用户名: 密码: 验证码:
黑曲霉合成β-甘露聚糖酶及制备功能性甘露低聚糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究证明,黑曲霉(Aspergillus niger)是一种能够合成β-甘露聚糖酶的菌种,但对其产β-甘露聚糖酶的历程及调控方面的研究非常少,而用黑曲霉合成的β-甘露聚糖酶水解魔芋精粉生产低聚糖的研究就更少了。本文在碳源的浓度、氮源种类、碳氮比、培养基初始pH值、培养温度以及接种量对黑曲霉合成β-甘露聚糖酶的的影响,产酶历程,以及酶水解魔芋精粉制备葡甘低聚糖等方面作了一系列研究,主要结果如下:
     (1)黑曲霉合成β-甘露聚糖酶的最适条件为:碳源魔芋精粉浓度40g/L,氮源由蛋白胨与硫酸铵以2:1的配比组成,碳氮比7:1,培养基初始pH值6.0左右,接种量10%,培养温度36℃,产酶时间三天,酶活达75IU/mL左右。
     (2)黑曲霉合成的β-甘露聚糖酶系中,至少含有β-甘露聚糖酶、β-甘露糖苷酶和β-葡萄糖苷酶。它们在对魔芋葡甘聚糖水解时起协同作用,即内切-β-甘露聚糖酶先在葡甘聚糖长链内部作用,将其水解为葡甘低聚糖,再由外切的β-甘露糖苷酶和β-葡萄糖苷酶将葡甘低聚糖进一步水解为单糖。
     (3)酶解产物经高效液相色谱分析,主要为葡萄糖、甘露糖、二糖、三糖和四糖。一般情况下,单糖得率高于低聚糖得率。
     (4)以提高低聚糖得率及低聚糖在产物中所占比例为目标,实验得到的最适酶解条件为:酶用量75IU/g底物,酶解时间为4小时,酶解液pH值为6.0。此时低聚糖得率为19.32%,单糖得率仅为9.58%,总糖得率28.9%。这一结果表明,对酶水解的酶用量、酶解时间及pH值进行合理控制可以提高产物中低聚糖的量,而降低单糖的量,能较好地实现低单糖高低聚糖的目标。
It has been proved Aspergillus niger is capable of producing P-D-mannase, but studies on the course and control of its producing P-D-mannase were seldom done, and the study on enzymatic hydrolysis of refined konjac powder was even rare. These problems are studied in this dissertation which includes two parts . The first part studies on the optimum conditions of producing P-D-mannase such as carbon source density, nitrogen source, ratio of carbon to nitrogen, and so on. The second part is about the optimum conditions of enzymatic hydrolysis of refined konjac powder and it aims to obtain more glucoman-oligosaccarides and less monosacchatides. The main results are as follows:
    (1) The optimum conditions for Aspergillus niger to produce P-D-mannase are: refined konjac powder density 40g/L, peptone and sulphate of ammonia as nitrogen source with ratio of 2:1, ratio of carbon to nitrogen 7:1, beginning pH value of culture medium 6.0 around, seed volume 10%, fermentation temperature 36癈, time 3 days, P-D-mannase activity up to 75IU/mL.
    (2) The enzyme system of P-D-mannase from Aspergillus niger at least includes P-D-mannase, p-mannosidase and p-glucosidase. a cooperative action is taken on konjac glucomannan by these enzymes during the course of hydrolysis. That is to say, endo-p-D-mannase takes action inside the long chain of glucomannan to obtain glucoman-oligosaccharides which are then hydrolysed to monosaccharides by P-mannosidase and P-glucosidase.
    (3) Analyzed by HPLC, enzymatic hydrolysate mainly consists of glucose, mannose, biose, trisacharose and tetrose. Commonly, yield of monosaccharides is higher than that of oligosaccharides.
    (4) The optimum conditions of enzymatic hydrolysis are: enzyme dosage 75IU/g substrate, time 4 hours, pH value 6.0. Under these conditions, yield of oligosaccharides 19.32%, yield of monosaccharides only 9.58%, the ratio of the former to the latter 2.02. This result proves higher yield of oligosaccharides and lower yield of monosaccharides
    
