酶法生产魔芋葡甘低聚糖研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     葡甘低聚糖是一种具有多种特殊生理功能的寡聚糖,可以预防肥胖症、糖尿病、龋齿等多种疾病的发生,减轻人体因摄入过多热量而产生的负担,是新型的功能低聚糖。
     本论文运用现代发酵技术及酶工程学原理,利用微生物产酶水解魔芋精粉来制备葡甘低聚糖。在前期工作的基础上,对自行筛选的一株产高活性葡甘聚糖酶的细菌进行鉴定,摸索细菌生长和产酶的规律,优化产酶条件,并以摇瓶培养结果为依据,用5 L发酵放大培养细菌,进一步优化放大发酵条件,此外,对发酵液中的葡甘聚糖酶进行提取并纯化,探索出一套纯化葡甘聚糖酶的理想方案,建立完整的葡甘低聚糖制备工艺,试图为工业生产葡甘聚糖酶提供理论依据,为工业化生产葡甘低聚糖提供技术指导。
     方法:
     首先运用常规方法观察细菌形态,并对20多种生理生化特征进行鉴定,根据《伯杰细菌鉴定手册》和《常见细菌系统鉴定手册》对细菌特征进行检索,为细菌分类到种并命名。为了了解细菌生长和产酶规律,在摇瓶培养过程中摸索细菌生长的最适培养基及最佳培养时间,通过正交试验确定摇瓶培养条件的最佳配伍,并在此基础上进行细菌的放大生产,再次利用正交试验对放大发酵条件进行优化。发酵得到的葡甘聚糖酶经过盐析、分子筛层析和离子交换层析三个步骤进行分离纯化,纯化后的酶蛋白用聚丙烯酰胺常规电泳进行纯度鉴定,变性电泳测定其平均分子量,同时对酶作用的最适pH和最适温度等特性进行研究,调整酶反应环境,提高酶效。综合试验数据,在其指导下进行葡甘低聚糖的生产小试,对发酵液的凝聚剂种类和凝聚条件进行研究,同时对粗提酶用于葡甘低聚糖生产的实际可行性进行模拟,了解粗酶作用比率、时间、温度、pH等条件,测定水解产物的总糖含量和还原糖含量,薄板层析法分析产品的寡糖种类,计算原料转化率和增值率。
     结果:
     1.通过鉴定,该菌属于芽孢杆菌属,具有耐盐、耐热、液化明胶、水解淀粉、可运动、好氧兼性厌氧等特点,与芽孢杆菌属中其他种相比较应该是一个新种,目前暂时将其命名为耐热芽孢杆菌Bacillus thermodurans。
     2.Bacillus thermodurans产酶的最适培养基为蛋白胨1%、牛肉膏粉0.3%、魔芋精粉2%、NaCl0.5%、K_2HPO_40.2%,培养条件的最适温度为40℃,pH7.2,振荡速度120rpm,培养时间为24h。该条件下培养的获得的粗酶液平均比活力可达3859U/mg。
    
    n摘要
     3.正交试验分析结果显示,SL发酵罐培养的最适条件为温度50℃,PH 6.2,发酵
    初期搅拌速度为200 rpm,通气量为40眺,6h后变为搅拌速度100 rpm,通气量20眺,
    得到的最高酶比活力可达4403U/mg。刀狡‘illus thermodurans生长周期较短,6h后即进
    入对数期,26h后进入稳定期,期间出现二次生长现象。与生物量积累情况相比,所产
    酶的活性上升速度更快,直至24h后才开始有明显下降,整个过程中pH值变化幅度极
    小,而溶氧值由于发酵液粘度变化及需氧量变化起落较大。酶蛋白的产量与菌体积累量
    密切相关,发酵动力学属于偶联型。
     4.盐析浓度在朋~80%范围内葡甘聚糖酶的活性较高,将该浓度下沉淀的蛋白质经
    Sepharose 6B分子筛层析和DEAE一52离子交换层析分离出达到电泳纯的酶蛋白。纯化倍
    数达到6.7,酶活回收率为67.14%。该酶降解魔芋精粉时的Km=lomg/血L,Vmax=6.67
    mg/血Lmln。SDS一PAGE测定结果表明纯化后的葡甘聚糖酶由三种亚基组成,推断其中可
    能含有其他分子量接近的蛋白质或为葡甘聚糖同工酶,结果有待进一步验证。
     葡甘聚糖酶在温度为50℃,PH为5.6一5.8时活力最高。低温对酶活影响不大,40
    ℃以下酶可在Zoh内保持较高活性,而pH对酶活影响相对显著,在pHS~PH7范围内
    酶的活力可保持大约10h左右,PHS时则大大降低了酶的活性。金属离子和有机物往往
    对酶反应有比较大的影响,对该葡甘聚糖酶来说,znZ十和FeZ+对酶的反应有明显的抑制
    作用,其他试验的离子和有机物则未见显著的抑制或激活性。
     5.在SL发酵罐上对葡甘低聚糖进行实验性生产的主要工艺为用0.05%(岁1 00 mL)
    氯化钙和0.1%(留1 00 mL)磷酸氢二钠处理培养24h的发酵液,去除菌体和固体颗粒后在
    低温下进行40~80%浓度的盐析,得到葡甘聚糖粗酶,脱盐后直接与魔芋精粉以1:300
    (w八V)的比例混合,50℃下保温10h,充分水解后4 000 rpm下离心,去除未降解的
    魔芋粉,得到葡甘低聚糖浆,最后由喷雾干燥得到低聚糖粉。
    经测定葡甘聚糖的转化率为66.6%,糖粉中总糖含量为90.11%,
    13.09%,薄板层析结果显示糖粉中单糖浓度很低,
    聚糖酶可能是一种内切酶。小试生产的葡甘低聚糖产品有较奸的复溶性,
    还原糖含量为
    所产生的葡甘
    液体透明无异
    味,不需对产品进行脱色和除单糖等特别处理,生产工艺比较简单,所使用的仪器和试
    剂成本也较低,生产流程不对环境造成污染,是一个经济效益和社会效益都相当可观的
    课题项目。
Objects:
    To identify a strain producing high activity konjac glucomannanase, investigate the
    regularity of bacterial growth and fermentation, verify the conditions of producing
    glucomannanase, probe into the purification methods and the characteristics of glucomannanase, found a process producing konjac oligosaccharide.
    Methods:
