中国野生葡萄芪合酶基因转化无核葡萄品种的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以爱莫无核叶片、叶柄和无核白花药、子房等外植体为试材,通过器官发生途径和胚状体发生途径建立了葡萄再生体系;并将携带有中国野生葡萄芪合酶基因的植物表达载体pWR306,通过农杆菌介导法对爱莫无核叶片叶柄、长穗无核白叶柄、无核白胚状体及胚性愈伤进行遗传转化,研究了潮霉素(Hyg)筛选浓度、头孢霉素(Cef)脱菌浓度、农杆菌侵染浓度、预培养时间等遗传转化因素;并通过Hyg筛选、PCR检测、Southern杂交等方法对外源基因的整合进行了检测。取得的主要结果如下:
     1.葡萄再生体系的建立
     (1)器官发生途径再生体系的建立以爱莫无核葡萄的叶片、叶柄为材料,通过研究不同激素浓度组合对外植体愈伤诱导及不定芽分化的影响,建立了葡萄器官发生途径的再生体系。叶片再生适宜培养基为MS+TDZ 2.5mg·L-1+NAA 0.1mg·L-1,再生率为21.57%;叶柄再生适宜培养基为MS+TDZ 1.0mg·L-1,再生率为2.08%;不定芽伸长培养基为MS+TDZ 0.25mg·L-1+NAA 0.01mg·L-1;生根成苗培养基为1/2MS+IBA 0.1mg·L-1。
     (2)胚状体发生途径的建立以无核白葡萄花药、子房为材料,研究葡萄胚状体发生途径的再生。结果表明:无核白的花药和子房胚性愈伤组织诱导最佳培养基分别为MS+BA 4.0mg·L-1+2,4-D 0.5mg·L-1+3%蔗糖和MS+BA 4.0 mg·L-1+2,4-D 1.0mg·L-1+蔗糖30g·L-1;胚状体诱导培养基为MS+BA 4.0mg·L-1+蔗糖30g·L-1;在无激素的MS培养基中胚状体很快萌发;成苗培养基为WPM+蔗糖15g·L-1。
     2.遗传转化体系的优化
     (1)Hyg选择压的确定以爱莫无核叶片和扩繁单芽茎段为试材,研究Hyg对葡萄叶片不定芽再生及植株生长的影响,确定了Hyg筛选浓度和筛选方式。葡萄遗传转化后进行延迟筛选,并逐步增加潮霉素的浓度,起始浓度为3mg·L-1再逐步增加至12mg·L-1可减少对再生的抑制。
     (2)脱菌素Cef浓度的确定以爱莫无核叶片为试材,研究Cef对不定芽再生的影响,确定了Cef的最佳脱菌浓度为400mg·L-1。
     (3)农杆菌侵染浓度的确定分别以叶片、叶柄、胚状体和胚性愈伤为试材,研究在不同浓度农杆菌下脱菌的难
The regeneration systems of Emerald Seedless and Thompson Seedless were established by organogenesis and somatic embryogenesis, respectively. The novel stilbene synthase gene which was carried in the pWR306 binary vector was introduced into leaves and petioles of Emerald Seedless, into petioles of Long Thompson Seedless, into somatic embryos and embryogenic callus by Agrobacterium-mediated. Concentration of hygromycin for selection, concentration of cefotaxime for wiping off bacterium, concentration of Agrobacterium and time of pre-culture were studied. The foreign genes were confirmed by selection of hygromycin, PCR analysis and Southern blotting. The mainly results were:
     1 Producing of regeneration system
     (1)Organogenesis system Regeneration system from leaf and petiole of Emerald seedless grape using thidiazuron was studied. The results were: Regeneration from leaf was easier than from petiole. The combination 2.5mg·L-1 TDZ with 0.1mg·L-1 NAA resulted in the highest frequency of adventitious bud production from leaf. The adventitious bud regenerating rate is 21.57%. The medium MS+TDZ 1.0mg·L-1 was the best for bud regeneration from petiole with regeneration rate of 2.08%. The optimum medium for bud elongation is MS+TDZ 0.25mg·L-1 + NAA 0.01mg·L-1.The medium 1/2MS+IBA 0.1mg·L-1 was better for roots inducing.