    
    
    will be obtained if enzymatic hydrolysis parameters are in control.
引文
[1]郑建仙.功能性食品[M](第1版).北京:中国轻工业出版社,1995.
    [2]张学元.食品工业科技,1994,(6):4
    [3]卢建军.寡聚糖在饲料工业上的应用[J].饲料与畜牧,1999,(1):21-22.
    [4]尤新.迅速发展的我国功能性低聚糖[J].食品与机械,1999,72:4-6.
    [5]郑建仙.耿立萍.功能性低聚糖析论[J].食品与发酵工业,1997,23(1):39-46.
    [6]香红星.董仲华.刘亚力.功能性寡糖的研究应用进展(下)[J]饲料研究,2001 (8):14-16.
    [7]谷利伟.赵金兰.日本低聚糖开发新动态[J].食品与机械,1999(8):27-28.
    [8]Bucke C.J.Chem.Technol.Biotechnol[J].1996,67:217-220.
    [9]胡学智.功能性低聚糖及其制造概要[J].工业微生物,1997,27(1):30-39.
    [10]杨连生等.以α-葡萄糖苷酶为主酶制备异麦芽低聚糖[J].食品科学,1999,(2):20-21.
    [11]曹劲松,王晓琴,彭志英.微生物酶法合成低聚糖的问题与策略[J].1999,25(4):41-47.
    [12]蒋世琼等.功能性低聚糖的制造与生物技术[J].食品工业科技,1999,20(3):64-65.
    [13]J.S.D. Bacon. Biochemistry[J]. 1954, 57: 320-328.
    [14]许喜林等.食品工业科技[J].1997,124(4):34-37.
    [15]洪枫.南京林业大学博士研究生学位论文,1998
    [16]陈瑞娟.食品与发酵工业[J].1993,(2):82
    [17]香红星.董仲华.刘亚力.功能性寡糖的研究应用进展(上)[J].饲料研究,2001 (7):9-11.
    [18]毛胜勇.甘露低聚糖在动物生产中的应用研究[J].饲料研究,2000(9):10-13.
    [19]杨文博等.β-甘露聚糖酶水解植物胶条件的研究[J].食品与发酵工业,1996:14-17.
    [20]金丰秋,金其荣.魔芋精粉生产甘露低聚糖[J].中国食品用化学品,1999,6(5):4344.
    [21]周中凯.夏英.甘露寡聚糖的生产与研究[J].饲料工业,1999,20(8):27-29.
    
    
    [22]田新玉等.嗜碱芽孢杆菌N16-5β-甘露聚糖酶的纯化与性质[J].微生物学报,1999,33(2):115-121.
    [23]杨文博等.地衣芽孢杆菌β-甘露聚糖酶的纯化及酶学性质[J].微生物学通报,1995,22(6):338-342.
    [24]李文玉等.枯草芽孢杆菌中性内切β-甘露聚糖酶的纯化及性质[J].微生物学报,2000,40(4):420-423.
    [25]陈一平等.芽孢杆菌M50产生β-甘露聚糖酶的条件研究[J].微生物学报,2000,40(1):62-68.
    [26]吴襟,何秉旺.微生物p-甘露聚糖酶[J].微生物学通报,1999,26(6):134-136.
    [27]Rebert F H, et al.Arch Microbiol, 1979, 122: 297-299.
    [28]Rogalski J, Hatakka A, Longa B et al. Acta-Biotechnol, 1993, 13(1): 53-57.
    [29]Schombug D, M Salzmann. Enzyme handbook(4).Springer-Verlag Berlin Heideberg, 1991, 1-5.
    [30]田亚平,金其荣.黑曲霉β-D-甘露聚糖酶的纯化及基本性质[J].无锡轻工大学报,1998,17(3):16-21.
    [31]龙健儿,陈一平.β-甘露聚糖酶的研究现状[J].微生物学杂志,1998,(3):44-49
    [32]McCleary, B Vβ-mannanase[J]. Methods in Enzymology, 1988, 160: 596-610.
    [33]Luthri E, Jasmat N.B, Grayling R.A, etal. Cloning, Sequence analysis, and expression in Escherichia Coli of a gene coding for a β-mannanase from the extremely thermophilic bacterium-"Caldocellum Saccharolyticum"[J]. Appl. Environ .Microbiol.,1991, 57(3): 694-700.
    [34]Zeilinger, S, Kristufek, D, Arsan-Atac,I.,et al. Conditions of formation, Purification, and characterization of an β-mannanase of Trichoderma reesei RUT C-30[J]. Appl. Environ. Microbiol.,1993, 59(5): 1347-1353.
    [35]Shimahara H, Suauki H,et al.Isolation and Characterization of Oligosaccharides from an Enzymic Hydrolysate of Konjac Glucomannan[J]. Agric.Biol. Chem., 1975, 39(2):293-299.
    [36]Takahashi R, Kusakabe I, Kusama S, et al. Structures of Glucomanno-oligosaccharides from the Hydrolytic Products of Konjac Glucomannan Produced by a β-mannanase from Streptomyces sp[J]. Agric. Biol. Chem.,1984,48(12):2943-2950.
    