    The strain was identified with the characteristics of morph and physiological biochemistry. According to Bergey's Manual of Determinative Bacteriology and Determinative Manual of Common Bacteria, the strain was grouped into genus or even species. Based on shake flasks the optimum culture and fermentation time were studied and then the fermentation conditions were verified on 5 L fermentator with the orthogonal experiment. Konjac glucomannanase was separated and purified through ammonium sulphate precipitation, gel filtration chromatography(Sepharose 6B) and ion exchange chromatography(DEAE-52), then the protein purify was determinated by PAGE and the molecular weight by SDS-PAGE. Furthermore, the enzyme characteristics were investigated about the optimum pH and temperature and so on to improve enzyme activity through adjusting the reaction environments. Based on the above results, the small scale of KOS production is studied including the agglutinator and the crude enzyme's reaction conditions. Meanwhile the
     parameters of KOS specimen, such as the sugar contents and components, transformation efficiency and so on, are determined.
    Results:
    1. According to morph characteristics and physiological biochemistry analysis, this strain is identified as Bacillus Cohn. 6ue to its deviation with other species of Bacillus Colin, this strain maybe a new species, for the time being it was named Bacillus thermodurans.
    2. On the shake flasks, the optimum culture is peptone 1%, beef extract 0.3%, konjac glucomannan 2%, NaCl 0.5%, K2HPO4 0.2%, the optimum temperature 40℃, pH 7.2, rotating velocity 120 rpm. The crude enzyme specific activity is average to 3859 U/mg.
    3. Through the orthogonal experiment, the optimum magnification conditions on 5 L fermentator are temperature 50℃, pH 6, at prophase stirring velocity 200 rpm, aeration rate 40 L/h, then after 6 h stirring velocity 100 rpm, aeration rate 20 L/h. The average specific activity
    
    
    is 4403 U/mg. when monitored on line, the growth of bacteria entered logarithmic phase after 6 h and stationary phase after 26 h. The enzyme specific activity decreased after 24 h. In this course, DO changed largely while pH was stable. In view of the relation between the bacteria growth and the production, the fermentation was coupling kinetics.
    4. Purification of Konjac glucomannanase includes three steps: ammonium sulphate precipitation, gel filtration chromatography and ion exchange chromatography.
    Glucomannanase precipitation concentration is at the range of 40~80%0 Sepharose 6B and DEAE-52 have better resolving power. After the three-step treatment, purification fold is 6.7 with 67.14% enzyme activity recovery and single band shows by PAGE determination. When substrate is konjac glucomannan, enzyme has Fmax of 6mg/mL-min and Km of lOmg/mL.
    According to the SDS-PAGE result, the purified enzyme has three subunits and it will be studied deeply whether the enzyme has single protein or it is another isoenzyme. This glucomannanase shows the maximal activity at temperature 50癈 and pH 5.6~5.8. When temperature is below 40癈, It remained 90% activity for 20 hours. At the range of pH 5'~7 enzyme activity can remain for 10 hours or so. Zn2+ and Fe2+ have great inhibition on enzyme activity while other trial ion and organic compound have little effect on activity.
