R, Jauregui D V. Damage Detection Algorithms Applied to Experimental and Numerical Modal Data from the 1-40 Bridge. Los Alamos National Laboratory Report LA-12979-MS,1996.
    [82]West W M. Illustration of the use of modal assurance criterion to detect structural hanges in an orbiter test specimen. Proceedings of Air Force Conference on Aircraft Structural Integrity,1984:1-6.
    [83]Salawu O, Williams C. Damage location using vibration mode shapes. Proceedings of the 12th International Modal Analysis Conference,1994:933-939.
    [84]Yao G C, Chang K C, Lee G C. Damage Diagnosis of Steel Frame Using Vibration Signature Analysis. Journal of Engineering Mechanics. ASCE.1992,115(9):1949-1961.
    [85]李德葆,陆秋海,秦权.承弯结构的曲率模态分析.清华大学学报,2002,42(2):224-227.
    [86]Pandey A K, Biswas M. Damage Diagnosis of Truss Structures by Estimation of Flexibility Change. Modal Analysis,1995,10(2):104-} 117.
    [87]尹娟,郭秀文.基于柔度改变的连续梁桥损伤诊断研究.华东公路,2001,130(3):25-27.
    [88]王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展.振动与冲击,2004,23(4)99-102.
    [89]郭国会,易伟建.基于模态参数进行连续梁损伤诊断的数值研究.振动与冲击,2001,20(1):72-75.
    [90]Cawley, Adams R D. The location of defects in Structures from measurements of the natural frequencies. Journal of Strain Analysis,1979,14(2):49-57.
    [91]Stubbs 1, Osegueda R. Global nondestructive damage evaluation in solid. International Journal of Analytical and Experimental Modal analysis,1990,5(2):67-79.
    [92]谢峻,韩大建一种改进的基于频率测量的结构损伤识别方法.工程力学,2004,21(1):21-25.
    [93]Hearn G, Testa R B. Modal analysis for damage detection in structures. Journal of Structural Engineering,1991,117(10):3032-3063.
    [94]Biswas M, Pandey A K, Samman M M. Diagnostic experimental spectral/modal analysis of a highway bridge. Intl J Exp Modal Anal,1990,5 (1):33-42.
    [95]Chen J C, Grarba J A. On-orbit damage assessment for large space structures. J AIAA, 1998,26(9):98-126.
    [96]于德介,李佳升一种基于实测模态参数的结构损伤诊断方法.湖南大学学报.1995,22(4):122-128.
    [97]万小朋,李小聪,鲍凯等.利用阵型变化进行结构损伤诊断的研究.航空学报,2003,24(5):422-426.
    [98]Pandey A K, Biswas M. Damage Detection in Structures using Changes in Flexibility. Journal of Sound and Vibration,1994,169 (1):3-17.
    [99]孙国,顾元宪.连续梁结构损伤识别的改进柔度阵方法.工程力学,2003,20(4):50-54.
    [100]张开银,孙峙华,邹晓军等.桥梁结构损伤识别的曲率模态技术.武汉理工大学学报,2004,28(6)855-858.
    [101]郑明刚,刘天雄,朱继梅等.曲率模态在桥梁状态监测中的应用.振动与冲击,2000,19(2)81-83.
    [102]禹丹江,陈淮.桥梁损伤检测的曲率模态方法探讨.郑州大学学报,2002,23(2):104-106.
    [103]董聪,丁一辉,高高.结构损伤识别和定位的基本原理与方法.中国铁道科学,1999,20(3):89-94.
    [104]李德葆,诸葛鸿程,王波.实验应变模态分析原理和方法.清华大学学报,1990,30(2):105-112.
    [105]邓众,严普强.桥梁应变模态与损伤测量的新方法.清华大学学报,2000,40:123-127.
    [106]Stubbs N, Kim J T. Damage localization in structures without baseline modal parameters. AIAA Journal,1996,34 (8):1644-1649.
    [107]史治宇,张令弥,吕令毅.基于模态应变能诊断结构破损的修正方法.东南大学学报,2000,30(3)84-87.
    [108]刘晖,瞿伟廉,袁润章.基于应变能耗散率的结构损伤识别方法研究.工程力学,2004,21(5):1.98-202.
    [109]苏扩军,易登军,邓华锋.结构损伤识别的模态应变能方法探讨.三峡大学学报,2005,27(3):220-223.
    [110]Park Y S, Park H S, Lee S. Weighted Error Matrix Application to Detect Stiffness Damage by Dynamic Characteristic Measurement. The International Journal of Analytical and Experimental Modal Analysis,1988,3(3):101-107.
    [111]Gysin H P. Critical Application of the Error Matrix Method for Localization of Finite Element Modeling Inaccuracies. Proceeding of the 4th International Modal Analysis Conference,1986, Vol12,1339-1351.
    [112]王中要,郭秀文,王坷等.用残余力向量进行连续梁损伤诊断.昆明理工大学学报,2000,25(5):64-67.
    [113]李秀梅,崔飞,林春妓等.基于振动与静载试验的桥梁结构损伤识别法.中南公路工程,2005,30(2):23-27.
