用户名: 密码: 验证码:
高活性纤维素酶菌株的筛选鉴定和秸秆降解特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农作物秸秆是世界上最丰富的纤维素类物质之一。由于纤维素分子结构的特殊性及纤维素物质在自然界的存在状态(以木质纤维素的形式存在)的特殊性,目前这一巨大资源不仅没有得到充分利用,反而因大部分被焚烧或弃置在自然环境而成了一大污染源。如何利用纤维素酶将这些秸秆纤维素废弃物大规模地转化为简单糖类或蛋白质等产品,进一步转化酒精、饲料等已成为全世界研究的热点,也是缓解当今世界所面临的粮食短缺、饲料资源紧张、能源危机和环境污染等问题的有效途经之一。
     纤维素酶是一类能够水解纤维素的β-D-糖苷键生成葡萄糖的多组分酶的总称。自然界中能分解纤维素的生物主要为真菌类及部分细菌,以木霉、曲霉、青霉的能力最突出,但目前研究得最多的是一些真菌对经物理、化学处理(辐射、蒸汽爆破、膨化、碾磨、酸化、碱化等)的不溶性纤维素的作用,生产成本高,对环境的污染严重,限制了农作物秸秆的高效利用。而筛选性能稳定的高产纤维素酶菌株,研究其对未处理的天然纤维素的降解作用对解决上述这些问题至关重要。我们通过大规模的菌株筛选和测试,取得了以下主要结果:
     1.采用CMC-Na平板进行菌种分离,筛选出具有较高降解纤维素酶能力的细菌35株,真菌11株。
     2.以天然水稻秸秆为碳源,进行液体摇瓶培养复筛得到一株能高效降解秸秆纤维素的丝状真菌,经18SrDNA基因序列分析和菌株形态特性分析,初步确定该菌株为藤仓赤霉(Gibberella fujikuroi)。
     3.以未处理的水稻秸秆为唯一碳源,研究了氮源、接种量、发酵时间、初始发酵温度、培养基初始pH等对藤仓赤霉产酶的影响.结果表明该菌株产纤维素酶的最适宜的氮源为CO(NH_2)_2,接种量为5%,培养时间为120 h,培养温度为28~37℃,培养基初始pH为5~6。
     4.SEM分析表明,藤仓赤霉作用水稻秸秆是从内表面向外表面进行的;作用前后的稻草成分测定结果显示,纤维素降解率、半纤维素降解率和木质素降解率分别达38.9%,57.9%和26.5%;该菌对未处理秸秆作用8 d,秸秆失重率可达53%;对该菌的酶成分进行分析,结果表明该菌可产生多种降解酶,其CMCase、FPase、xylanase酶活分别可达1.723 IU/mL、0.344 IU/mL、0.532 IU/mL。且该菌产生的CMC酶的反应温度以50℃左右为宜,pH值以6左右为适,Mg~(2+)与Ca~(2+)对酶反应有促进作用,Pb~(2+)和Cu~(2+)对酶反应有抑制作用。
     本实验所获得的藤仓赤霉对水稻秸秆的这些作用特性未见其他作者报道,因此,为进一步利用该菌进行改良、提高酶活以应用于生产奠定了基础。
Crop straw is the most abundant collulose in the world.The special structure of the collulose molecule,along with the particularity of the existence state of a majority of collulose materials(exist in the form of wood)in nature,so,the ratio of using the resourse is low now,what is more,most of it have become the source of pollution for being discarded in natural environment or being burnt.How to transform the discarded straw fibre into monosaccharide or proteins on a large scale and transform alcohol,feed even food ulteriorly has become a hotspot in worldwide study,also a effective way of resolving the short-commons,the lack of feed resource and the environmental pollution.
     Cellulase is the kind of enzyme including multi-component which can hydrolyze theβ-D-indican bond of cellulose to glucose.The major organism that can decompose cellulose are fungi:Trichoderma,Aspergillus,Penicillium and some bacteria in nature. But at present most studies are focused on the effect of Trichoderma,Aspergillus, Penicillium on insoluble cellulose treated by physics and chemical methods including the radiation,steam demolition,expansion,milling,acidification,alkalize and so on.Because of high cost of production and serious pollution to the environment,these methods limit the efficient utilization of crop straw.Screening the natural microbial organism with collulose degradation ability is a basic way to solve the problem above.By high though screening(HTS) technology,we obtained following result.
     In this research,35 bacterial strains and 11 fungal strains that have efficient cellulose degradation ability have been obtained.
     With natural straw as carbon source,we obtained a strain of filamentous fungi that could effectively degenerate crop straw cellulose.This strain was preliminarily identified as Gibberella fujikuroi according to morphologic taxonomy and the analysis of its 18S rDNA gene sequences.
