2E12铝合金薄板微观组织与疲劳裂纹扩展性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2524铝合金作为重要的航空材料,主要应用于飞机的蒙皮、机翼下壁板等关键部位,2E12铝合金是国内在2524合金基础上进一步降低Fe、Si杂质含量研制而出。本论文采用OM、SEM (EBSD)、TEM、EDS、DSC、硬度测试、电导率测试、室温拉伸性能测试和疲劳裂纹扩展速率测试等分析手段,研究了国产2E12-T3和进口2524-T3铝合金微观组织、常规力学性能、疲劳裂纹扩展速率以及微观裂纹扩展路径等,得出影响国产2E12-T3铝合金疲劳裂纹扩展性能的主要因素,并提出工艺优化方案,并对优化工艺2E12-T3铝合金进行疲劳裂纹扩展性能评价,从而获得疲劳性能基本达到进口2524-T3铝合金水平的国产2E12-T3铝合金,获得如下实验结果和结论:
     国产2E12-T3合金晶粒明显细小、均匀,近似呈等轴晶,发生了更高程度的再结晶,进口2524-T3合金晶粒呈典型轧制纤维状;两种合金基体内均分布有少量未溶的AlCu、AlCuMg和富Fe等粗大第二相;国产2E12-T3合金晶内的Al20Cu2Mn3棒状相数量略多于进口2524-T3合金,且棒状粒子间距更密;两种合金都为T3态,时效析出强化相皆为与基体相共格的GP区结构。
     国产2E12-T3合金的疲劳裂纹扩展速率明显高于进口2524-T3合金,且两者的断口形貌具有明显的差异,2E12-T3合金较平坦,辉纹间距较大,韧窝数量较少,而2524-T3合金断口较粗糙,辉纹间距较小,韧窝数量较多。
     国产2E12-T3与进口2524-T3合金在微观组织方面的最主要区别为再结晶程度大小,为了降低国产2E12-T3合金的再结晶程度,可在最后一道轧制之前添加一道低温退火,充分释放材料内部累积的过高形变能,同时可以保留形变组织。
     优化工艺2E12-T3合金晶粒组织发生非常明显的改变,获得了与进口2524-T3合金相似的纤维状状组织,尤其是1.2mm厚优化工艺2E12-T3铝合金纤维状特征更加突出,基本达到进口2524-T3合金水平。通过对优化工艺2E12-T3铝合金进行疲劳裂纹扩展性能评价,发现添加中间退火工艺能够有效地降低2E12-T3合金的裂纹扩展速率,并延长2E12-T3合金的剩余疲劳寿命,其中1.2mm厚优化工艺2E12-T3合金疲劳裂纹扩展速率曲线与2524-T3合金基本重合,且其剩余疲劳寿命高达4.10×104周,比进口2524-T3合金的4.24x 104周仅低约为3%,疲劳性能基本达到进口水平。
As an important aviation materials,2524 aluminum alloy was mainly used in the aircraft's skin, the wing lower panels and other key positions, and successfully applied in the Boeing 777, Airbus A380 aircrafts,2E12 aluminum alloy was developed at the basis of 2524 by further reducing the impurity content of Fe and Si. The microstructure, conventional mechanical properties, fatigue crack growth rate and micro-crack growth path of domestic 2E12-T3 and imported 2524-T3 alloy were evaluated by OM, SEM (EBSD), TEM, EDS, DSC, Hardness Testing, Conductivity Testing, Tensile performance testing at room temperature, fatigue crack growth rate testing and other methods, etc, and obtained the main reasons of effect on the fatigue property of pre-made 2E12 aluminum alloy, then proposed the optimize program of the preparation process, and took a evaluation of fatigue crack propagation performance for the improved 2E12-T3 aluminum alloy, and obtained the domestic 2E12-T3 aluminum alloy which basically achieved the imported 2524-T3 fatigue level, the test results and conclusions obtained are as follows:
     The grains of domestic 2E12-T3 alloy were homogeneous and minute with more seriously recrystallized, and were approximately equiatxed, but the imported 2524-T3 alloy presented the rolled fibrous tissue, which were approximately equiatxed, the former was more seriously recrystallized; both of them were distributed with a little undissolved coarse second phase in the matrix, AlCu or AlCuMg and iron-rich phase; more middle-size Al20Cu2Mn3 club-shaped particles were observed in 2E12-T3 alloy with more close space in them; And with the same heat-treatment state for T3 state, the aging precipitated strengthening phase was the GP zone, which was coherent with the matrix.
