两种葡萄卷叶伴随病毒的基因克隆、原核表达及葡萄遗传转化体系的初步建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄卷叶伴随病毒(Grapevine leafroll-associated virus,GLRaV)-2和GLRaV-3是引起葡萄卷叶病(Grapevine leafroll disease,GLD)发生的两种比较重要的病毒。目前GLD的防治措施主要是使用无病毒苗木和选育抗病品种,病毒的检测是具体实施过程中的一个重要环节,其中,血清学方法具有灵敏、快速、适合大量样品检测等优点而被广泛应用于葡萄病毒检测中。然而,GLRaVs为韧皮部限制性病毒,在寄主植物中含量低,除GLRaV-2外均没有烟草寄主;另外,GLRaVs的复合侵染现象比较普遍,因此,利用提纯病毒粒子的方法制备特异性的抗体比较困难,而用原核表达系统表达的重组病毒蛋白制备抗体则克服了这个问题。借助于基因工程手段,利用病原获得抗病性(Pathogen Derived Resistance,PDR)进行抗病毒育种方法克服了传统育种方法中育种周期过长的局限性而成为一种有效的育种手段,其中,由病毒复制酶(RNA-dependent RNA polymerase,RdRp)基因介导的抗性在某些方面明显优于外壳蛋白(Coat protein,CP)基因介导的抗性已被成功应用到多个病毒的抗病性研究上,而有关由GLRaVs RdRp基因介导的抗性研究目前尚无报道。另外,葡萄遗传转化较困难,迄今为止仅在少数几个基因型中获得了转基因植株,因此,建立一个高效的葡萄遗传转化体系,是保证葡萄抗病毒育种顺利进行的上游工作。
     本研究旨在克隆GLRaV-2 RdRp和GLRaV-3 RdRp和CP基因后进行原核表达获得大量的重组蛋白制备抗血清,为国内葡萄无病毒种苗培育和种苗调运的检验提供有效的检测手段;另外,构建GLRaV-2 RdRp基因的植物表达载体,利用农杆菌介导法进行转化烟草研究,以揭示GLRaV-2 RdRp基因介导的抗病机制,并为进一步的利用此策略进行葡萄抗病毒育种提供理论依据和技术策略;最后,分别以“红地球”、“黑奥林”“美鲁特”试管苗的叶片、叶柄和茎段为试材,通过培养基的筛选,建立葡萄有效再生培养体系,以及构建GLRaV-3野生型RdRp基因植物表达载体及转化烟草验证转入的基因的功能后,通过农杆菌介导的遗传转化方法,对以上三个品种进行初步转化,为培育葡萄抗病毒品种建立一个良好的技术平台。本研究主要结果如下:
     1.从“二号大宛红”样品中克隆了GLRaV-3(GLRaV-3-EDH)的RdRp和CP基因。序列测定结果表明,GLRaV-3-EDH RdRp基因全长为1618bp(GenBank登记号为AY495340),推导其编码538个aa,CP基因全长942bp(GenBank登记号为DQ119574),推导其编码313个aa;GenBank Blast(nr)检索结果表明,该RdRp基因与已报道的美国分离物GLRaV-3-NY1 RdRp基因核苷酸与氨基酸序列相似性均在99%以上,氨基酸变异主要发生在N端;该CP基因序列与已报道的3个GLRaV-3分离物CP基因核苷酸序列相似性均在99%以上,与巴西的一个分离物相似性为93%;CP氨基酸序列多重比对结果表明,5个GLRaV-3分离物序列中共有20个位点发生变异,其中,GLRaV-3-EDH CP中没有变异位点。
     2.从“品丽珠”样品中克隆了GLRaV-2(GLRaV-3-CF)的RdRp基因。序列测
Grapevine leafroll associated virus-2 and -3 are two important agents of grapevine leafroll disease. At present, selection of virus-free seedling and virus-resistant grapevine are two main means controlling GLD, in which serology is a widely used tool for routine detection of grapevine viruses due to its sensitivity, quickness and addaption for the detection of amount of samples. However, production of high quality virus-specific antisera to GLRaVs may not be easy, due to the frequency of complex infections in the field and the low yield of virus particles from naturally infected grapevine tissues following purification. Nevertheless, production of virus-specific antibodies using recombinant proteins from cloned viral genes expressed in Escherichia coli can overcome these difficulties. The application of molecular technique using viral genes can overcome the limitation of long breeding age using conventional breeding methods, and was proved to an efficient measure for genetic improvement of grapevine. The RNA-dependent RNA polymerase (RdRp)-mediated resistance provided an atternative measure for virus-resistant breeding with many merits. However, there is no research of RdRp-mediated resistance in GLRaVs. In addition, the grapevine genetic transformation was very difficult, and up to now, only a small number of transgenetic plants were obtained from grapevine cultivars. So establishment of an effective genetic transform system will favour the success of virus-resistant grapevine breeding.