    [114]崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法.同济大学学报,2000,28(1):5-8.
    [115]崔飞,袁万城,史家钧.基于静载试验进行桥梁结构损伤识别.桥梁建设,2003,2:4-7.
    [116]姜绍飞基于神经网络的结构优化与损伤检测.北京:科学出版社,2002.
    [117]Wu X, Ghaboussi J, Garrett J H. Use of neural network in detection of structural damage Computer& Structures,1992,42 (4):649-659.
    [118]Szewczyk A S, Hajela P. Damage Detection in Structures Based on Feature-Sensitive Neural Network. Journal of Computing in Civil Engineering,1994,8(2):163-178.
    [119]易伟建,刘霞.基于遗传算法的结构损伤诊断研究.工程力学,2001,18(2):64-71.
    [120]高宝成,时良平,史铁林等.基于小波分析的简支梁裂缝识别方法研究.振动工程学报,1997,10(1):81-85.
    [121]任飞,刘沐宇,袁卫国等.钢管混凝土拱桥安全性智能评价系统研究.武汉理工大学学报,2003,25(6):28-30.
    [122]刘沐宇,袁卫国.基于模糊神经网络的大跨度钢管混凝土拱桥安全性评价方法研究.中国公路学报,2004,17(4):55-58.
    [123]刘沐宇,谢建和.钢管混凝土拱桥的模拟损伤动力诊断分析.武汉理工大学学报,2005,27(8):38-41.
    [124]王桂首,中村秀明,晏班夫等.基于模糊神经网络的桥梁诊断辅助系统研究.中国公路学报,2005,18(2):45-50.
    [125]艾叶青,王根会,朱尚青.基于改进的BP神经网络的桥梁结构损伤诊断研究.兰州交通大学学报,2005,24(3):44-47.
    [126]孙宗光,高赞明,倪一清.基于神经网络的桥梁损伤位置识别,工程力学,2004,21(1):42-4.
    [127]刘效尧.斜拉桥损伤识别的径向基函数(RBF)神经网络设计.工程设计CAD与智能建筑,2000,7:35-37.
    [128]刘效尧.梁桥损伤识别的神经网络设计。华东公路,2000,1:3-6.
    [129]韩大建,杨炳尧,颜全胜.用人工神经网络方法评估桥梁缺损状况.华南理工大学学报,2004,32(9):72-75.
    [130]袁旭东,周晶,黄梅.基于静力位移及频率的结构损伤识别神经网络方法.哈尔滨工业大学学报,2005,37(4):488-490.
    [131]廖锦翔,袁明武,张劲泉.小波变换在桥梁结构损伤识别中的应用.公路交通科技,2004,11:30-34.
    [132]Loland K E.Continuous damage models for load-response estimation of concrete [J]. Cement and Concrete Research,1980, (10):392-402.
    [133]Mazars J.Application de le mecanique delendonnagement an comportement non lineaire destructure [D]. These de doctorat, Univ.Pris 6,ENSET,Mai,1984.
    [134]Mazars J. A description of micro-and macroscale damage of concrete structure [J].Eng.Frac.Mech.,1986,25(5/6):729-737.
    [135]Krajcinovic D, Fonseka G U.Continuous damage theory of brittle materials, Part Ⅰ and Ⅱ [J].J.Appl.Mech.,1981,48:809-824.
    [136]Ba?ant Z P,Oh B H.Microplane model for progressive fracture of concrete and rock [J]. J.Eng.Mech.,1985,111:559-582.
    [137]Oritiz M.An analysis study of the localized failure models of concrete [J]. Mechanics of Materials,1987,6:159-174.
    [138]高路彬,程庆国.一种新的各向同性的损伤本构模型及其应用[J].中国铁道科学,1989,10(2):1-11.
    [139]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [140]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [141]朱万成,赵启林,唐春安,卓家寿.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32(4):579-598.
    [142]Rabier P J.Some remarks on damage mechanics [J]. Int. J.Eng. Sci.,1989,27(1):29-54.
    [143]高蕴听,郑泉水,余寿文.弹性各向同性损伤的双标量描述[J].力学学报,1996,28(5):542-549.
    [144]唐雪松,蒋持平,郑健龙.各向同性弹性损伤本构方程的一般形式[J].应用数学和力学,2001,22(12):1317-1323.
    [145]Tang X S,Jiang C P,Zheng J L.Anisotropic elastic constitutive relations for damaged materials by application of irreversible thermodynamics[J]. Theoretical and Applied Fracture Mechanics,2002,38(3):211-220.
    [146]万鹏.大跨度钢拱桥极限承载力综合三因素检算方法研究[D].西南交通大学博士学位论文,2005.
    [147]李松、强士中、唐英.钢筋混凝土拱桥极限承载力的参数研究[J].西南交通大学学报,2007,42(3):293-298.
    [148]张建民、肖汝诚.巫峡长江大桥极限承载能力分析[J].公路交通科技,2004,21(2):37-40.
    [149]葛素娟、陈淮.考虑吊杆损伤的拱桥稳定性分析[J].世界桥梁,2006,3:38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700