     The fatigue crack growth rate of domestic 2E12-T3 alloy was significantly higher than imported 2524-T3 aluminum alloy, and the fractures had the significant differences, the fracture of 2E12-T3 alloy was relatively flat with the small striation space and a few of dimples,2524-T3 alloy was more rough and obviously rugged with the bigger striation space and more dimples at the fracture.
     The main difference between domestic 2E12-T3 and imported 2524-T3 alloy was the degree of recrystallization in microstructure, in order to reduce the recrystallization of domestic 2E12-T3, a low temperature annealing process could be added the front of the last one cold rolling annealing, the high accumulated strain energy would be fully released, while the deformation structure was reserved.
     By comparison with imported 2524-T3 alloy, the grains characteristic of improved 2E12-T3 aluminum alloy had come about an obvious change, and obtained the same fibrous-like tissues with 2524-T3 alloy, then a more prominent phenomena was observed in the improved 1.2mm-thick 2E12-T3 aluminum alloy, whose length-width ratio was about 6. Therefore, the microstructure of improved 2E12-T3 alloy had basically achieved the level of imported 2524-T3 alloy. By the evaluation of fatigue crack growth performance for the improved 2E12-T3 aluminum alloy, adding intermediate annealed process could effectively slow the crack growth rate and extend the remained fatigue life of domestic 2E12-T3 alloy, particularly, the fatigue crack growth rate curve of 1.2mm-thick improved 2E12-T3 alloy was almost coincided with 2524-T3 alloy, whose remained fatigue life reached up to 4.10×104cycles, it was only lower than the imported 2524-T3 alloy about 3%. Therefore, the fatigue performance of improved 2E12-T3 alloy basically achieved the level of imported 2524-T3 alloy.
引文
[1]张君尧.铝合金材料的新进展.轻合金加工技术,1998,26(5):1-10
    [2]李成功,博恒志,于翘,等.航空航天材料.北京:国防工业出版社,2002,28-38
    [3]Heinz A, Haszler A, Keidel C. Recent development in aluminum alloys for aerospace applications [J]. Mater Science Engineering,1999, A280(1):102-107
    [4]William C, John L, James T. Aluminum alloys for aircraft structure [J]. Advanced Materials Proeesses,2002,160(12):27-29
    [5]李成功,傅恒志.航空航天材料[M],北京:国防工业出版社,2002,28-38
    [6]催德刚,郭建平.航空武器系统的发展趋势[J].航空周刊,1995,(46):2
    [7]江辉.国外航天结构新材料发展简述[J].宇航材料工艺,1998,4:1
    [8]David S T. Metallurgical factors affecting high strength aluminum alloy Produetion [J]. Metallurgical TransactionA,1997, (6):671-683
    [9]Aleoa Technieal Center. New alurninum alloy for wings and fuselages of commercial aircraft [J]. Advanced Materials&Proeesses,2002, (8):87
    [10]Staley J T, Lege D J. Advances in aluminum alloy Produets for structural applications in transportation [J]. dePHys,1993, (3):159-169
    [11]Starke E A., Staley J T. Application of modern aluminum alloys to aircraft [J]. Aerospace Science,1996,32:131-172
    [12]邓少奎.2E12高强耐疲劳铝合金轧制工艺和疲劳性能的研究[D],秦皇岛:燕山大学,2007
    [13]周杰Al-Cu-Mg合金疲劳性能与热稳定性的研究[D].长沙:中南大学,2008
    [14]杨胜.2E12铝合金服役环境下的损伤行为与耐损伤微观结构的研究[D].长沙:中南大学,2007