    The main purpose of the present research is first to supply a practicable virus-detection tool for virus-free grapevine breeding and transporation in China through cloning the RdRp gene of GLRaV-2 and GLRaV-3, and the coat protein (CP) gene of GLRaV-3 and production of virus-specific antibodies using recombinant proteins from cloned viral genes expressed in Escherichia coli; Secondly our researches is to discern the mechanism of RdRp-mediated resistance and supply a new mean for virus-resistant breeding, the wild and deleted GDD motif RdRp genes of GLRaV-2 were transformed into Nicotiana benthamiana via Agrobecterium-mediated transformation; Thirdly, the present research is to establish a effective regeneration system using the leaves, petioles and stems from "RedGlobe", "Black Olympia" and "Meilute" as experimental materials. In addition, the wild RdRp gene of GLRaV-2 was transformed into tobacco to testify the function of transformed gene, and then it was transformed into grapevine via Agrobecterium-mediated transformation. The main results obtained are as followings:
    1. The RdRp and CP gene of GLRaV-3 (GLRaV-3-EDH) were cloned from "Dawanhong No 2". Sequence analysis showed that the complete RdRp gene consists of 1618 nucleotides (Accession number AY495340) and encodes a polypeptide consisting of 538 amino acids and that the complete CP gene consists of 942 nucleotides (Accession number DQ119574) and encodes a polypeptide consisting of 313 amino acids. Comparison of the RdRp gene sequences with those of the American isolate NY1 of
引文
1 安利忻,刘一飞,陈章良,李毅.TMV 54K基因的3个突变体介导抗病性的研究.植物学报,2001,43(4):395-398
    2 鲍雪珍,张克忠,沈利爽,王敏琴,侯丙凯,朱鸿雁.葡萄胚性愈伤组织无性系的建立、保持及其植株再生的研究.山东大学学报,1995,30(1):105-109
    3 蔡文启,徐绍华,莽克强.葡萄卷叶病毒的纯化、血清学研究及其在脱毒苗组培苗测中的应用.微生物学报,1997,37:385-392
    4 陈力耕,刘淑芳,胡西琴.葡萄高效再生体系的建立及转LEAFY基因的研究.浙江大学学报,2001,27(5):523-526
    5 何水涛,周厚成,刘崇怀.A蛋白酶链免疫法检测葡萄卷叶病毒的研究.落叶果树,2002,(2):1-3
    6 洪霓,刘福昌,王国平,王小凤等.A蛋白酶链法检测苹果褪绿叶斑病毒和茎沟病毒.中国病毒学,1992,1:44-47.
    7 洪雪玉,陈剑平.长线形病毒科成员编码蛋白的功能.浙江农业学报,2004,16:47-52
    8 黄学森,Mullins M G.用生物技术将外源基因转入葡萄的研究,遗传,1989,11(3):9-11
    9 孔庆山 主编 中国葡萄志.中国农业科学技术出版社.2004年7月第一版
    10 李华平,Hu J.S.,Wang M.香蕉束顶病毒复制酶基因的转化研究.朱有勇.植物病理学研究进展.昆明:云南科技出版社,1999,p:128-129
    11 李云,冯慧,田砚亭.“红地球”葡萄叶片、叶柄不定芽再生体系的建立.园艺学报,2002,29(1):60-62
    12 刘崇怀,孔庆山.葡萄种质资源卷叶病毒病田间自然发病调查.果树学报,1998,15(3):288-231
    13 刘三军,张亚冰,郭卫东.葡萄卷叶病毒ⅢRT-PCR检测技术研究.果树学报,2002,19(1):15-18.
    14 卢炳芝,李佩芬,于向荣,王敏.葡萄花丝胚性愈伤组织的诱导及其植株再生.葡萄栽培与酿酒,1994,(1):15-17
    15 卢炳芝,于向荣,郭飞跃,李佩芬,鲍雪珍.葡萄花丝培养中的胚胎发生,果树科学,1995,12:37-40
    16 鲁瑞芳,吕鹏飞,彭学贤.马铃薯Y病毒NIb复制酶基因在转录水平介导的相对广谱抗病性.病毒学报,2000,16(2):162-166
    17 马德钦,相望年.葡萄根癌土壤杆菌诱导的葡萄的离体培养植株再生,遗传学报,1986,13(6):417-422
    18 孟清,张鹤龄,宋伯符.应用Dot-ELISA检测PVX.PVY和PVS.中国病毒,1993,8(4):355-371
    19 孟岩.抗真菌基因对葡萄植物遗传转化的研究.东北农业大学,博士论文.2001
    20 牛建新,李东栋.葡萄病毒病双链RNA(dsRNA)检测技术研究.果树学报,2002,19:149-152
    21 潘俊松,刘志听,康由发等.齿兰环斑病毒外壳蛋白基因克隆及其表达产物抗血清制.热带作物学报,1999,20:62-66
    22 潘志勇,翟衡.葡萄卷叶病研究进展.中外葡萄与葡萄酒,2001,2:62-65
    23 秦云霞,曾华金,刘志昕.黄瓜花叶病毒CP基因原核表达及抗血清的制备.中国生物工程杂志,2004,24(8):73-76
    24 苏宁,韩成贵,李大伟.小麦黄花叶病毒RNA2 28 kDa蛋白基因的表达及表达产物抗血清的制备.中国病毒学,1999,14(3):217-221
    25 孙启达,赵文明.马铃薯Y病毒复制酶基因的转基因烟草对PVY的抗性.西北农业学报,1996,5(2):56-60
    26 孙仲序,陈受宜,王建设,李桂芬,管雪强.农杆菌介导AGK基因转化葡萄的研究.果树学报,2003,20(2):89-92
    27 王华,崔福君.现代生物技术在葡萄种质资源、品种改良研究中的应用.中外葡萄与葡萄酒,2003,1:18-21
    28 王加峰.转复制酶基因番木瓜抗病性及抗病机制.华南农业大学硕士学位论文,2004
    29 王艳红,韦石泉,李大伟.世界主要葡萄病毒病研究现状.沈阳农业大学学报,1996,27:153-256
    30 王蕴珠,葛扣麟.葡萄体细胞愈伤组织的诱导与植株再生.植物学报,1985,27(6):661-664
