高强轻集料混凝土连续刚构桥结构特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力混凝土连续刚构桥跨越能力强,施工技术成熟,工程造价低,外形美观,行车舒适,是大跨径桥梁的主选桥型。近年来,我国已修建了大量的连续刚构桥,80%以上的该种桥梁都出现了不同程度的病害,主梁跨中下挠与箱梁开裂尤为突出,严重危害结构安全,成为制约连续刚构桥进一步发展的关键技术难题。国内外对此进行的理论与实践研究表明,从材料性能和结构优化角度寻求最佳的组合匹配是解决跨中下挠与箱梁开裂问题的主要途径。
     高强轻集料混凝土(High Strength Light Weight Aggregate Concrete)具有轻质、高强、抗震性能好等优点,国外已将其成功应用于连续刚构桥中,如挪威Stolma和Raftsundet桥;国内,高强轻集料混凝土连续刚构桥的研究处于起步阶段,工程应用尚属空白。因此,本文从材料和结构优化设计出发,提出了高强轻集料混凝土与普通混凝土最佳组合匹配的连续刚构桥结构,系统研究了其结构特性,有效解决了连续刚构桥跨中下挠与箱梁开裂问题;研究成果为高强轻集料混凝土应用于连续刚构桥提供了理论依据和技术支撑,对提高桥梁的使用寿命、降低维护费用、确保桥梁运营安全具有重要的理论和实际意义。
     本文的主要研究成果为:
     1、简要介绍了连续刚构桥的发展现状,系统阐述了该桥型的结构体系特点,明确指出了连续刚构桥普遍存在的跨中下挠与箱梁开裂问题,提出了高强轻集料混凝土与普通混凝土最佳组合匹配的连续刚构桥结构。
     2、结构与材料的合理匹配关系研究。从应力水平、结构位移和内力三个指标,系统研究了不同长度范围、不同密度等级的高强轻集料混凝土连续刚构桥结构性能。研究结果表明:对于所研究的连续刚构桥,上部结构高强轻集料混凝土与普通混凝土的长度比例(L_(LC60)/L)取0.7左右较为合适;低密度等级的高强轻集料混凝土可更大幅度降低连续刚构桥跨中挠度、减小墩顶截面上下缘应力差值和墩顶区段负弯矩值。
     3、桥梁长期变形分析。基于高强轻集料混凝土密度小和弹性模量低的双重材料特性,系统分析了恒载、二期恒载及跨中集中荷载等不同工况下高强轻集料混凝土连续刚构桥的长期变形性能。研究结果表明:高强轻集料混凝土能够有效减小连续刚构桥主跨跨中后期下挠;随时间推移,高强轻集料混凝土连续刚构桥跨中挠度减小幅度增大。
     4、箱梁抗剪、抗裂性能研究。从剪力、剪应力和主应力三个方面,系统研究了高强轻集料混凝土连续刚构桥腹板的抗剪和抗裂性能。研究结果表明:高强轻集料混凝土降低了连续刚构桥的剪力与剪应力值,增大了腹板主压应力储备,改善了连续刚构桥腹板的抗裂性能,连续刚构桥上部结构的可设计性增强。
     5、桥梁动力特性分析。采用子空间迭代法,量化计算分析了高强轻集料混凝土连续刚构桥的自振频率、累积振型贡献率和振型特点等。研究结果表明:高强轻集料混凝土在连续刚构桥中的应用,降低了其基频与自振频率。
     本文的研究成果为连续刚构桥向大跨、重载、轻质方向发展开辟了新途径;对于拓展高强轻集料混凝土的应用领域,推动大跨径连续刚构桥的技术进步,促进桥梁工程与材料科学的学科交叉,具有重要的理论和实际意义。
Prestressed concrete continuous rigid-frame bridge is a main chosen of largespan bridges, which has such advantages as strong span ability, mature constructiontechnology, low cost of project, good appearance and comfort driving ect,.In recentyears, lots of continuous rigid-frame bridges has been built in our country, and thereare different extent diseases occurred with more than 80 percent of them, amongwhich excessive midspan lag and cracks in box girder are outstanding, which bringgreat harm to structural safety, and they become key technology problems to restrictfurther development of the continuous rigid-frame bridge. Theory and practice athome and abroad indicate that, it is a main approach to seek a perfect composedmatching from material characteristic and structure optimization, to solve excessivemid-span lag and cracks in box girder problems.