     (2)Somatic embryogenesis system Somatic embryogenesis and plant regeneration from anthers and ovaries of Thompson Seedless (Vitis vinifera L) were studied. The results were: The best combination of hormones for embryogenic callus inducement of Thompson Seedless from anther and ovary are BAP 4.0 mg·L-1、2,4-D 0.5 mg·L-1 and BAP 4.0mg·L-1、2,4-D 1.0mg·L-1, respectively. Somatic embryos are induced on embryonic callus inducing medium but no growth regulator. The plantlets and new embryoids were produced on free-hormone MS medium. The medium WP+sugar 15g·L-1 was the best for complete plant forming.
     2 Improvement of genetic transformation system
引文
[1] Leah R, et al. Biochemical and molecular charaterization of three barley seed proteins with antifungal properties[J]. J Biochem, 1991, 266: 1564-1574
    [2] Hain R, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant[J]. Nature, 1993, 361: 153-156
    [3] Schwekendiek A, Pfeffer G and Kindl H. Pine stilbene synthase cDNA, a tool for probing environmental stress[J]. FEBS, 1992, 301(1): 41-44
    [4] Hain R, et al. Plant Molecular Biology, 1990, 15: 325-335
    [5] Stark-Lorenzen P, Nelke B and H?n?ler G, et al. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.)[J]. Plant Cell Rep, 1997, 16: 668-673
    [6] 梁 辉, 郑 近, 段霞瑜, 等. 用基因枪法获得抗白粉病转芪合成酶基因小麦[J]. 科学通报, 1999, 44(24): 2644-2648
    [7] Fettig S, Hess D. Expression of a chimeric stilbene synthase gene in transgenic wheat lines[J]. Transgenic Research, 1999, 8(3): 179-189
    [8] Kobayashi S, Ding CK and Nakamura Y, et al. Kiwifruit (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside)[J]. Plant Cell Rep, 2000, 19: 904-910
    [9] Hipskind JD and Paiva NL. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis[J]. Mol Plant Microbe Interact, 2000, 13: 551-562
    [10] Chung LM, Park MR and Rehman S, et al. Tissue specific and inducible expression of resveratrol synthase gene in peanut plants[J]. Mol Cells, 2000, 12(3): 353-359
    [11] 谭 琳, 康由发, 马冰刚, 等. 芪合成酶基因转化番茄产生白藜芦醇的研究[J]. 生命科学研究, 2003, 7(3): 262-266
    [12] Szankowshi I, Briviba K and Fleschhut J, et al. Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa)[J]. Plant Cell Rep, 2003, 22:141-149
    [13] Leckband G and L?rz H.Transformation and expression of a stilbene synthase gene of Vitis vinifer L. in barley and wheat for increased fungal resistance[J]. Theor Appl Genet, 1998, 96: 1001-1012
    [14] Zhu YJ, Agbayani R and Jackson MC. Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora[J]. Planta, 2004, 220: 241-250
    [15] Coutos-Thévenot P, Poinssot B and Bonomelli A. In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase VstI gene under the control of a pathogen-inducible PR 10 promoter[J]. J Exp Bot, 2001, 52: 901-910
    [16] Iocco P, Franks T and Thomas MR. Genetic transformation of major wine grape cultivars of Vitis vinifera L[J]. Transgenic Research, 2001, 10: 105-112
    [17] Jackson SA, Zhang P and Chen WP, et al. High resolution structural analysis of biolistic transgene integration into the genome of wheat[J].Theoretical and Applied Genetics, 2001, 103(1): 56-62