    31 项瑜,杨兰英.改造的马铃薯Y病毒复制酶基因介导高度抗病性.生物工程学报,1996,2(3):258-265
    32 项瑜,杨兰英,彭学贤,等.改造的马铃薯Y病毒复制酶介导高度抗病性.生物工程学报,1996,12:258-265
    33 项瑜.马铃薯Y病毒Nib、6 KDa和Nia基因的克隆和序列分析以及马铃薯Y病毒复制酶基因、蛋白酶基因和外壳蛋白基因介导的抗病性研究.中国科学院微生物所博士学位论文,1994
    34 谢响明,于嘉林,张力,等.黄瓜花叶病毒(CMV)缺失型复制酶基因转化烟草及其介导的抗病性.植物病毒与病毒防治研究.北京:中国农业科技出版社,1997,p:298-304
    35 徐平,许建平,薛朝阳.芜菁花叶病毒外壳蛋白基因的序列分析及其在大肠杆菌中的表达.病毒学报,1994,10(2):172-177
    36 严维巍.兔出血症病毒中国株衣壳蛋白基因的表达及其免疫原性初探.博士学位论文,扬州大学,2003
    37 姚华健,于嘉林,金元等.甜菜坏死黄脉病毒外壳蛋白基因的表达及其表达产物抗血清的制备.病毒学报,1994,10(1):39-43
    38 余旦华.葡萄病毒病.中国果树,1986.4:42-49
    39 张克忠,鲍雪珍,白永延,颜望明,唐惕,曹湘玲,毛慧珠.苏云金杆菌内毒素蛋白基因转入葡萄胚性愈伤组织细胞及转基因植株再生的研究.实验生物学报,1997,30(3):303-308
    40 张利平,曹孜义.影响葡萄花药愈伤组织产生和分化频率的因素.甘肃农业大学学报,1993,28(3):247-252
    41 张玉满,李云.葡萄卷叶病毒外壳蛋白基因的克隆、序列分析及其在大肠杆菌中的表达.植物病理学报,2000,33(3):232-236。
    42 赵冬兰,朱水芳等.葡萄卷叶伴随病毒Ⅲ外壳蛋白基因的克隆.中国病毒学,2000,15(4):357-360
    43 周鹏,王跃进,贺普超.人胰岛素生长因子-Ⅰ基因转化葡萄的研究.热带作物学报,2002,23(1):54-61
    44 朱常香,宋云枝,王玫玫.烟草环斑病毒外壳蛋白基因的原核表达及抗血清的制备.中国病毒学,2005,20(4):434-437
    45 Abou-Ghanem N, Sabanadzovic S, Castellano MA ,Boscia D, Martelli GR Properties of a new isolate of grapevine leafroll-associated virus 2. Vitis, 2000, 39:119-121
    46 Abou-Ghanem N, Sabanadzovic S, Minafra A, Saldarelli P, Martelli GE Some properties of grapevine leafroll associated virus 2 and molecular organization of the 3' region of the viral genome. Journal of Plant Pathology, 1998, 80:37-46
    47 Acheche H, Fattouch S, Mhirsi S. Use of optimized PCR methods for the detection of GLRaV-3: a closterovirus associated with grapevine leafroll in Tunisian grapevine plants. Plant Molecular Reporter, 1999, 17:31-42
    48 Agranovsky AA, Folimonova SY, Folimonov AS. The beet yellows closterovirus p65 homologue of HSP70 chaperones has ATPase activity associated with its conserved N-terminal domain but does not interact with unfolded protein chains. Journal of General Virology, 1997, 78:535-542
    49 Agranovsky AA, Koonin EV, Boyko VP. Beet yellows clostervirus: complete genome structure and identification of a leader papain-like thiolprotease. Virology, 1994, 198:311-324
    50 Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 2002, 296(5571): 1270-1273
    51 Alzhanova DV, Hagiwara Y, Peremyslov VV. Genetic analysis of the cell to cell movement of beet yellows closterovirus. Virology, 2000, 268:192-200
    52 Anderson JM, Palukaitis P, Zaitlin M. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants Proc Natl Acad Sci, USA, 1992, 89:8759-8763
    53 Angelini E, Bertazzon N, Borgo M. Diversity among grapevine leafroll- associated virus 2 isolates detected by heteroduplex mobility assay. Journal of Phytopathology, 2004, 152:416-422
    54 Angelini E, Bertazzon N, Borgo M. Occurrence of the Redglobe strain of Grapevine leafroll-associated virus 2 in table and wine grape varieties in Italy. Vitis, 2003, 42:203-204
    55 Audy P, Palukaitis P, Slack SA, Zaitlin M. Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Molec Plant-Microbe Interact, 1994, 7:15-22
    56 Baribault TJ, Skene KGM, Cain PA, et al. Transgenic Grapevines: Regeneration of Shoots Expressing β-Glucuronidase. Journal of Experimental Botany, 1990, 41:1045-1049
    57 Baribault TJ, Skene KGM and Scott NS. Genetic transformation of grapevine cells. Plant Cell Rep, 1989, 8:137-140
    58 Baulcombe DC. Fast forward genetics based on virus-induced gene silencing. Current opinion in Plant Biology, 1999, 2:109-113