     There are so many advantages like light weight, high strength and good seismicresistance with High Strength Light Weight Aggregate Concrete(HSLC in short), whichmade it successfully applied on continuous rigid-frame bridge in foreign countries, suchas Stolma bridge and Raftsundet bridge in Norway. Research on HSLC continuousrigid-frame bridge is in starting stage, and it is blank in engineering application yet inChina. So, starting from material and structure optimization, a kind of continuousrigid-frame bridge with optimal matching combination of HSLC and normal concrete isput forwarded, and its structural characteristic is studied in this thesis, which solvedexcessive midspan lag and cracks in box girder in continuous rigid-frame bridgeeffectively in this thesis. The research results provide theoretical basis and technology forHSLC to be used on continuous rigid-frame bridge. It has important theoretic andpractical meaning to improve service life, to reduce the maintenance cost, and toguarantee the security of the bridge.Main research results are as follows:
     1.Development and present status of continuous rigid-frame bridge is introducedbriefly, and structural characteristic of it is expounded. Universal problems asexcessive midspan lag and cracks with continuous rigid-frame bridge are point outdefinitely. After that, a kind of continuous rigid-frame bridge with optimal matchingcombination of HSLC and normal concrete is put forwarded.
     2.Research on optimal matching relation of structure and material. From threeindices:stress level, structure deflection and internal force, structural characteristics of continuous rigid-frame bridge with different length, different density are studied. Theresearch results indicates:the best ratio of HSLC to normal concrete on continuousrigid-frame bridge is about 0.7. Low density HSLC reduced mid-span deflection,attenuated stress difference and negative moment more at section on top of frusta.
     3.Long-term deflection analysis of the bridge. Based on double characteristics ofHSLC, which are small density and low modulus, long-term deformability of HSLCcontinuous rigid-frame bridge are analyzed each under dead load, second period deadload and mid-span concentrate load. The research results indicate: HSLC minishedupper deflection in mid-span of continuous rigid-frame bridge; There is obviousinfluence on decreasing degree of the upper deflection with the time of load lasting.The longer the load lasts, the more decreasing degree of the upper deflection will be.
     4.Research on shear resistence and anti-cracking performance of box-girder.From aspects of shear force, shear stress and principle stress, shear resistence andanti-cracking performance of box-girder on HSLC continuous rigid-frame bridge wasstudied. The research results indicate:HSLC reduced shear force, shear stress of thebridge, increased principle stress reserving on the web, and improved anti-crackingperformance of the web on continuous rigid-frame bridge.Designable ability ofcontinuous rigid-frame bridge superstructure is improved.