    5. After fermented mash was pretreated by the mixture of 0.05% CaCl2 and 0.1% Na2HPO4, The bacteria and solid particles were separated and then salted out at 40%~80% under 0℃. the crude enzyme was dialyzed and mixed konjac glucomannan at the scale of 1:300 in water, then acted under 50℃ for 10 hours. At last, the hydrolyzate was spray-dried to the konjac oligosaccharide powder. In this cour
引文
[1] NM Delzenne. Oligosaccharides: state of the art [J]. Proc Nutr Soc, 2003, 62 (1) : 177~182
    [2] 尤新.功能性发酵制品[M].第一版.中国轻工业出版社,北京,2000
    [3] 香红星.β-甘露聚糖酶产生菌的诱变育种及其应用开发研究[D].中国科学院成都生物研究所硕士论文,2000
    [4] 孙华林.功能性低聚糖的开发[J].精细化工原料及中间体,2003,(7):17~19
    [5] 张红军,杨芳译.低聚糖有改善皮肤过敏的作用[J].日本医学介绍,2003,24(1):25
    [6] 日本功能性甜味剂研发与应用动向[J].江苏食品与发酵,2003,3:39
    [7] 袁涛,张伟力,吴宏忠等.低聚糖在动物营养学上的研究进展[J].粮食与饲料工业,2003,5:26~27
    [8] 孙德文,詹勇,许梓荣等.功能性低聚糖对动物免疫功能的影响[J].中国饲料,2003,8:12~13
    [9] 车向荣,岳文斌,臧建军等.功能性低聚糖对断奶仔猪腹泻的防治及生产能力的影响[J].中国兽医学报,2003,23(3):292~294
    [10] 中国生物技术产业发展报告(2003)[M].化学工业出版社,北京,2004
    [11] 采克俊.魔芋匍甘露低聚糖及魔芋精粉对小鼠免疫调节作用的初步研究[D].云南大学硕士论文,2001
    [12] T Yui, K Ogawa, and A Sarko. Molecular and crystal structure ofkonjac glucomannan in the mannan Ⅱ polymorphic form[J] . Carbohydr Res, May 14, 1992, 229 (1) : 41~55.
    [13] 熊德鑫,李秋剑,徐殿霞等.低聚糖体外选择性促进双歧杆菌生长的研究[J].食品科学,1998,19,(6):35~36
    [14] 杨艳燕,李小明,李顺意等.魔芋低聚糖对小鼠血糖含量和抗氧化能力的影响[J].中草药,2001,32(2):142~144
    [15] Yasunori Fukumori, Hiroyuki Takeda, Takuji Fujisawa et al.. Blood Glucose and Insulin Concentrations Are Reduced in Humans Administered Sucrose with Inosine or Adenosine[J]. Journal of Nutrition. 2000, 130: 1946~1949
    [16] Hsiao-Ling Chen, Wayne Huey-Herng Sheu, Tsai-Sung Tai et al.. Konjac Supplement Alleviated Hypercholesterolemia and Hyperglycemia in Type 2 Diabetic Subjects—A Randomized Double-Blind Trial[J] . Journal of the American College of Nutrition, 2003, Vol.
    
    22, No. 1, 36~42
    [17] 陈黎,杨艳燕,闫达中.魔芋低聚糖降脂作用的初步研究[J].中国生化药物杂志,2002,23(4):181~182
    [18] 冲增哲.魔芋科学[M].第一版.广岛女子大学
    [19] A Gonzalez Canga, N Fernandez Martinez, AM Sahagun et al.. In Process Citation[J]. Nutr Hosp, January 1, 2004, 19 (1) : 45~50
    [20] 邓立红.黑曲霉合成β-甘露聚糖酶及制备功能性甘露低聚糖的研究[D].中南林学院硕士论文,2002
    [21] Kent k. stewart, richard E. EBEL. chemical measurements in biological systems[M].第一版.化学工业出版社,北京,2003
    [22] 李艳.发酵工业概论[M].第一版.中国轻工业出版社,北京,1999
    [23] T. Araki and M. Kitamikado. Purification and characterization of a novel exo-betamannanase from Aeromonas sp. F-25[J]. Journal of Biochemistry, Vol 91, Issue 4 : 1181~1186
    [24] Y Matsuura. Degradation of konjac glucomannan by enzymes in human feces and formation of short-chain fatty acids by intestinal anaerobic bacteria[J]. J Nutr Sci Vitaminol (Tokyo), June 1, 1998, 44 (3) :423~436