    59 Baulcombe DC. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. The plant cell, 1996, 8: 1833-1844.
    60 Belli G, Fortusini A, Casati P. Transmission of a grapevine leafroll associated closterovirus by the scale insect Pulvinaria vitis L. Rivista di Patologia Vegetale, 1994,4:105-108
    61 Berres R, Otten L, Tinland B. Transformation of vitis tissue by different strains of Agrobacterium tumefactions containing the T-6b gene. Plant Cell Reports, 1992, 11:192-195
    62 Boscia D, Greif C, Gugerli P, et al. Nomenclature of grapevine leafroll-associated putative closteroviruses. Vitis, 1995, 34:171-175
    63 Braun CJ, and Hemenway CL. Expression of Amino-Terminal Portions or Full-Length Viral Replicase Genes in Transgenic Plants Confers Resistance to Potato Virus X Infection. Plant Cell, 1992, 4(6):735-744
    64 Broglie K, Chet I, Holliday M, et al. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science, 1991, 254:1194-1197
    65 Cabaleiro C and Segura A. Some characteristics of the transmission of grapevine leafroll associated virus 3 by Planococcus citri Risso. European Journal of Plant Pathology, 1997, 103:373-378
    66 Cabaleiro C, Segura A, Garcia-Berrios J. Effects of grapevine leafroll associated virus 3 on the physiology and most of Vitis vinifera L.cv. American Journal of Enology and Viticulture, 1999, 50:40-43
    67 Cabaleiro C, Segura A. Field transmission of grapevine leafroll associated virus 3 (GLRaV-3) by the mealybug Planococeus citri. Plant Disease, 1997, 81:283-287
    68 Canto T., Palukaitis P. Replicase-mediated resistance to cucumber mosaic virus does not inhibit localization and/or trafficking of the viral movement protein. Molecular Plant Microbe Interactions, 1999, 12: 743-747
    69 Carr JP, Zaitlin M. Resistance in transgenic tobacco plants expressing a nonstructural gene sequence of tobacco mosaic virus is a consequence of markedly reduced virus replication. Molecular Plant Microbe Interactions, 1991, 4: 579 - 585
    70 Carr JP, Marsh LE, Lomonossoff GP, et al. Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Mol Plant Microbe Interact, 1992, 5(5):397-404.
    71 Carr, JP, Gal-On A, Palukaitis P. and Zaitlin M. Replicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology, 1994, 199:439-447
    72 Castellano MA, Abou-Ghanem N, Choueiri E, Martelli GP. Ultrastructrue of grapevine leafroll-associated virus 2 and 7 infections. Journal of Plant Pathology, 2000,82:9-15
    73 Cersosimo, A., Crespan, M., Paludetti, G. and Altamura, M.. Embryogenesis, organogenesis and plant regeneration from anther culture in Vitis. Acta Horticulture. 1990,280:307-314
    74 Cheng ZM, Reisch BI, Shoot regeneration from petioles and leaves of Vitis X labruscana 'Cataw ba'. Plant Cell Reports, 1989, 7:403-405
    75 Choueiri E, Boscia D, Digiaro M, et al. Some properties of a hitherto undescribed filamentous virus of the grapevine. Vitis, 1996, 35:1-3
    76 Clandia F, Fazeli M, Rezaian A. Nucleotide sequence and organization of ten open reading frames in the genome of grapevine leafroll-associated virus 1 and identification of three subgenomic RNAs. Journal of General of Virology, 2000, 81:605-615
    77 Clog E, Bass P, Walter A. Plant Regeneration by organogenesisis in Vitis rootstocks species. Plant Cell Reports, 1990, 8(12):726-728
    78 Colby SM, Juncosa AM and Meredith CP. Cellular differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J. Amer. Soc. Hort. Sci. 1991, 116(2):356-361
    79 Compton ME, Gray DJ. Effect of sucrose and methylglyoxal bis-guanylhydrazone on controlling grape somatic embryogenesis. Vitis, 1996, 35(1): 1-6
    80 Das DK, Reddy MK, Upadhyaya KC. An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Report, 2002, 20:999-1005
    81 Donson J, Kearney CM, Turpen TH, et al. Broad resistance to tobmoviruses mediated by a modified TMV replicase transgene. Molec Plant-Microbe Interact, 1993,6:635-642
    82 Dovas C I, Katis NI. A spot multiplex nested RT-PCR for the simultaneous and generic detection of viruses involved in the aetiology of grapevine leafroll and rugose wood of grapevine. Journal of Virological Methods, 2003, 109:217-226
    83 Emershad RL, Ramming DW. Somatic embryogenesis and plant development from immature zygotic embryo s of seedless grapes. Plant Cell Reports, 1994, 14: 6-12
    84 Engelbrecht DJ, Kasdorf GGF. Transmission of grapevine leafroll disease and associated closteroviruses by the vine mealybug Planococcus ficus. Phytophylactica, 1990,22:341-346
    85 Franks T, He DG, Thomas M. Regeneration of transgenic Vitis vinifera L.sultana plants: genetypic and phenotypic analysis. Molecular Breeding, 1998, 4: 321-333