     5.Dynamic characteristic analysis of the bridge. Subspace iteration method wasadopted to calculate natural frequencies, accumulative total contributing ratio ofmode shapes and vibration characteristics of HSLC continuous rigid-frame bridge.The research results indicate: HSLC depressed basic frequency and naturalfrequencies, which made dynamic response of the structure decreased.
     The research results in this thesis built a new approach for continuousrigid-frame bridge developing to large span, heavy load and light weight. It hasimportant theoretic and practical meaning to extend application field of HSLC,promoting the technology progress of large span continuous rigid-frame bridge, andstrengthening bridge and material subjects intercrossing.
引文
[1] 马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社,2001
    [2] 范立础.预应力混凝土连续梁桥[M].北京:人民交通出版社,1988
    [3] 李紧.我国预应力混凝土连续梁桥的发展与工程实践.第十四届全国桥梁学会会议论文集,2000,11,5~7,南京
    [4] 周军生,楼庄鸿.国外大跨径预应力混凝土连续刚构桥的现状和发展趋势.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集.北京:人民交通出版社,1999
    [5] 戴竞,凤懋润.我国预应力混凝土公路桥的发展现状[J].土木工程学报,1997,(6):3~10
    [6] 杨高中,杨征宇,周军生等.连续刚构桥在我国的应用和发展(续)[J].公路,1998,(7):1~6
    [7] 周军生,楼庄鸿.大跨径预应力混凝土连续刚构桥的现状和发展趋势[J].中国公路学报,2000,(1):31~37
    [8] 顾凯锋,彭卫.预应力混凝土连续箱梁桥腹板斜裂缝研究[J].公路,2004,(7):35~38
    [9] 唐健慧.预应力混凝土连续刚构桥梁有关问题的探讨[J].中国建设信息,2005,(10):55~57
    [10] 杨志平,朱桂新,李卫.预应力混凝土连续刚构桥挠度长期观测[J].公路,2004,(8):285~289
    [11] 邓文中,代彤.重庆石板坡长江大桥复线桥总体设计[J].桥梁建设,2006,(6):28~32
    [12] 梁立农,韩大建.大跨径混凝土梁桥设计新思路[J].公路,2007,(2):59~63
    [13] 伍波,杨家玉,石永燕等.大跨径连续刚构桥的常见病害与设计对策[J].公路交通技术,2005,(1):109~111
    [14] 彭卫,施颖,张新军.预应力混凝土连续箱梁桥裂缝控制[J].混凝土,2002,(5):40~41
    [15] 王洋.预应力混凝土连续箱梁桥常见裂缝成因分析与控制[J].广州建筑,2005,(3):15~18
    [16] 刘山洪.克服大跨PC连续刚构桥后期下挠设计措施[J].重庆交通学院学报,Vol.25,No.6,2006:4~7
    [17] 陆中元,李建华,朱念清.广东南海金沙大桥的维修加固[J].铁道建筑,2004(10):29~31
    [18] 中华人民共和国行业标准.《轻骨料混凝土技术规程》(JGJ 51-2002).北京:中国建筑出版社,2003
    [19] 叶列平,孙海林,丁建彤.HSLWAC梁收缩和徐变预应力损失试验[J].东南大学学报(自然科学版),2007,Vol.37,No.1:94~99
    [20] Min-Hong Zhang, Odd E. Gjorv. Pozzolanic reactivity of lightweight aggregates. Cement and Concrete Research, 1990, Vol. 20:884~890
    [21] Holm et al. Watertightness of concrete against Sea water. Journal of Central Iesearch laboratory, 1980, (104):40~53
    [22] Vieira, M., Goncalves, .Durability of high performance LWAC. In: steiner Helland, Ivar Holland, Sverre Smeplass. Proceedings 2nd international symposium on Structuaral lightweight aggregate concrete. Kristiansand. Norway, 2000:767~773
    [23] Odd E. Gjorv, Kefeng Tan, MinHong Zhang. Diffusivity of chlorides from seawater into high strength lightweight aggregate concrete. ACI Materials Journal, 1994 191(5):447~450
    [24] Demirboga., R., Kurt, M., Gul, R., Aydyn, A.C. The effects of silica fume and fly ash on the freeze-thaw resistance of low density concrete, In:Steiner Helland, Ivar Holand, Sverre Smelpass. Proceedings 2nd international symposium on structural lightweight aggregate concrete. Kristiansand, Norway, 2000:492~501
    [25] 蒋明,潭克峰,范付忠.高性能轻质混凝土的强度与耐久性的研究[J].混凝土,2002,(1):47~49