    [18] Rutgers E, Ramulu KS and Dijkhuis P, et al. Identification and molecular analysis of transgenic potatochromosome transferred to tomato through microprotoplast fusion[J]. Theoretical and Applied Genetics, 1997, 94 (8): 1053-1059
    [19] Sato Y, Tamaoki M and Murakami T, et al. Abnormal cell divisions in leaf primordia caused by the expression of the rice homeobox gene osH1 lead to altered morphology of leaves in transgenic tobacco[J]. Molecular Genetics and Genomics, 1996, 251(1): 13-22
    [20] Pedersen C, Zimny J and Becker D, et al. Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization[J]. Theoretical and Applied Genetics, 1997, 94(6-7): 749-757
    [21] 周 鹏, 王跃进, 贺普超, 等. 人类胰岛素因子-I 基因转化葡萄的研究[J]. 热带作物学报, 2002, 23(1): 55-61
    [22] 孙仲序, 陈受宜, 王建设, 等. 农杆菌介导 BADH 基因转化葡萄的研究[J]. 果树学报 2003, 20(2): 98-92
    [23] Mauro MC, Toutain S and Walter B, et al. High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene[J]. Plant Science, 1995, 112: 97-106
    [24] Torregrosa L and Bouquet A. Agrobacterium rhizogenes and A. tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus[J]. Plant Cell, Tissue and Organ Culture, 1997, 49: 53-62
    [25] Franks T, DingGang H and Thomas M, et al. Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis[J]. Molecular Breeding, 1998, 4: 321-333
    [26] Yamamoto T, Iketani H and Ieki H. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens[J]. Plant Cell Reports, 2000, 19: 639-646
    [27] Vidal JR, Kikkert JR and Wallace PG, et al. High-efficiency biolistic co-transformation and regeneration of Chardonnay (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes[J]. Plant Cell Rep, 2003, 22: 252-260
    [28] 余迪求, 邓庆丽, 沈亚楠, 等. 金鱼草基因转化和转基因植株再生[J]. 热带亚热带植物学报, 1996, 4(4): 86-90
    [29] 贺竹梅,黄兴奇. 人促红细胞生成素基因在番茄中的表达[J]. 遗传学报, 1998, 25(2): 155-159
    [30] 李永春, 张宪银, 薛庆中, 等. 农杆菌介导法获得大量转双价抗虫基因水稻植株[J]. 农业生物技术学报, 2002, 10(1): 60-63
    [31] 马炳田, 李 平, 朱 祯, 等. 转抗虫基因优良籼型恢复系的获得及其外源基因的遗传稳定性研究[J]. 中国水稻科学, 2002, 16(3): 211-215
    [32] 张彦妮, 曲 敏, 徐香玲, 等. 发根农杆菌介导几丁质酶基因和 β-1,3-葡聚糖酶基因转化烟草的研究[J]. 植物研究, 2003, 23(2): 198-203
    [33] 刘伟华, 李文雄, 胡尚连, 等. 基因枪法向小麦导入几丁质酶基因的研究[J]. 西北植物学报, 2003, 23(1): 54-59
    [34] 邢全华, 王广金, 石金锋, 等. β-1,3-葡聚糖酶基因高效表达载体的构建及对小麦的转化[J]. 遗传学报, 2003, 30(8): 717-722
    [35] 韩志勇, 王新其, 沈革志. 反向 PCR 克隆转基因水稻的外源基因旁侧序列[J]. 上海农业学报, 2001, 17(2): 27-32
    [36] 简玉瑜, 吴新荣, 莫豪葵, 等. 应用基因枪将蚕抗菌肽基因导入水稻获抗白叶枯病株系[J]. 华南农业大学学报, 1997, 18(4): 1-7
    [37] Jani D, Meena LS and Rizwan QM, et al. Expression of cholera toxin B subunit in transgenic tomato plant[J]. Transgenic Research, 2002, 11: 447-454
    [38] Spielmann A, Krastanov S and Douet-Orhant V, et al. Analysis of transgenic grapevine (Vitis rupestris) and Nicotiana benthamiana plants expressing an Arabis mosaic Virus coat protein gene[J]. Plant Science, 2000, 156: 235-244
    [39] 张 荃, 王淑芳, 赵彦修, 等. HAL1 基因转化番茄及耐盐转基因番茄的鉴定[J]. 生物工程学报, 2001, 17(6): 658-662
    [40] Djennane S, Chauvin JE and Quillere I, et al. Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers[J].Transgenic Research, 2002, 11: 175-184