    86 Gall OL. Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Science, 1994, 102:161-170
    87 Gambino G, Gribaudo I. Molecular characterization of grapevine plants transformed with GFLV resistance genes I . Plant Cell Report, 2005, 24:655-662
    88 Goheen AC. Rupestris stem pitting. In: Pearson RC, Goheen AC(Eds.), Compendium of grapevine disease. American Phytopathological Society Press, St. Paul,MN, 1988,53
    89 Golemboski DB. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci, USA, 1990, 87:6311-6315
    90 Golino DA, Sim S, Gill R, Rowhani A. Transmission studies of grapevine closteroviuses by four species of mealybugs. Phytopathology, 2002, 88:32-33
    91 Golino DA, Sim S, Rowhani A. Identification of the latent viruses associated with young vine decline in California. Extended Abstracts 13~(th) Meeting of ICVG, Adelaide, 2000, 85-86
    92 Golino DA, Sim ST, Rowhani A. Transmission studies of grapevine leafroll associated virus and grapevine corky bark associated virus by the obscure mealybug. American Journal of Enology and Viticulture, 1995, 46:408-421
    93 Goszczynski DE, Kasdorf GGF, Pietersen G, Tonder H. Detection of two strains of grapevine leafroll-associated virus 2. Vitis, 1996a, 35:133-135
    94 Goszczynski DE, Kasdorf GGF, Pietersen G, Tonder H. Grapevine leafroll-associated Virus 2 (GLRaV-2) -Mechanical transmission, purification, production and properties of antisera, detection by ELISA. S Afr J Enol Vitic, 1996b, 17:15-26
    95 Gray DJ. Somatic embryogenesis and Plant regeneration from immature zygotic embryos of muscadine grape Cultivars. American Journal of botany, 1992, 79(5):542-546
    96 Greif C, Garau R, Boscia D. The relationship of grapevine leafroll-associated closterovirus 2 with a graft incompatibility condition of grapevines. Phytopathologia Mediterranea, 1995, 34:167-173
    97 Gugerli P, Ramel ME. Grapevine leafroll associated virus II analyzed by monoclonal antibodies. Extended Abstracts 11~(th) Meeting ICVG, Montreux Switzerland, 1993,55
    98 Gugerli P. Grapevine leafroll and related viruses. Extended Abstracts 14~(th) Meeting of ICVG, Locorotondo, 2003, 25-31
    99 Gugerli P. Grapevine leafroll and related viruses. In: Extended abstracts of the X IV meeting of the international council for the study of virus and virus-like diseases of the grapevine, Locorotondo, Italy, September 2003, 12-17
    100 Guo HS, Garcia JA. Delayed resistance to plum pox potyvirus mediated by a mutated RNA replicase gene: Involement of a gene- silencing mechanism. Molecular Plant Microbe Interactions, 1997, 10: 160 - 170
    101 Habili N, Fazeli CF, Ewart A. Natural spread and molecular analysis of grapevine leafroll associated virus 3 in Australia. Phytopathology, 1995, 85:1418- 14221
    102 Hebert D, Kikkert JR, Smith FD., Reisch BI. Optimization of biolistic transformation of embyogenice cell suspensions. Plant Cell Reports, 1993, 12:585-589
    103 Hellwald K H , Palukaits P. Viral RNA as a potential target for two independent mechanisms of replicase - mediated resistance against cucumber mosaic virus. Cell, 1995,83:937-946
    104 Hong N, Xu ZY, Xiang B, Wang GP. Gene cloning of etiological viruses causing grapevine leafroll in China. Second Asia Conference on Plant Pathology, National University of Singapore, 2005, 89:25-28
    105 Hu JS, Gonsalves D, Boscia D, Namba S. Use of monoclonal antibodies to characterize grapevine leafroll associated closteroviruses. Phytopathology, 1990a, 80:920-925
    106 Hu JS, Gonsalves D, Teliz D. Characterization of Closterovirus-like particles associated with grapevine leafroll disease. Journal of Phytopathology, 1990b, 128:1-14
    107 Karasev AV, Boyko VP, Gewda S. Complete sequence of the citrus tristeza viruses RNA genome. Virology, 1995, 208:511-520
    108 Karasev AV. Genetic diversity and evolution of closteroviruses. Annual Revue of Phytopathology, 2000, 38:293-324
    109 Kassemeyer HH, Grenan S, Greif C. Use of green grafting for the biological indexing of grapevine virus and virus-like diseases. Sanitary selection of the grapevine colrnar (France). October, Ed. INRA paris (Les colloques,) 1997, 78
    110 Kim C.H., Palukaitis P. The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J, 1997, 16: 4060-4068
    111 Klaassen VA, Mayhew D, Fisher D. In vitro transcripts from cloned cDNAs of the lettuce infectious yellows clostemvirus bipartite genomic RNAs are competent for replication in Nicotiana benthamiana protoplasts. Virology, 1995, 222:169-175
    112 Koev G, Mohan B.R., Dinesh-Kumar S.P., et al. Extreme reduction of disease in oats transformed with the 5 ' half of the barley yellow dwarf virus-PAV genome. Phytopathology, 1998, 88: 1013-1019