     With unsettled straw as only carbon source,various factors including nitrogen source, inoculating quantities,incubating time,initial temperature,initial pH et al that can affect the production of cellulase have been studied.The results showed that the best nitrogen source was CO(NH_2)_2,inoculating volume was 5%,incubating time was 120 h,initial temperature was 28~37℃and initial pH of culture medium was 5~6.
     SEM analysis showed that Gibberella fujikuroi degradated the cellulose from the inner surface to the external surface.Comparison with the unsettled rice straw,the ratio of degradation of cellulose,hemicellulose and xylogen reached 38.9%,57.9%and 26.5%. The ratio of straw weightlessness reached over 53%via the fungis action on natural straw for 8 d.The analysis of its enzymatic compositions showed that Gibberella fujikuroi could product a variety of degrading enzymes,the activity of cellulose(CMCase)、natural cellulase and FPAase reached 1.723 IU/mL、0.368 IU/mL and 0.344 IU/mL.The optimal conditions for the enzymatic reaction were about 50℃and pH 6;Under 50℃,at pH 5~6,the enzyme showed high activity and good stability;Mg~(2+),Ca~(2+) were the activators and Pb~(2+),Cu~(2+) were the inhibitors of the enzyme.
     These characterization have not being reported,so it established bases for improving the strain and increasing its enzymatic activity in order to meet application in industrial production.
引文
1.费尚芬,鹿宁,刘坤,刘毅.白腐菌纤维素酶高酶活菌株的筛选.安徽农业科学,2006,34(1):22-23
    2.冯培勇,刘执平,李红玉,马学敏,李伟伟.一株黑曲霉产纤维素酶的性质研究.安徽农业科学,2007,35(36):11746-11747
    3.高建民,翁海波,席宇,袁明雪,韩绍印.一株嗜热嗜酸纤维素酶高产霉菌分离鉴定及其酶学性质研究.微生物学通报,2007,34(4):715-718
    4.高洁,汤烈贵.纤维素科学.北京:科学出版社,1996
    5.管斌,孙艳玲.纤维素酶高产菌株的选育.中国酿造,2002,4:18-21
    6.郭德宪,曹健,鲍宇茹.利用生物技术降解纤维素的研究进展.郑州工程学院学报,2001,22(3):82-86
    7.韩峰,孙彩云,宋小焱.拟康氏木霉UVⅢ纤维素酶合成的诱导与阻遏.工业微生面物,2003,33(1):23-26
    8.郝月,杨翔华,郝传德等.秸秆纤维素分解菌的选育及发酵工艺研究.粮食与饲料工业,2006(3):32-33
    9.胡代泽.我国农作物秸秆资源利用现状与前景.资源开发与市场,2000,16(1):19-20
    10.李冬敏,陈洪章,李佐虎.生物制氢技术研究进展.生物技术通报,2003,5(4):1-5
    11.李明华,张大伟,楚杰等.饲料纤维素酶的研究与应用进展.新饲料,2006,7:65-68
    12.李日强,辛小芸.天然秸秆纤维素分解菌的分离选育.上海环境科学,2002,21(1):8-11
    13.李振红,陆贻通.高效纤维素降解菌的筛选.环境污染与防治,2003,25(3):134
    14.林英,吕淑霞,张蓓蓓等.绿色木霉原生质体诱变筛选纤维素酶高产菌株.生物技术,2006,16(2):50-51
    15.林英,曹松屹,曹冬煦,曹慧颖.绿色木霉F-UV264产纤维素酶酶学性质研究.江苏农业科学,2007年第6期:226-227
    16.刘森林,邢苗,刘刚,余少文.碱性纤维素酶革兰氏阴性菌株筛选及酶学性质研究.微生物学通报,2005,2(4):91-93
    17.刘森林,邢苗,刘刚,余少文.碱性纤维素酶革兰氏阴性菌株筛选及酶学性质研究.微生物学通报,2005,32(4):91-94
    18.刘胜利,王耀民等.高产纤维素酶菌株的诱变选育和筛选.食品与生物技术学报,2006,2(6):107-110
    19.刘翔,何国庆.利用木质纤维素生产燃料乙醇的微生物代谢工程.粮油加工与食品机械,2003,(8):67-69
    20.刘颖,林亲录.纤维素酶制取与应用研究进展.中国食物与营养,2006,04:36-39
    21.刘永生,冯家勋,段承杰.GXN151的分离鉴定及其一个纤维素酶基因(ce15A)的克隆和测序分析.广西农业生物科学,2003,22(2):132-138
    22.罗贵民.酶工程.北京:化学工业出版社,2003
    23.邱雁临.纤维素酶的研究和应用前景.粮食与饲料工业,2001(8):30-31
    24.萨姆布鲁克J,拉塞尔DW.黄培堂译.分子克隆实验指南(第三版).科学出版社,2002
    25.宋佳秀,任南琪,邢德峰.木质纤维素生物转化氢气技术及前景.太阳能学报,2007,28(1):97-102
    26.孙俊良.酶制剂生产技术.北京:科学出版社,2004
    27.汤新,刘刚,田生礼.里氏木霉内切葡萄糖苷酶Ⅳ在毕赤酵母中的表达.微生物学通报,2005,32(6):47-51.