    [15]杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2002,19(2):76-80
    [16]Manabu N, Takehiko E. New aspects of development of high strength aluminum alloy for aerospace applications [J]. Materials Science and Engineering A,2000,285:62-68
    [17]Kunq C Y, Fine M E. Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 alurninium alloys [J]. Metallurgical Transactions A,1979,10(5):603-610
    [18]Leshchiner L N, Fedorenko T P.Properties and structure of system Al-Cu-Mg alloys with addtions of iron and silicon [J]. Metal Science and Heat Treatment,1991, 33(5-6):406-411
    [19]Debartolo E A, Hillberry B M. Effects of constituent particle clusters on fatigue behavior of 2024-T3 aluminium alloy [J]. Intenational Journal Fatigue,1998, 20(10):727-735
    [20]张国君,刘刚,丁向东,等.含有第二相的高强铝合金疲劳模型[J].稀有金属材料与工程,2004,33(1):35-39
    [21]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004
    [22]Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-Li based alloys [J]. Materials Review,2005,20(4):193-215
    [23]Pearson's handbook of crystallographic data for intermetallic phases[C],2nd edn,(ed.P. Villars),1991,MaterialsPark,OH,ASM international
    [24]Carter R D, Lee E W, Starke E A, etal. The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy [J]. Metallurgical Transactions A, 1984,15(3):555-563
    [25]Suresh S, Vasudevan A K, Bretz P E. Mechanism of slow fatigue crack growth in high strength aluminum alloys:role of microstructure and environment [J]. Metallurgical Transactions A,1984,15(2):369-379
    [26]Sadeler R, Totik Y, Gavgali M, etal. Improvements of fatigue behavior in 2014 Al alloy by solution heat treating and age-hardening [J]. Material and Design,2004, 25:439-445
    [27]陈康华,刘允中.7075和2024铝合金的固溶组织与力学性能[J].中国有色金属学报,2000,10(6),819-822
    [28]Schijve J. The effect of Pre-strain on fatigue crack growth and crack closure [J]. Engineering Fracture Mechanies,1976,8:575-581
    [29]Singh S, Goel D B. Structural changes during thermomechanical agine of 2014 aluminum alloy for aerospace application [J]. Bulletin of Materials Science,1991, 14(1):35-41
    [30]Brav G H, Golazov M, Rioja R J. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys [J]. International Journal of Fatigue,2001,23:S265-276
    [31]Sarioglu F, Othaner F. Effcet of prolongd heating at 130℃ on fatigue crack propagation of 2024 Al alloy in three orientations [J]. Materials Science and Engineering A,1998,248:115-119
    [32]Lumley R N, O'Donnell R G, Polmear I J, etal. Enhanced fatigue resistance by underaging an Al-Cu-Mg-Ag alloy [J]. Materials Forum,2005,29:256-261
    [33]戈康达S. Fatigue Failure of Metals[M]颜鸣皋,刘才穆译.上海:上海科学技术出版社,1983:210-215
    [34]高艳丽.16Mn钢焊接件疲劳裂纹萌生与扩展的研究[D].沈阳:沈阳大学,2007
    [35]姬元辉.基于隶属函数的机械结构疲劳损伤研究及应用[D].西安:西安科技大学,2008
    [36]Srivatsan T S, Kolar D, Mag nusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524 [J]. Materials &Design,2002,23:129-139
    [37]Srivatsan T S, Kolar D, Magnusen P. Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524 [J]. Materials Science and Engineering (A),2001,314 (1/2):118-130