    113 Koonin EV. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. Journal of General Virology, 1991, 72:2197-2206
    114 Krastanova S, Ling KS, Zhu HY. Development of transgenic grapevine rootstocks with genes from grapevine fanleaf virus and grapevine leafroll associated viruses 2 and 3. Acta Horticulturae, 2000, 528:367-371
    115 Krastanovas, Perr M, Barbier P. Trans formation of grape rootstocks with the coat protein gene of grapevine fanleaf nepo virus, Plant Cell Reports, 1995,14:550-554
    116 Li Z, Martelli GP, Prota V. Virus and virus-like diseases of the grapeviner in the People's Republic of China, a preliminary account. Proceedings of the 9th Meeting of ICVG Kyriat Anavim, 1989, 31-34
    117 Ling KS, Zhu HY, Alvizo H, Hu JS, Drong RF, Slightom JL, and Gonsalves D. The coat protein gene of grapevine leafroll associatedclosterovirus-3: cloning, nucleotide sequencing and expression in transgenic plants. Arch Virol, 1997, 142:1101-1116
    118 Ling KS, Zhu HY, and Gonsalves D. Complete nucleotide sequence and genome organization of grapevine leafroll-associated virus 3, type member of the genus Ampelovirus, Journal of General Virology, 2004, 85:2099-2102
    119 Ling KS, Zhu HY, Drong RF, Slightom JL, McFerson JR, Gonsalves D. Nucleotide sequence of the 3'-terminal two-thirds of the grapevine leafroll- associated virus-3 genome reveals a typical monopartite closterovirus. J Gen Virol, 1998, 79:1299-1307
    120 Ling KS, Zhu HY, Jiang ZY, Gonsalves D. Effective application of DAS-ELISA for detection of grapevine leafroll associated closterovirus-3 using a polyclonal antiserum developed from recombinant coat protein. European Journal of Plant Pathology, 2000, 106:301-309
    121 Lomonossoff GP, van den Boogaart T, Davies J W. Replicase-mediated resistance to plant viruses. Science Progress Oxford, 1994, 76:537-551
    122 Longstaff M., Brigneti G, Boccard F., Chapman S., Baulcombe D. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J, 1993, 12: 379 - 386
    123 MacFarlane S.A., et al. Plants transformed with a region of 201 KD replicase gene of pea early browning virus RNA1 are resistant to virus infection. Proceedings of the National Academy of Sciences, USA, 1992, 89: 5829-5833
    124 Martelli GP, Agranovsky AA, Bar-Joseph M, Boscia D, Candresse T, Coutts R.HA, Dolja VV, Falk BW, Gonsalves D, Jelkmann W, Karasev AV, Minafra A, Namba S, Vetten HJ, Wisler GC, Yoshikawa N. The Family Closteroviridae Revised. Archieves of Virology, 2002, 147(10):2039-2044
    125 Martelli GP, Agranowsky AA, Bar-Joseph M, Boscia D, Candresse T, Coutts RHA, Dolja VV, Falk BW, Gonsalves D, Jelkmann W, Karasev AV, Minafra A, Namba S, Vetten HJ, Wisler GC and Yoshikawa N. Family Closteroviridae. In: Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U., Ball L.A.( eds,) Virus Taxonomy. Eight Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, San Diego, USA, 2005, 1077-1087
    126 Martelli GP, Grapevine virology highlights 2000-2003 Extended Abstracts 14~(th) ICVG conference, Locorotond, 2003, 126
    127 Martinelli L, Bragagna P. Somatic embryogenesis from leaf-and petiole derived callus o f Vitis rupeetris. Plant Cell Reports, 1993, 12: 207-210
    128 Martinelli L, Mandolino G. Genetic transformation and regeneration of transgenetic plants in grapevine (Vitis repestris S.). Theor Appl Genet, 1994, 88:621-628
    129 Martinelli L, Mandolino G. Stability of the beta-glucuronidase gene in a RO population of grape (Vitis rupeetris S.). South African Journal for Enology and Viticulture, 1996, 17(1):27-30
    130 Mauro MC, Toutain S, Walter B. High efficiency Regeneration of grapevine plants transformed with the GFLV coat protein gene, Plant Science, 1995, 112(10):97-106
    131 Meng BZ, Li CH, Goszczynski DE, Gonsalves D. Genome sequences and structures of two biologically distinct strains of grapevine leafroll-associated virus 2 and sequence analysis. Virus genes, 2005, 31:31-41
    132 Monis J. Development of monoclonal antibodies reactive to a new grapevine leafroll-associated closterovirus. Plant Disease, 2000, 84:858-862
    133 Mori M, Mise K, Okuno T and Furusawa I. Expression of brome mosaic virus-encoded replicase gene in transgenic tobacco plants. Proc Natl Acad Sci, USA, 1992,73:169-172
    134 Mossp DW, Elliotl DR. Association of closterovirus 2 like particles and high molecular weight double stranded RNA with grapevines affected by leafroll disease. New Zealand Journal of Agricultural Research, 1985, 78:419-425
    135 Mueller E, Giller J, Davenport G. Transgenic virus resistance in plants related to homology -dependent gene silencing. Plant Journal, 1995, 7(6): 1001-1013.