    
    [37]施航,于敏星,王三玲.从魔芋中提取葡甘露聚糖的研究[J].食品研究与开发,1998 (4):20-23.
    [38]Norko Kishoshi Okimasu Preparation of Water-soluble Methyl Konjac Glucomannan[J].Agric.Biol.Chem.,1987,42(3):669-670.
    [39]吴贤聪等.魔芋甘露聚糖的提取、鉴定及其应用的研究[J]食品科学,1987(3):20-22.
    [40]胡敏等.魔芋葡甘聚糖的提纯方法比较[J].食品科技,1999(1):31-33.
    [41]吴万兴,丁东宁等.魔芋甘露聚糖化学结构的研究[J].林产化学与工业,1997,17(2):69-72.
    [42]许时婴,杨莉.无锡轻工业学院学报,1990,10(1):1-5
    [43]许时婴,杨莉.无锡轻工业学院学报,1990,9(3):24-28
    [44]贾成禹,陈素文等.生物化学杂志,1988,4(5):405-410
    [45]Kato k. Matsuda K. Agfic. Biol. Chem., 1969, 33(10): 1443-1451
    [46]Smith F. Methods in Carbohyd. Chem[M]. vol, V, 361, Academic Press, New York and London, 1965.
    [47]Kato k. Matsuda K.Agric. Biol. Chem., 1972, 36(4): 636-643.
    [48]Kato k. Matsuda K. Agric. Biol. Chem., 1973, 37(9): 2041-2049.
    [49]李科友等.魔芋精粉中甘露聚糖的测定方法[J].食品工业科技,1994(5):74-75.
    [50]Miller G.L.Analytical Chemistry, 1959, 31(3):423-432.
    [51]Akino T, Nakamura N, Horiroshi K. Agric. Biol. Chem., 1988, 52:773-779[J]
    [52]田亚平,金其荣.黑曲霉β-D-甘露聚糖酶的酶学性质及化学组成[J].无锡轻工大学报,1998,17(4):28-33.
    [53]夏黎明.南京林业大学博士学位论文,1993.
    [54]Reese T. Shibata Y. Canadian Journal of Microbiology, 1965, 11:167-178.
    [55]俞俊堂,唐孝宣.生物工艺学[M] (第1版).上海:华东理工大学出版社,1991
    [56]毕瑞明,孙迅,任少亭.黑曲霉产木聚糖酶条件的研究[J].工业微生物,2000,30 (1):53-55.
    [57]钱铭镛.发酵工程最优化控制[M] (第1版).南京:江苏科学技术出版社,1998
    [58]梅乐和.姚善泾.林东强.生化生产工艺学[M] (第1版).北京:科学出版社,2000
    [59]Mukhopadhyay S. N. et al. Biotechnol. Bioeng.,1980, 2: 2233-2242.
    
    
    [60]Hashimoto Y. Fukumoto J.,Studies on the enzyme treatment of coffee beans. Part Ⅱ. Purification and properties of β-mannosidase of Rhizopus niveus[J].Nippon Nogeikagaku Kaishi, 1969, 43(8): 564-569.
    [61]Bouquelet S. Spik G. Montreuil J. Properties of a β-mannosidase from Aspergillus niger[J]. Biochim Biophys Acta., 1978, 552: 521-530.
    [62]夏黎明.固态发酵生产高活力纤维二糖酶[J].食品与发酵工业,1998,25(2):4-8
    [63]Eriksson KE. Winnel M., Acta Chemica Scandinavia, 1968 (22): 1928
    [64]Akino T, Nakamura N, Horikoshi K. Production of β-mannosidase and β-mannanase by an alkalophilic Bacillus sp [J]. Appl Microbiol Biotechnol. 1987 26:323-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700