    28.王丹,张志华,张潇,林建强,曲音波,余世袁.丝状真菌直接转化纤维素生成酒精的研究.山东大学学报(理学版),2003,38(1):110-113
    29.魏景超.真菌鉴定手册.上海,海科学技术出版社,1979
    30.肖春玲,徐常新.微生物纤维素酶的应用研究.微生物学杂志,2002,22(2):33-35
    31.徐学万,张芳.纤维素酶的特性及其在食品工业中的应用.粮食与食品工业,2001,(4):14-17
    32.闫训友,刘志敏,史振霞等.纤维素酶在食品工业中的应用进展.食品工业科技,2004,25(10):140-142
    33.闫训友,史振霞,张惟广,刘志敏。纤维素酶在食品工业中的应用进展.食品工业科技,2004,(10):140-142
    34.阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学,1995,7(5):22-26
    35.游银伟,汪天虹.适冷海洋细菌交替假单胞菌(Pseudoalteromonas sp.)MB-1内切葡聚糖酶基因的克隆和表达.微生物学报,2005,,45(1):142-144
    36.余东游,冯杰.纤维素酶在动物营养上的研究进展.饲料研究,2000,5:20-23
    37.余丽清.纤维素酶水解及转化为乙醇的研究进展.世界林业研究,2004,13(2):30-34
    38.张才喜.纤维素酶与生物抛光技术.生物学杂志,1997,17(2):48
    39.张海生,张同亮,陈德兆.纤维素酶对纤维素的作用机理及其在纺织上的应用.四川纺织科技,2003,(6):3-5
    40.张加春,易琴,黄遵锡.纤维素酶曲的潜盘生产研究.云南师范大学学报(自然科学版),2002,2:50-52
    41.张为中,韩天赐,汤耀卿等.PCR快速诊断急性坏死性胰腺炎继发真菌感染的研究.中国实验诊断学,2000,4(3):109-111
    42.张晓勇,秀霞,向阳.纤维素酶的蛋白质工程.纤维素科学与技术,2006,14(2):56-58
    43.赵斌,何绍江.微生物学实验(生命科学类).北京:科学出版社,2002
    44.钟发刚,王新华.饲用纤维素酶研究进展.中国微生态学杂志,2002,14(5):308-309
    45.周春晖,孙加龙.纤维素酶及其应用。中国商办工业,2002,2:43-44
    46.周建,罗学刚,苏林.纤维素酶法水解的研究现状及展望.化工科技,2006,14(2):51-56
    47.朱利泉.基础生物化学实验原理与方法.成都:成都科技大学出版社,2002
    48.Angenent LT,Karim K,Al-Dahhan MH,Wrenn BA,Domiguez-Espinosa R.Production of bioenergy and biochemicals from industrial and agricultural wastewater.Trends Biotechnol,2004,22:477-485
    49.Bhat M K.Cellulases and related enzymes in biotechnology.Biotechnol Adv,2000,18(5):355-383
    50.Demain AL,Newcomb M,Wu JHD.Cellulase,clostridia,and ethanol.Microbiol Mol Biol Rev,2005,69:124-154
    51.Fierobe HP,MechalyA,Tardif C,BelaichA,Lamed R,Shoham Y.Design and production of active cellulosome chimeras.Selective incorporation of dockerin-containing enzymes into defined functional complexes.J Biol Chem,2001,276:21257-21261
    52.Fierobe HP,Bayer EA,Tardif C,Czjzek M,Mechaly A,Belaich A.Degradation of cellulose substrates by cellulosome chimeras.Substrate targeting versus proximity of enzyme components.J Biol Chem.2002,277:49621-49630
    53. Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon M, Pages S. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem 2005: 280: 16325-16334
    54. Gandii. Enhanced cellulase production by a mutamt of Trichoderma- reesei. Enzyme Microbiol Technol. 1995, 17: 942-946
    55. Ghose TK. Measurement of cellulase activities. Pure Appl Chem .1987, 59: 257-268
    56. Gilkes NR, Henrissat B, Kilburn DG. Domain in microbial β-1, 4-glycanase: Sequence conservation, function, and enzyme families. Microbiol Revs. 1991, 55 : 303-315
    57. Henrissat B. Cellulases and their interaction with cellulose. Cellulose. 1994, 1: 169-196
    58. HenrissatB. Enzymatic hydrolysis of cellulose. Gene. 1989, 81(7): 83-95
    59. Holtzapple MT, Cellulose In, Macrae R, Robinson RK, Saddler MJ, editors. Encyclopedia of food science food technology and nutrition. London: Academic Press; 1993, 16: 758-767
    60. JarvisM. Cellulose stacks up. Science. 2003, 426: 611-612
    61. Kamm B, Kamm M. Principles of biorefinerie. Appl Microbiol Biotechnol. 2004, 64: 137-145
    62. KnowlesJ, Lethtovaara P, Reeri TT. Cellulase families and their genes. Trends Biotechnol. 1987, 5: 255-261
    63. Lynd LR, Cushman JH, Nichols RJ, Wyman CE. Fuel ethanol from cellulosic biomass. Science. 1991: 251 1318-1323
    64. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-507
    65. Lynd LR, Wyman CE, Gerngross TU. Biocommodity engineering. Biotechnol Prog. 1999, 15: 777-793
    66. Michel JRFC, Dass SB, Grulke EA, Reddy CA. Role of amnganese peroxidase and lignin peroxidase of Phanerochate chrysospori . Appl Environ Microbiol. 1991, 57: 2368-2375
    67. Millenz JR. Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol . 2001, 4: 324-329
    68. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959, 31: 426-428
    69. Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 2005,71: 1215-1222.