    136 Mullins MG, Srinivasan C. Somatic embryos and plantlets from an ancient clone of the grape vine (cv.Cabernet Sauvignon) by apomixes in vitro. J Exp Bot, 1976, 27:1022-1030
    137 Mullins MG, Tang AFC, Faceiotti D. Agrobacterium-mediated genetic Transformation of grapevines: transgenetic plants of Vitits rupestris Scheele and buds of Vitis vinifera L .B IO/Techno, 1990, 18:1041-1045
    138 Murashige T. and Skoog F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 1962, 15:473-497.
    139 Nakano M., Hoshino Y, and Mii M. Regeneration of transgenetic plants of grapevine (Vitis cv inifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenesis calli. J Exp Bot, 1994, 45:649-656
    140 Nguyen L., Lucas W.J., Ding B., Zaitlin M. Viral RNA trafficking is inhibited in replicase-mediated resistant transgenic tobacco plants. Proceedings of the National Academy of Sciences, USA, 1996, 93 :12643- 12647
    141 Palukaitis P., Zaitlin M. Replicase-mediated resistance to plant virus disease. Advances in Virus Research, 1997, 48: 349-377
    142 Peng CW, Peremyslov VV, Mushegian AR, et al. Functional specialization and evolution of leader proteinases in the family closteroviridae. Journal of Virology, 2001,12153-12160
    143 Peremyslov VV, Hagiwara Y, Dolja VV. Genes required for replication of the 15.5-kilobase RNA genome of a plant closterovims. J Virol, 1998, 72:5870-5876
    144 Perl A, Lotati O, et al. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L): The role of antioxidants during grape-Agrobacterium interaction, Nature Biotechnology, 1996, 14(5):624-628
    145 Perl A., Saad S., etal, Establishment of long-term embryo genic culture of seedless Vitis vinifera cultivars-a synergistic effect of auxins and the role of abscisic acid. Plant Sci, 1995, 104(2): 193-200
    146 Peros JP, Torregrosa L. Variability among Vitis vinifera cultivars in micropropation, organogenesis and antibiotic sensitivity. Journal of Experimental Botany, 1998, 49(319):171-179
    147 Petersen CL & Charles JG. Transmission of grapevine leafroll-associated closteroviruses by Pseudococcus longispinus and P.calceolariae. Plant Pathology, 1997,46:509-515
    148 Popescu CF. Somatic embryogenesis and plant development from anther culture of Vitis vinifera (L), Plant growth Regulation, 1996, 20:75-78
    149 Regner F., Roman H. Regeneration of grapevine by means of organogenesis. Mitteilungen Klosterneuburg, 1994, 44(5): 168-174
    150 Robacker C. Somatic embryogenesis and plant regeneration from muscadine grape leaf explants. Hort scinece, 1993, 28 (1):53-55
    151 Rowhani A, Zhang YP, Golino DA, Uyemoto JK. Isolation and partial characterization of two new viruses from grapevine. Extended Abstracts 13' Meeting of ICVG, Adelaide, 2000, 82
    152 Rubino L., Lupo R., Russo M. Resistance to cymbidium ringspot virus infection in transgenic plants expressing full length viral replicase gene. Molecular Plant Microbe Interactions, 1993, 6: 729-734
    153 Rubino L., Russo M. Characterization of resistance to cymbidium ringspot virus in transgenic plants expressing a full-length viral replicase gene. Virology, 1995, 212(1): 240
    154 Rubinson E, Galiakparov N, Radian S, Sela I, Tanne E, Gafny R. Serological detection of grapevine virus A using antiserum to a nonstructural protein, the putative movement protein. Phytopathology, 1997, 87:1041-1054
    155 Saldarelli P, Minafra A, Martelli GP. Detection of grapevine leafroll-associated closterovirus 3 by molecular hybridization. Plant Pathology, 1994, 43:91-96
    156 Salunkhe CK, Rao PS, ETAL. Induction of Somatic embryogenesis and plantlets in tendris of Vitis vinifera L. Plant cell Reports, 1997, 17:65-67
    157 Salunkhe CK, Rao PS, Mhatre M. Induction of Somatic embryogenesis and plantlets in mosaic nepo virus(GCMV), Plant Science 1994, 2:161-170,
    158 Satyanarayn T, SiddarameG, MunirM. Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology, 2000, 278:253-265
    159 Scorza R, Cordts JM, Gray DJ, Gonsalves D, Emershad RL, and Ramming DW. Producing transgenic Thompson Seedless' grape plant. J Amer Soc Hor, 1996,
    121(4):616-619 160 Scorza R, Cordts JM, Ramming DW. Transformation of grape (Vitis Vinifera L) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Reports, 1995, 14:589-592
    161 Sefc K M, Ruckenbauer P. Embryogenesis in mcrospore culture of subspecies. Vitis, 1997, 36(l):15-20
    162 Sijen T., Wellink J., Hendriks J., et al. Replication of cowpea mosaic virus RNA1 or RNA2 is specifically blocked in transgenic Nicotiana benthamiana plants expressing the full - length replicase or movement protein genes. Molecular Plant Microbe Interactions, 1995, 8: 340 - 347
    163 Srinivasan C, and Mullins MG. High-frequency somatic embryo production from unfertilized ovules of grape. Scientia Hortic, 1980, 13:245-252
    164 Stamp J. A. Meredith C. P. Proliferative Somatic embryogenesis from zygotic embryos of grape vine J Amer Soc Hort Soi, 1988b, 113(6):94 1-945
    165 Stamp J. Meredith CP. Somatic Embryogenesis from leave and anthers of gravine. Scientia Horticulture, 1988a, 35:235-250
    166 Stamp J.A., Colby S.M, Meredith CP. Direct shoot organogenesis and plant regeneration from leaves in grape. Plant Cell, Tissue and Organ Culture, 1990b, 22:127-123
    167 Stamp JA, Scient, Colby SM Improved Shoot organogenesis from leaves of Grape. J Amer Soc Hort Sci, 1990a, 115(6): 1038-1042
    168 Sukhacheva EA, Fomicheva VV, Efimova NA and Shubert J. Immunodection of RNA-Dependent RNA Polymerase from Turnip yellow luteovirus using monoclonal antibodies. Russian Journal of Bioorganic Chemistry, 2004, 30:25-29
    169 Tang FA, Mullins MG Adventitious bud formation in explants of some grapevines rootstock and scion cultizars. Vitis, 1990, 29:151 -158
    170 Tanne E, Ben DY & Raccah B. Transmission of closterolike particles by mealybugs (Pseudococcidae) in Israel. Phytoparasitica, 1989, 17:63-64
    171 Tanne E, Spiegel-Roy P, Shalmovitz N. Rapid in vitro indexing of grapevine viral diseases: The effect of stress inducing agents on the diagnosis of leafroll. Plant Disease, 1996, 80:972-974.