    [38]Golden P J, Grandt A F, Bray G H. A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens [J]. International Journal of Fatigue,1999,21:211-219
    [39]孙晓旭.2E12-Zr铝合金的热处理与微观组织及力学性能研究[D].长沙:中南大学,2008
    [40]杜凤山,戴胜龙,杨守杰,等.高强铝合金疲劳特性研究[J].航空材料学报,2009,29(1):96-100
    [41]刘岗,郑子樵,杨守杰,等.2E12铝合金的疲劳性能与裂纹扩展行为[J].机械工程材料,2007,31(11):65-68
    [42]李海,郑子樵,王芝秀,等.时效析出对2E12铝合金疲劳断裂行为的影响[J].中国有色金属学报,2008,18(4):589-594
    [43]Liu J, Kulak M. A new paradigm in the design of aluminum alloys for aerospace applications [J]. Materials Science Forum,2000,331-337:127-140
    [44]Heinz A, Haslzler A, Keidel C. Recent development in aluminum alloys for aerospace applications [J]. Material Science and Engineering A,1999,280(1):102-107
    [45]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994
    [46]尉海军,张磊,姚广春,等.改善铝中富铁相形貌对电磁净化的影响[J].铸造,2005,54(4):363-366
    [47]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007
    [48]张永暤,姚宗勇,黄光杰,等.轧制变形铝合金微观组织与织构的EBSD研究[J]电子显微学报,2009,28(1):43-45
    [49]Crosby K S, Mirshams R A, Pan S S. Development of texture and texture gradient in Al-Cu-Li (2195) thick plate [J]. Journal of Materials Science,2000(35):3189-3195
    [50]王秩农,蒋奇武,赵骧,等.冷轧高纯铝板再结晶织构的演变特征[J].东北大学学报(自然科学版),2002(2):84-86
    [51]聂祚仁,张新明,尹志民,等.深冲铝板中的再结晶织构与选择生长[J].金属学报,1997(9):976-980
    [52]张宝昌,王世洪,何明,等.有色金属及其热处理[M].北京:国防工业出版社,1981
    [53]李世凯TA15EL1钛合金厚板显微组织与损伤容限性能研究[D].北京:北京有色金属研究总院,2008
    [54]郑子樵,陈圆圆,钟丽萍,等.2524-T34合金疲劳裂纹的萌生与扩展行为[J].中国有色金属学报,2010,20(1):37-42
    [55]Zhai T, Jiang X P, Bray G H, etal. The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys [J]. Inter J Fatigue,2005,27:1202-1209
    [56]Zhai T, Wilkinson AJ, Martin JW. A crystallographic mechanism for fatigue crack propagation through grain boundaries [J]. Acta Mater,2000,48:4917-4927
    [57]Saga J, Hayashi M, Nishio Y. Effeet of grain size on fatigue damage in pure aluminum [J]. Journal of the Society of Materials Science,1977,26:289-295
    [58]闫亮,杜凤山,戴圣龙,等.微观组织对2E12铝合金疲劳裂纹扩展速率影响[J].中国有色金属学报,2010,20(7):1275-1281
    [59]Lingigkeit J, Terlinde G, Gysler A, etal. The effect of grain size on the fatigue crack propgation behavior of age-hardened alloys in inert and corrosive environment [J]. Acta Metallurgical,1979,27(11):1717-1726
    [60]郑仲瑜,刘迨.晶粒尺寸对65Mn钢疲劳裂纹扩展的影响[J].金属热处理学报,1993,14(2):28-31
    [61]Wanhill R J H. Low stress intesisty fatigue crack growth in 2024-T3 and T351 [J]. Engineering Fracture Mechanics,1988,30(2):233-260
    [62]Shabara M A N, El-Domiaty A A, Al-Ansary M D. Estimation of plane strain fracture toughness from cirumferentially bluntly notched round-bar specimens [J]. English Fracture Mechanic,1996,54(4):533-541
    [63]Zheng Xiulin. On an unified model for predicting notch strenth and fracture toughness [J]. English Fractrue Mechanic,1989,33(5):685-695
    [64]王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西安:西北工业大学,2002
    [65]杜柏平,马宝钿,李年,等.中间退火使疲劳损伤钢延寿的微观力学解释[J].机械强度,2002,24(4):613-616
    [66]王兴,林均品,陈国良,等.锻造高铌双态TiAl合金在冷轧工艺及组织力学性能分析[J].稀有金属材料与工程,2009,38(8):1472-1475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700