    70. Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng. 2000, 276-277: 1-24.
    71. Moreira N. Growing expectations: new technology could turn fuel into a bump crop. Sci News Online. 2005, 168(14): 209-224
    72. Reese E T. Enzymatic hydrolysis of the walls of yeasts cells and germinated fungal spores . Biochimica et Biophysica Acta (BBA) . 1977, 499(1): 10-23
    73. Sabathe F, Soucaille P. Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridiumbacetobutylicum. J Bacteriol 2003, 85: 1092-1096
    74. Smant G, Stokkemans J PYan Y T, et al. Endogenous cellulases in animals: isolation of beta- 14- endoglucanase genes from two species of plant-par- asitic cyst nematodes. ProcNatl Acad Sci USA. 1998, 95(9): 4906-4911
    75. Srisodsuk M, Kleman- Leyer K, Keranen S. Modes of action on cotton and bacterial cellulose of a homologous endo- glucanase exog- lucanase pair from Trichoderma reesei. Eur J Biochem. 1998, (251) . 885-892
    76. Sun Y, Cheng J Y. Hydrolysis of lignocellulosic materialsfor ethanol production: a review. Bioresource Technol. 2002, 83(1): 1-11
    77. Teeri TT. Crystalline cellulose degradation: new insights into the function of cellobiohydrolases. Trends Biotechnol . 1997, 15: 160-167
    78. Tien M, Kirk TK. Lignin degradation enzyme from Phanerochate chrysosporium. Proc Natl Sci. 1984, 81: 2280-2284
    79. Tomme P, Warren R A J, Gilkes N R. Cellulose hydrolysis by bacteria and fungi. AdvMicrob Physiol. 1995, (3): 71-81
    80. Tomne P, Dine P, Emily A et al. Comparison of Fungi (Family Ⅰ )and bacterial (Family Ⅱ)Cellulose-binding damian. J Bacterriol. 1995, 177(15): 4356-4363
    81 . Watanabe H , Noda H , Tokuda G . A cellulase gene of termite origin. Nature. 1998, 394(6691) . 330-331
    82. Watanabe H, Tokuda G. Animal cellulases. Cell Mol Life Sci, 2001, 58(9): 1167-1178
    83.Wirth TE, Gray CB, Podesta JD. The future of energy policy. Foreign Aff . 2003, 82: 125-144
    84. Wood T M. Breakdown of crystalline cellulose by synergistic action between cellulase components from clostridium thermocellum and trichoderma koningii. FEMS Microbiology Letters. 1988, 50: 247-252
    85. Wood T M, Garica-Campayo V. Enzymology of cellulose degradation. Biodegradation. 1990, 1: 147-161
    86. Wood T M, Mccrae S I. Sinergism between enzymes involvement in the solubiliz -ation of native cellulose. Adv Chem Ser. 1979, 181: 181-209
    87. Zhang Y.-HP, Michael E. Himmel, Jonathan R. Mielenz. Outlook for ellulase improvement: Screening and selection strategies. Biotechnology Advances 2006, 24: 452-481
    88. Zhang Y-HP, Lynd LR. Toward an aggregated understanding of enzymatic hydroly —sis of cellulose: noncomplexed cellulose systems. Biotechnol Bioeng 2004b: 88: 797-824
    89. Zhang Y, Himmel M, Mielenz J. Outlook for cellulase improvement: Screening and selection strategies . Biotechnology Advances. 2006, 24: 452-481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700