    172 Teliz D, Janne E, Gonsalves D, Zee F. Field serological detection of viral antigens associated with grapevine leafroll disease. Plant Disease, 1987, 71:704-709
    173 Tenilado. Plants transformed with the 54 kD region of the PMMV replicase gene are resistant to virus infection. Abstracts of 9th International Congress of Virology. Glasgow, Scotland, Aug, 1993, 343:8-13
    174 Tenilado F., et al. Some 54K transgenics harboring a gene derived from pepper mild mottle tobamovirus appear to operate to resist PMMV by an RNA-mediated mechanism. Virology, 1995, 211:170
    175 Tenilado F., Garcia - Luque I., Serra M.T., et al. Resistance to pepper mild mottle tobamovirus conferred by the 54kD gene sequence in transgenic plants does not require expression of the wild - type 54kD protein. Virology, 1996, 219: 330 - 335
    176 Thomas P.E., Lawson E.C., Zalewski J.C., Reed G. L., Kaniewski W. K. Extreme resistance to Potato leafroll 6irus in potato cv.Russet Burbank mediated by the viral replicase gene. Virus Research, 2000, 71: 49-62
    177 Tian T, Rubio L, Yeh HH. Lettuce infectious yellowsvirus: in vitro acquisition analysis using partially purified virions and the whitefly, Bemisiatabaci. J Gen Virol, 1999,80:1111-1117
    178 Torregrosa L, Bouguet A. Agrobacterium rhizogenes and Tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grape chrone mosaic nepovirus, Plant Cell Tissue and Organ Culture, 1997, 49(1):53-62
    179 Torregrosa L, Bouquet A. Adventitious bud formation and shoot development from in vitro leaves of Vitis X Muscadinia hybrids. Plant Cell, Tissue and Organ Culture, 1996,45:245-252
    180 Turturo C, Saldarell P, Dong YF. Genetic variability and population structure of grapevine leafroll-associated virus 3 isolates. Journal of General Virology, 2005, 86:217-224.
    181 Uyemoto JK, Rowhani A, Luvisi D and Krag CR. New closterovirus in "Redglobe" grape causes decline of grafted plants. California Agriculture, 2001, 55(4):28-31
    182 Vaira AM, Vecchiati M, Masenga V, Accotto GP. A polyclonal antiserum against a recombinant viral protein combines specificity with versatility. Journal of Virology Methods, 1996, 56:209-219
    183 Valerie H, Emmanuel J, Maryse G, Yves LH, Daniele GD. Production of recombinant potato mop-top virus coat protein in Escherichia coli and generation of antisera recognizing native virus protein. Journal of Virology Methods, 2003, 110:91-97
    184 Van Dun, CMP. Expressiono f AIMV cDNA 1 and 2 in tansgenic plants. Virology, 1988, 163:572
    185 William M., Wintermantel W. and Zaitlin M. Transgene translatability increases effectiveness of replicase-mediated resistance to Cucumber mosaic virus. Journal of General Virology, 2000, 81, 587-595
    186 Wilson TMA, Proc Natl Acad Soi USA. 1993, 90:313-441
    187 Wintermantel W.M., Banerjee N., Oliver J.C., Paolillo D.J., Zaitlin M. Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-mediated resistance. Virology, 1997, 231: 248-257
    188 Zee F, Gonsalves D, Goheen A, Kim KS, Pool R, Lee RF. Cytopthology of leafroll-diseased grapevine and the purification and serology of associated closteroviruslike particles. Phytopathology, 1987, 77:1427-1434
    189 Zhu HY, Ling KS, Goszcynski DE, McFerson JR, Gonsalves D. Nucleotide sequence and genome organization of grapevine leafroll-associated virus-2 are similar to Beet yellow virus, the closterovirus type member. Journal of General Virology, 1998, 79:1289-1298.
    190 Zimmermann D, Bass P, Legin R and Walter B. Characterization and serological detection of four closterovirus-like particles associated with leafroll disease on grapevine. J Phytopathol, 1990a, 130:205-218
    191 Zimmermann D, Sommermeyer G, Walter B and Van RMHV. Production and characterization of monoclonal antibodies specific to closterovirus-like particles associated with grapevine leafroll disease. J Phytopathol, 1990b, 130:277-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700