    [26] FHWA (Federal Highway Administration), (1985), Criteria for designing lightweight concrete bridges, Report No. FHWA/RD~85/045, McLean, VA
    [27] 曹诚,杨玉强.高强轻集料混凝土在桥梁工程中应用的效益和性能特点分析[J].混凝土,2000,(12):27~29
    [28] 吴旗,孙运国.高强粉煤灰页岩陶粒混凝土在永定新河大桥上的应用及优化设计效果[J].粉煤灰,2001,(4):26~28
    [29] 天津市政政工程研究院等.桥用高强轻质混凝土应用技术研究.2001.7
    [30] The European Union. Brite EuramⅢ. Technical and economic mixture optimization of high strength lightweight aggregate concrete. EurolightCon. Economic Design and Construction with Light Weight Aggregate Concrete. Document BE96~3942/R9, 2000. 1~40
    [31] 龚洛书,柳春圃.轻质混凝土[M].北京:中国铁道出版社.1996
    [32] 龚洛书.积极研究与开发高性能轻集料混凝土[J].混凝土.1999,3:8~12
    [33] 向晓峰,郭志昆,刘峰,马津渤.高强轻骨料混凝土的应用与研究现状[J].工业建筑,2005,(S1):645~649
    [34] 龚洛书.轻质混凝土桥梁工程发展概况[J].施工技术.2002,31(9):1~3
    [35] 工晓刚,赵铁军.轻质混凝土的新进展[J].建筑技术开发.2003.30(10):37~39
    [36] K. Melby, E.A. Jordet, C. Hansvold. Long-span bridges in Norway constructed in high-strength LWAC concrete[J].1996, Vol. 18, No. 11:845~849
    [37] Daly, Albert-F. (2000), Use of Lightweight Aggregate Concrete in Bridges, Proceedings Second International Symposium On Structural Lightweight Aggregate Concrete, Edited by Steiner Helland, Ivar Holand and Sverre Smeplass, June 2000, Kristiansand:18~21
    [38] 朱聘儒,邓景纹,高永孚.轻骨料混凝土工程实例简述[J].苏州科技学院学报(工程技术版).2003,16(1):53~57
    [39] A.A. Tasnimi. Mathematical model for complete stress-strain curve prediction of normal, lightweight and high-strength concretes[J].Magazine of Concrete research, 2004, 56, No. 1:23~34
    [40] 丁建彤,郭玉顺,木村薰.结构轻骨料混凝土的现状与发展趋势[J].混凝土.2000,134(9):23~26
    [41] T.H. Almusallam, S.H. Alsayed. Stress-strain relationship of normal, high-strength and lightweight concrete[J].Magazine of Concrete Research, 1995, 47, No. 170:39~44
    [42] The European Union. Brite EuramⅢ. Technical and economic mixture optimization of high strength lightweight aggregate concrete. EurolightCon. Economic Design and Construction with Light Weight Aggregate Concrete. Document BE 96~3942/R9, 2000:1~40
    [43] 宋绍铭.轻骨料混凝土在高层建筑和大跨桥梁工程上的应用及其发展前景[J].江苏建筑,2003,92(增刊):77~84
    [44] 戴竞.轻骨料混凝土桥的现状与发展[J].公路.2002,12:7~10
    [45] 龚洛书.轻集料混凝土技术的发展与展望[J].混凝土.2002.(2):13~15
    [46] 孙海林,丁建彤,叶列平.高强轻骨料混凝土在桥梁工程中的应用.中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议:787~792
    [47] 余丹如.轻骨料混凝土及其在公路桥梁中的应用[J].中南公路工程.1985,4:56~61
    [48] 郭佳宁.高强轻质混凝土的力学特性及其对集料的要求[J].黑龙江水利科技.2001,1:71~72
    [49] 曹诚,王春阳,刘兰强.高强页岩粉煤灰陶粒混凝土在天津永定新河大桥中的应用[J].粉煤灰,2001,(1):20~21
    [50] 刘数华,阎培渝.高性能轻骨料混凝土在桥梁工程中应用的研究进展[J].公路,2006,(8):176~180
    [51] 中国建筑科学研究院建筑结构研究所.轻集料混凝土的研究和应用文集[M].北京:中国建筑工业出版社,1981
    [52] 秦国新.CL50高强度轻骨料混凝土在大跨度现浇结构中的应用[J].混凝土与水泥制品,2000,No.5:39~39
    [53] 中华人民共和国行业标准《轻质混凝土结构设计规程》.(JGJ12-99).北京:中国建筑工业出版社
    [54] 唐兴荣.低配筋轻集料混凝土梁裂缝宽度的试验研究[J].华中科技大学学报(城市科学版),2002(3):28~32
    [55] 刘书贤,于立军,邓向军.劲性钢筋轻骨料混凝土压弯构件正截面受力性能的试验研究[J].辽宁工程技术大学学报(自然科学版),1995,(4):78~83
    [56] Shuaib H. Ahmad Jaime Batts. Flexural Behavior of Doubly Reinforced High-Strength Lightweight Concrete Beams with Web Reinforcemen. ACI STRUCTURAL JOURNAL. Vol. 88, No. 3, 1991:3~5
    [57] 孙敏,朱聘儒.轻骨料混凝土抗剪试验研究[J].混凝土,2002.10:32~33