    [25] N Nakajima and Y Matsuura. Purification and characterization of konjae glucomannan degrading enzyme from anacrobie human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group[J]. Biosci Biotechnol Biochem, October 1, 1997, 61 (10) : 1739~1742
    [26] N Kataoka and Y Tokiwa. Isolation and characterization of an active mannanase-producing anaerobic bacterium, Clostridium tertium KT-5A, from lotus soil[J]. J Appl Microbiol, March 1, 1998, 84 (3) : 357~367
    [27] Swapnil R. Chhabra, Keith R. Shockley, Donald E. Ward and Robert M. Kelly. Regulation. of Endo-Acting Glycosyl Hydrolases in the Hyperthermophilic Bacterium Thermotoga maritima Grown on Glucan- and Mannan-Based Polysaccharides[J]. Applied and Environmental Microbiology, February 2002, 68 (2) : 545~554
    [28] W Li, Z Dong and F Cui. Purification and characterization of an endo-beta-1, 4-mannanase from Bacillus subtilis BM9602[J]. Wei Sheng Wu Xue Bao, August 1, 2000, 40(4) : 420~424
    [29] 张迎庆,干信,谢笔钧.纤维素酶制备魔芋葡甘低聚糖[J].吉首大学学报,2003,
    
    24(3):42~44
    [30] 杨文博.β-甘露聚糖酶水解植物胶条件的研究[J].食品与发酵工业,1996:14~17
    [31] 金丰秋,金其荣.魔芋精粉生产甘露低聚糖[J].中国食品用化学品,1999,6(5):43~44
    [32] 王桂芸.魔芋匍甘露聚糖[J].精细与专用化学品,1998,21:9~10
    [33] 方建虎.魔芋葡甘聚糖酶产酶菌的选育及所产酶性质的研究[D].湖南农业大学硕士学位论文,2003
    [34] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].第一版.科学出版社,北京,2001
    [35] Buchanan R. E., Giboos N. E.. Bergery's manual of Determinative Bacteriology[M]. 8th ed. Wilakins Co Baltimore, 1974
    [36] 赵斌,何绍江.微生物学实验[M].第一版.科学出版社,北京,2002
    [37] 盘赛昆,吴文礼.一株产多糖固氮细菌的鉴定[J].淮海工学院学报,2001,10(1):56~59
    [38] 杨小蓉,宗浩,郑鸽等.一株降解氧乐果的高效菌的分离和鉴定[J].四川师范大学学报,2001,24(4):392~394
    [39] 张龙翔,张庭芳,李令媛.生化实验方法和技术[M].第二版.高等教育出版社,北京,1997
    [40] 杨文博,沈庆,佟树敏.产β-甘露聚糖酶地衣芽孢杆菌的分离筛选及发酵条件[J].微生物学通报,1995,22(3):154~157
    [41] 方宏清,王徐甫,陈明等.MM工程菌的大规模发酵培养工艺研究[J].生物工程学报,1997,13(3):294~297
    [42] 袁志发,周静芋.试验设计与分析[M].第一版.高等教育出版社,北京,2000
    [43] 杜荣骞.生物统计学[M].第二版.高等教育出版社,北京,2003
    [44] 曹军卫,马辉文.微生物工程[M].第一版.科学出版社,北京,2002
    [45] 杜先锋,李平.四川白魔芋球茎中甘露聚糖酶部分酶学性质[J].合肥工业大学学报,2000,23(5):679~682
    [46] 陈来同,唐运.生物化学产品制备技术②[M].第一版.科学技术文献出版社,北京,2004
    [47] 李卫芬,孙建义,顾赛红等.β-葡聚糖酶的分离纯化和特性研究[J].菌物系统,2001,20(2):178~183
    [48] 杨先芹,孙丹,杨文博等.地衣芽孢杆菌NK-27菌株β-甘露糖苷酶的产酶条件及粗酶性质[J].南开大学学报,2002,35(2):117~120
    
    
    [49] 吴冠芸,潘华珍,吴翚等.生物化学与分子生物学实验常用数据手册[M].第一版.科学出版社,北京,1999
    [50] 田亚平,金其荣.黑曲霉β-D甘露聚糖酶的纯化及基本性质[J].无锡轻工大学学报,1998,17(2):16~21
    [51] 赵永芳.生物化学技术原理及应用[M].第三版.科学出版社,北京,2002
    [52] 郭尧君.蛋白质电泳实验技术[M].第一版.科学出版社,北京,1999
    [53] 周先碗,胡晓倩.生物化学仪器分析与实验技术[M].第一版.化学工业出版社,北京,2003
    [54] 贾士儒.生物反应工程原理[M].第二版.科学出版社,北京,2003
    [55] 戎志梅.生物化工新产品与新技术开发指南[M].第一版.化学工业出版社,北京,2002
    [56] 张惟杰.糖复合物生化研究技术[M].第二版.浙江大学出版社,杭州,1999
    [57] 罗云波.食品生物技术导论[M].第一版.中国农业大学出版社,北京,2002
    [58] 严希康.生化分离工程[M].第一版.化学工业出版社,北京,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700