用户名: 密码: 验证码:
复合机制介导的α-常春藤皂苷肝肿瘤主动靶向给药系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以肝肿瘤细胞上的ASGPR和CD147分子为靶标,采用N-乳糖酰壳聚糖(GC)和CD147单抗分别实现受体介导与抗体介导,以α-常春藤皂苷为模型药物,将其制备成“受体+抗体”的双重复合机制介导的肝肿瘤主动靶向纳米给药系统。
     采用乳化溶剂扩散法制备了α-Hed-GC-NP,考察并优化了纳米粒的处方和制备工艺,确定影响纳米粒质量的关键要素为GC用量:50mg,磷脂用量:80mg,有机相体积:4mL。所制得的α-Hed-GC-NP外观圆整、分布均匀,平均粒径(88.70±1.22)nm,包封率(78.53±4.39)%,P.I.值0.105±0.011;药物在载体材料中分散均匀,释药行为具有一定的pH敏感性和缓释特性。
     建立了CD147单抗的含量和活性测定方法,采用偶联法、溶解法、注入法、吸附法及修饰法等5种方法制备了α-Hed-GC-CD147-NP,分别进行粒径测定、FT-IR表征和纳米粒中单抗结合活性测定。结果表明,CD147均被α-Hed-GC-NP有效包载,采用修饰法制备的α-Hed-GC-CD147-NP,平均粒径为(139.53±4.17)nm,CD147单抗的修饰量为1.25μg/mgNP,单抗的结合活性保留率为52.29%。
     对α-Hed-GC-CD147-NP的细胞毒作用、诱导细胞凋亡、细胞摄取率及摄取过程进行考察,并与其它3种纳米粒进行比较。结果表明,α-Hed及其含药纳米粒对SMMC-7721和HepG2两种细胞均有显著的抑制作用,α-Hed-GC-CD147-NP对两种细胞的IC50最低,分别为(23.51±1.22)、(23.30±0.22)μg/mL;纳米粒能诱导细胞凋亡,并呈现剂量依赖性,α-Hed-GC-CD147-NP低、中、高剂量(50、100、200μg/mL)诱导HepG2细胞的凋亡率分别为7.10%、11.87%、25.78%,高于其他纳米粒;HepG2细胞对α-Hed-GC-CD147-NP的细胞摄取率最高,2h和24h分别达(86.73±11.29)%和(94.61±4.42)%;随着时间的延长,纳米粒大部分被摄入到包浆,并能进入细胞核,α-Hed-GC-CD147-NP与HepG2细胞的亲和力更强,具有良好的肝肿瘤细胞靶向性。
     研究了α-Hed-GC-CD147-NP的急性毒性,对荷HepG2移植瘤裸鼠的抗肿瘤活性及体内靶向性。结果表明,各纳米粒小鼠尾静脉注射LD50均在12mg·kg-1以上,高于原料药;各剂量组对荷HepG2细胞裸鼠肿瘤的抑制率IRw均在70%以上,远高于原料药中剂量组;具有双重复合介导机制的α-Hed-GC-CD147-NP抑瘤率最高,低、中、高3个剂量组的抑瘤率分别为84.96%、88.25%、92.46%,显示了更好的肝肿瘤靶向性。荷瘤裸鼠近红外荧光成像实验结果表明,经受体或抗体介导的纳米粒,肿瘤和肝脏靶向性更强。
     建立了UPLC-MS法测定体内血浆及组织样品中α-Hed的分析方法,考察α-Hed-GC-CD147-NP在大鼠体内的药物动力学特征,及在荷瘤裸鼠体内组织分布情况。结果表明,药物在大鼠体内呈双室模型,α-Hed-GC-NP、α-Hed-CS-CD147-NP及α-Hed-GC-CD147-NP的t1/2(α)分别为0.12、0.10、0.05h,t1/2(β)分别为0.97、2.30、1.93h,与原料药相比,各纳米粒体内分布、消除减慢。以α-Hed的AUC为参照,上述3种纳米粒的生物利用度显著提高,分别为120%、300%及280%。抗体或受体介导的纳米粒,在肝脏和肿瘤组织内的药物量远远高于其他组织,具有极显著性差异,显示了良好的肝脏和肿瘤靶向性。双重复合机制介导纳米粒α-Hed-GC-CD147-NP在荷瘤裸鼠的肝脏和肿瘤内的分布量最高,优于单一抗体或受体介导纳米粒。
Based on the specific recognition ability of galactosylated chitosan (GC) toasialoglycoprotein receptor (ASGPR), identified as a target antigen on hepatoma cells,and of CD147mAb to CD147, over-erpressed on the surface of malignant cells,receptor-mediated active targeting and antibody-mediated active targeting werecombined to achieve nano drug delivery system of α-Hederin nanoparticles associatedwith GC and CD147targeted to hepatocellular carcinoma.
     Formulation and technology of α-Hed-GC-NPs prepared by emulsion solventdiffusion method were investigted and optimized, and key factors were identified to bedosage of GC (50mg), dosage of lecithin (80mg), and organic phase volume (4mL).α-Hed-GC-NPs optimized were presented a spherical morphology and a unimodal andrelatively narrow particle size distribution, the mean particle diameter was88.70±1.22nm, and its polydispersity index was0.105±0.011, and the average entrapmentefficiency was78.53%±4.39%. Characterization of α-Hed-GC-NPs indicated thatα-Hed were well dispersed in GC carriers, and in vitro release profile showed that drugrelease from nanoparticles was sustained and slightly dependent on pH.