    [58] 孙敏,刘凡,邓景纹.桥梁用轻骨料混凝土裂缝宽度及刚度分析[J].工业建筑,2002,(9):62~63
    [59] S.H. Ahmad, Y. Xie &T. Yu. Shear Ductility of Reinforced Lightweight Concrete Beams of Normal Strength and High Strength Concrete. Cement & Concrete Composites. 17(1995):147~159
    [60] 孙海林,叶列平,郭玉顺.高强轻骨料混凝土梁的长期性能试验研究[J].工业建筑,2006,Vol.3,No.6:88~91,113
    [61] 刘沐宇,尹华泉,丁庆军等.高强次轻混凝土梁抗剪性能试验研究[J].武汉理工大学学报,2006,(12):85~88
    [62] 刘沐宇,李鸥,丁庆军等.高强轻集料钢筋混凝土梁抗弯性能试验[J].华中科技大学学报(自然科学版),2006,(10):100~103
    [63] 陈本沛,王海超.无粘结部分预应力轻骨料混凝土大跨度双室箱梁的试验研究[J].工业建筑,2001,(9):27~29,57
    [64] 冷大敬.预应力陶粒混凝土空心板试验分析[J].交通科技与经济,2004,(6):21~22
    [65] 张鑫.预应力轻骨料混凝土空心板结构试验研究[J].混凝土,2002,(8):41~44
    [66] 王贤磊,丁建彤,叶列平等.预应力钢纤维高强轻质混凝土梁疲劳性能[J].混凝土与水泥制品,2004,3:36~38
    [67] 邵永健,程志军,顾万黎等.高强轻骨料混凝土梁承载力的研究[J].工业建筑,2006,(8):86~88
    [68] 刘沐宇,刘巧丽,丁庆军等.预应力轻集料混凝土空心板粱的有限元模型[J].武汉理工大学学报,2006,28(4):56~58
    [69] 刘沐宇,刘巧丽,丁庆军等.后张法轻集料混凝土空心板梁的局部承压分析[J].华中科技大学学报(城市科学版),2006,23(2):13~16
    [70] 郑勇,胡大琳,沈永林.轻质高强混凝土在连续刚构桥中的应用分析[J].公路,2005,7:32~35
    [71] 陈本沛,申彦利.无粘结部分预应力轻骨料混凝土大跨度双室箱形梁的加载模拟[J].工业建筑,2002,(11):28~29
    [72] 韩万水,黄平明,兰燕.轻质高强微膨胀混凝土加固拱桥的动力分析[J].长安大学学报(自然科学版),2005,Vol.25,No.4:44~47,65
    [73] 王瑁成,邵敏.有限单元法基本原理和数值方法[M],北京:清华大学出版社,1997
    [74] 江见鲸.有限元法及其应用[M].北京:机械工业出版社,2006
    [75] 江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005
    [76] 肖汝诚.桥梁结构分析及程序系统[M].人民交通出版社,2002
    [77] MIDAS/CIVIL使用手册
    [78] 葛素娟,李静斌.水南特大桥主桥0~#块局部有限元分析,公路交通科技(应用技术版),2006,6:118~120
    [79] 王砺文.大跨连续刚构墩梁固接处的空间应力分析[J].铁道标准设计,2003,(8):36~38
    [80] 许惟国,何广汉.大跨度连续刚构桥墩梁结合部的试验研究[J].桥梁建设,2003,(5):1~4
    [81] 龚洛书,丁威.轻集料混凝土收缩与徐变标定意见和建议.混凝土,2002(2):16~17、63
    [82] 周履,陈永春.收缩徐变[M].中国铁道出版社,北京:1994
    [83] Ghali, A., and Favre, R., Eibadry. M. Concrete Structures: Stresses and Deformations, SPON PRESS London and New York, 2002
    [84] 过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999
    [85] Neville, A.M., Dilger, W.H., and Brooks, J.J. Creep of Plain and Structural Concrete. London & New york, 1983
    [86] Ghali, A. And Renaud, F. Concrete Stress and Deformation, 2nd, edition, E&FN Spon, Chapman and don, 1994
    [87] 惠荣炎,黄国兴,易若冰.混凝土的徐变[M].中国铁道出版社,北京:1998
    [88] 丁庆军.高强次轻混凝土的研究与应用[D].武汉:武汉理工大学博士论文,2006,11
    [89] Bazant, Z.P, and Xiang, Y. Crack growth and lifetime of concrete under long time loading. Journal of Engineering Mechanics, 1997, April, 350~358
    [90] Bazant, Z.P. Mathematical modeling of creep and shrinkage of concrete. Jhon Vdilley & Sons Ltd, 1988
    [91] 中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社
    [92] 宗林,姚琪,黄侨.全时程时效分析理论及其在大跨桥梁中的应用[J].中国公路学报,1999,5:40~47
    [93] 周建民.考虑时间因素的混凝土结构分析方法[D].上海:同济大学博士学位论文,2006.1
    [94] 尹华泉.高强轻集料钢筋混凝土梁抗剪力学性能试验研究[D].武汉:武汉理工大学硕士论文,2006,3
    [95] 朱汉华,陈孟冲,袁捷.预应力混凝土连续箱梁桥裂缝分析与防治[M].北京:人民交通出版社,2006
    [96] 范立础.桥梁抗震[M].上海:同济大学出版社,1996
    [97] 孙焕纯,曲乃泅,林家浩.计算结构动力学[M].北京:高等教育出版社,1989
    [98] 李国豪.桥梁结构稳定与振动[M).北京:中国铁道出版社,1996
    [99] 丰硕,项贻强,汪劲丰.大跨径连续刚构桥的动力性能及地震响应分析[J].中南公路工程,Vol.30,No.4:77~81
    [100] 王克海,李茜.基于模态分析的Push-over方法在桥梁抗震分析中的应用[J].铁道学报,2006,(2):79~84
    [101] 孙增寿,孙征,陈淮.郑州黄河人桥主桥自振特性分析[J].世界地震工程,2003,19(3):129~133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700