    [41] Vigne E, Komar V and Fuchs M. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus[J].Transgenic Research, 2004, 13: 165-179
    [42] 王莉江, 明小天, 安成才, 等. 籼稻明恢 63 成熟种子愈伤组织的诱导及转基因水稻的抗性检测[J]. 生物工程学报, 2002, 18(3): 323-327
    [43] 吴 刚, 崔海瑞, 舒庆尧, 等. 转基因水稻中转录水平 cry1Ab 基因的沉默及其阶段复活[J]. 中国科学(C 辑), 2001, 31(6): 487-496
    [44] Bornhoff BA, Harst M and Zyprian E. et al. Transgenic plants of Vitis vinifera cv. Seyval blanc[J]. Plant Cell Rep, 2005, 24: 433–438
    [45] Sa G, Mi M and Chun YH, et al. Anther - specific expression of ipt gene in transgenic tobacco and its effect on plant development[J]. Transgenic Research, 2002, 11: 269-278
    [46] Bouquin T, Thomsen M and Nielsen LK, et al. Humananti-Rhesus DIgG1 antibody produced in transgenic plants[J]. Transgenic Research, 2002, 11: 115-122
    [47] Farran I, Sanchez-Serrano JJ and Fmedina J, et al. Targeted expression of human serum albumin to potato tubers[J]. Transgenic Research, 2002, 11: 337-346
    [48] 张志宏, 景士西, 王关林. 果树基因工程研究进展[J]. 果树科学, 1995, 12(3): 188-193
    [49] Elisabeth C, Paul B and Bernard. Plant regeneration by organogenesis in Vitis rootstock species[J]. Plant Cell Rep, 1990, 10(8): 726-728
    [50] Stamp JA, Colby SM and Meredith CP. Improve shoot organogenesis from leaves of grape[J]. J Amer Soc Hort Sci, 1990, 115: 1038-1042
    [51] 卢炳芝, 李佩芬, 于向荣, 等. 葡萄花丝胚性愈伤组织的诱导及其植株再生[J]. 葡萄栽培与酿酒, 1994, (1): 15-17
    [52] Mullins MG, Tang FC, et al. Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupeestris Scheele and nuds of Vitis vinifera L[J]. Bio-Technology, 1990, 8: 1041-1045
    [53] Colby SM, Juncosa AM, Meredith CP. Differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines[J]. J.Amer Soc Hort Sci, 1991, 116(2): 356-361.
    [54] Berres R, Otten L and Thnland B, et al. Transformation of vitis by different strains of Agrobacterium tumefacient containing the T26b gene[J]. Plant Cell Rep, 1992, 11: 192-195
    [55] 李 云, 冯 慧, 田砚亭. 红地球葡萄叶片叶柄不定芽再生体系的研究[J]. 园艺学报, 2002, 29(1): 60-62
    [56] 周 鹏, 郭安平, 王跃进, 等. 葡萄愈伤组织的诱导及植株再生[J]. 热带作物学报, 2002, 23(3): 52-56
    [57] Martinelli L, Gribaudo I. Somatic Embryogenesis in Grapevine [M]. Netherland: Kluwer Academic Publishers Molecular Biology and Biotechnology of Grapevine, 2001, 327-351
    [58] Scorza R, Cordts JM and Ramming DW, et al. Transformation of grape (Vitis vinifera L.) zygotic derived somatic embryos and regeneration of transgenic plants[J]. Plant Cell Rep, 1995, 14(9): 589-592
    [59] 鲍雪珍, 张克忠, 沈利爽, 等.葡萄胚性愈伤组织无性系的建立、保持及其植株再生的研究[J]. 山东大学学报(自然科学版), 1995, 30(1): 105-111
    [60] Sorza R, Cordts JM. Producing transgenic‘Thompson seedless’grape (Vitis vinifera L.) plants[J]. J Amer Soc Hort Sci, 1996, 12(4): 616-619
    [61]Stamp JA, Meredith CP. Somatic embryogenesis from leaves and anthers of grapevine[J]. Scientia Horticulturae, 1988, 35: 235-250
    [62] Salunkhe CK, Raopsmha T. Induction of somatic embryogenesis and plantlets in tendrils of V. vinifera L[J]. Plant Cell Rep, 1997, 17: 65-70.
    [63] Gray DJ, Meredith C, Grape P. Biotechonology of perennial fruit crops[M]. Hammersch lag FA, Litz RE, eds. CAB International.Wallingford, 1992: 229-262
    [64] Torregrosa L, Bouquet A. In vitro propagation of Vitis×Muscadinia hybrids by microcuttings oraxillary budding[J]. Vitis, 1995, 34: 237-238
    [65] Mauro MC, Toutain S and Walter B, et al. High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene[J]. Plant Sci, 1995, 112: 97-106
    [66] Gresshoff PM, Doy CH. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera[J]. Z Pflanzenphysiol, 1974, 73: 123-141
    [67] Stamp JA, Meredith CP. Somatic embryogenesis from leaves and anthers of grapevine[J]. Scientia Horticulturae, 1988, 35: 235-250
    [68] Harst M, Bornhoff BA and Zyprian E, et al. Regeneration and Transformation of different explants of Vitis vinifera spp[J]. Acta Hortic, 2000, 528: 289-295
    [69] Kikkert JR, Ali GS and Wallace PG, et al. Expression of fungal chitinase in Vitis vinifera L. ‘Merlot’ and ‘Chardonnay’ plants produced by biolistic information[J]. Acta Hortic, 2000, 528: 297-303
    [70] Thomas MR, Iocco P and Franks T. Transgenic grapevines: Status and future[J]. Acta Hortic, 2000, 528: 279-287
    [71] Srinivasan C, Mullins MG. High-frequency somatic embryo production from unfertilized ovules of grapes[J]. Scientia Horticulturae, 1980, 13: 245-252
    [72] Li Z, Jayasankar S and Gray DJ. Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera)[J]. Plant Sci, 2001, 160: 877-887
    [73] Das D, Reddy M and Upadhyaya S. An efficient leaf disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.)[J]. Plant Cell Rep, 2002, 20: 999-1005
    [74] Popescu CF. Somatic embryogenesis and plant development from anther culture of Vitis vinifera L[J].Plant Growth Reg, 1996, 20: 75-78
    [75] 张克忠, 鲍雪珍, 白永延, 等. 苏云金杆菌内毒素蛋白基因转入葡萄胚性愈伤组织细胞及转基因植株再生的研究[J]. 试验生物学报, 1997, 30(3): 303-308
    [76] Oszár J and Süle S. A rapid method for somatic embryogenesis and plant regeneration from cultured anthers of Vitis riparia[J]. Vitis, 1994, 33: 245-246
    [77] Gray DJ, Mortensen JA. Initiation and maintenance of long term somatic embryogenesis from anthers and ovaries of Vitis longii‘microspema’[J ]. Plant Cell, Tissue and Organ Culture, 1987, 9: 73-80
    [78] Salunkhe CK, Rao PS and Mhatre M. Induction of somatic embryogenesis and plantlets in tendrils of Vitis vinifera L[J]. Plant Cell Rep, 1997, 17: 65-67
    [79] 郭元林, 向 平. 转基因技术在作物育种上的应用[J]. 西南农业学报, 1997, 10(4): 109-115
    [80] 黄学森, Mullins MG. 用生物工程技术将外源基因转入葡萄的研究[J]. 遗传, 1989, 11(3): 9-11
    [81] Gall L, Torregrosa L and Danglot Y, et al. Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus(GCMV)[J]. Plant Sci, 1994, 102: 161-170
    [82] Krastanova S, Perrin M and Barbier P, et al. Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus[J]. Plant Cell Rep, 1995, 14: 550-554
    [83] Xue B, Ling KS and Reid CL, et al. Transformation of five grape rootstocks with plant virus genes and a vir E2 gene from Agrpbacterium-tumefaciens[J]. In Vitro Cellular and Developmental Biology Plant, 1999, 35(3): 226-231.
    [84] Tsvetkov IJ, Atanassov AV and Tsolova VM, et al. Gene transfer for stress resistance in grapes: Proceedings of the seventh internatomal symposium on grapevine genetics and breeding[J]. Acta Horticulturae, 2000, 528: 389-394
    [85] 陈力耕, 刘淑芳, 胡西琴. 葡萄高效再生体系的建立及转LEAFY基因的研究[J]. 浙江大学学报, 2001, 27(5): 523-526
    [86] Nakono M, Hoshino Y and Mii M. Regeneration of transgenic plants-grapevine (Vitis vinifera L) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli[J].J Exp Bot, 1994, 45: 649-656.
    [87] Hebert D. Optimization of biolistic transformation of embryogenic grape cell suspensions[J]. Plant Cell Rep, 1993, 585-589
    [88] Bouamama B, Mliki A and Ghorbel A. Efficiency of coupling biolistic and Agrobacterium in genetic transformation of Tunisian autochthonous grapes[J]. Agricoltura Mediterranea, 2000, 130(3-4): 223-227
    [89] Scorza R, Cordts JM and Gray DJ, et al. Producing transgenic Thompson seedless grape plant[J]. J Amer Soc Hort Sci, 1996, 121(4): 606-619
    [90] Kikkert JR, Hébert-Soulé D and Walles PG, et al. Transgenic plantlets of ‘Chancellor’ grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions[J]. Plant Cell Rep, 1996, 15: 311-316
    [91] 曾黎辉, 吕柳新. 木本果树遗传研究进展[J]. 果树学报, 2002, 19(3): 191-198
    [92] Martinelli L, Mandolino G. Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.)[J]. Theor Appl Genet, 1994, 88: 621-628
    [93] 傅荣昭, 孙勇如, 贾士荣主编. 植物遗传转化技术手册[M]. 1994, 北京: 中国科学技术出版社
    [94] Pu XA and Goodman RN. Induction of necrogenesis by Agrobacteirum tumejaciens on grape explants[J]. Physiol Mol Plant Pathol, 1992, 41: 241-254
    [95] Perl AS, Saad S and Sahar N, et al. Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars-a synergistic effect of auxins and the role of abscisic acid[J]. plant Sci,1995, 104: 193-200
    [96] 李 云, 冯 慧, 田砚亭. 葡萄遗传转化研究进展[J]. 生物工程进展, 2000, 20(3): 49-52
    [97] Murashige T & Sknog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiol Plant, 1962, 15: 473-497
    [98] 徐伟荣, 王跃进, 王西平, 等. 中国葡萄属野生种抗白粉病抗逆基因植物表达载体的构建[J]. 西北植物学报, 2005, 25: 851-857
    [99] 王跃进, Lamikanra O, Schell L.等. 用RAPD分析鉴定葡萄属远缘杂种. 西北农业大学学报, 1997, 25(3): 16-20
    [100] Nitsch J, Nitsch C. Haploid plants from pollen grains[J]. Science, 1969, 163: 85-87
    [101] 王关林, 方宏筠, 那 杰. 高活性细胞激动素 TDZ 在植物组织培养中的应用[J]. 植物学通报, 1997, 14(3): 47-53
    [102] Horsch RB, Fraley RT and Rogers SG. Inheritance of functional foreign genes in plants[J]. Science, 1984, 223: 496-498
    [103] 张志宏, 景士西, 王关林. TDZ 对苹果离体再生不定芽的效应[J]. 植物生理学通讯, 1997, 33(6): 420-423
    [104] 张志宏, 景士西, 王关林, 等. 新乔纳金苹果遗传转化及转基因植株再生[J]. 园艺学报, 1997, 24(4): 378-380
    [105] Martinelli L, Bragana P and Poletti V, et al. Somatic embryogenesis from leaf- and petiole-derived callus of Vitis rupestris[J]. Plant Cell Rep, 1993, 12: 207-210
    [106] 张世瑜等. 当归胚性愈伤组织的诱导及胚状体发生的组织细胞学研究[J]. 植物学报, 1986, 28(3): 241-244
    [107] Bertelli AA, Giovannini L, Giannessi D, et al. Anti-platelet activity of synthetic and natural resveratrol in red wine[J]. Int J Tissue React, 1995, 17: 1-3
    [108] Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resvertrol, a natural product derived from grapes[J]. Science, 1997, 275: 218-220
    [109] Subbaramaiah K, Chung WJ, Mitchaluart P, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells[J]. J Biol Chem, 1998, 273: 21875-21882
    [110] 王西平. 中国葡萄属野生种抗白粉病基因克隆与序列分析[D]. 西北农林科技大学博士论文,2005
    [111] Perl A, Lotan O, Abu-Abied M, et al. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L): the role of antioxidants during grape Agrobacterium interactions. Nat Biotechnol, 1996, 14:624-628
    [112] 王关林, 方宏筠. 植物基因工程[M]. 科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700