     α-Hed-GC-CD147-NPs were prepared and compared by coupling method,dissolution method, injection method, adsorption method and modification method,respectively. Particle size determination showed that the mean particle diameters ofα-Hed-GC-CD147-NPs were significantly increased compared with α-Hed-GC-NPs,and the mean particle diameters of nanoparticles prepared by modification method was139.53±4.17nm. Characterization of α-Hed-GC-CD147-NPs by Fourier transforminfrared (FT-IR) spectrophotometer revealed the formation of Intra-and inter molecularhydrogen bonds, indicating the well dispersion of drug in nanoparticles. The conjugatedamount of CD147mAb to α-Hed-GC-CD147-NPs prepared by modification method was1.25μg/mgNP, and the conservation rate of binding activity of mAb was52.29%,prior to nanoparticles prepared by other methods.
     Cytoxity of α-Hed-GC-CD147-NPs was investigated and compared with other3nanoparticles, α-Hed and its drug-containing nanoparticles can significantly inhibitedthe growth of HepG2and SMMC-7721cells, the inhibitory ability of α-Hed-GC-CD147-NPs was highest, IC50to SMMC-7721and HepG2was23.51±1.22μg/mL and23.30±0.22μg/mL, respectively. Nanoparticles could induce apoptosis of HepG2celland apoptosis rate depended on the dose of α-Hed. The apoptosis rats induced byα-Hed-GC-CD147-NPs at a dose of50,100, and200μg were7.10%,11.87%and25.78%, respectively, higher than that of other nanoparticles. Cellular uptake rates at2hand24h of HepG2cells for α-Hed-GC-CD147-NPs were86.73±11.29%and94.61±4.42%, respectively. With the extension of time, most of nanoparticles wereintaked into slurry, and had access to the cell nucleus, α-Hed-GC-CD147-NPs had astronger affinity to HepG2cell and better ability targeting to liver tumor cells.
     Acute toxicity in mice by tail vein injection of α-Hed and4nanoparticles wastested and the LD50were above12mg/kg, more than α-Hed. Inhibition rates of tumorweight in HepG2-bearing nude mice of4nanoparticles for3dose groups (0.5,1.0,2.0mg/kg) were all above70%, more than α-Hed (1.0mg/kg). Inhibition rates ofα-Hed-GC-CD147-NPs at doses of0.5,1.0,2.0mg/kg were84.96%,88.25%and92.46,individualy, showed the better liver tumor targeting ability, which was also confirmedby infrared fluorescence imaging.
     UPLC-MS method for determination of α-Hed in plasma of rats and tissuehomogenate samples of nude mice, and pharmacokinetics in rats and distribution inHepG2-bearing nude mice of α-Hed-GC-CD147-NPs were investigted. α-Hed in ratsshowed a two-compartment model, for α-Hed-GC-NPs, α-Hed-CS-CD147-NPs andα-Hed-GC-CD147-NPs, t1/2(α) were0.12,0.10,0.05h, respectively, t1/2(β) were0.97,2.30,1.93h, respectively. Compared with α-Hed, drug distribution and elimination ofnanoparticles was slowed. Using the AUC of α-Hed as the reference, bioavailability of3nanoparticles above were significantly increased20%,200%and180%respectively.For nanoparticles mediated by antibody or receptor, drug amounts in the liver and tumor tissue is much higher than other organizations, which showed a favorable targetingability to liver or tumor. α-Hed-GC-CD147-NPs, mediated by dual mechanismcombined the receptor-mediated and antibody-mediated active targeting mechanism,drug distribution in liver and tumor of HepG2-bearing nude mice was the highest, andbetter than nanoparticles mediated by single receptor or antibody.
引文
1. María Varela, Margarita Sala, Josep M, et al. Treatment of hepatocellular carcinoma:is there an optimal strategy[J]? Cancer Treatment Reviews,2003,29(2):99-104.
    2. David Semela, Jean-Fran ois Dufour. Angiogenesis and hepatocellular carcinoma[J].Journal of Hepatology,2004,41(5):864-880.
    3. Tetsuhiro Chiba, Akihide Kamiya, Osamu Yokosuka, et al. Atsushi Iwama Cancerstem cells in hepatocellular carcinoma: Recent progress and perspective[J]. CancerLetters,2009,286(2):145-153.
    4. Eugene Mahon, Anna Salvati, Francesca Baldelli Bombelli, et al. Designing thenanoparticle–biomolecule interface for “targeting and therapeutic delivery”[J].Journal of Controlled Release,2012,161(2):164-174.
    5. Shi Xu, Bogdan Z. Olenyuk, Curtis T., et al. Targeting receptor-mediated endocytoticpathways with nanoparticles: Rationale and advances[J]. Advanced Drug DeliveryReviews,2013,65(1):121-138.
    6. Yang DY, Lu FG, Tang XX, et al. Study on relationship between expression level andmolecular conformations of gene drugs targeting to hepatoma cells in vitro [J].World J Gastroenterol,2003,9(9):1954-1958.
    7. Toshifumi Hara, Hiroshi Ishihara, Yukihiko Aramaki, et al. Characteristics of thebinding of asialofetuin-labeled liposomes to isolated rat hepatocytes[J].International Journal of Pharmaceutics,1991,67(2):123-129.
    8.欧阳春晖,卢放根,羊东晔等.肝细胞靶向载体分子体内分布和代谢动力学[J].湖南医科大学学报,2003,28(1):26-28.
    9.侯新朴,王黎,王向等.脂质体肝实质细胞靶向性研究[J].药学学报,2003,38(2):143-146.
    10. Nishikawa M, Miyazaki C, Yamashita F, et al. Galactosylated proteins arerecognized by the liver according to the surface density of galactose moieties [J].Am J Physiol,1995,268(5Pt1): G849-G856.
    11.蔡春,苏敏,杨健等.肝靶向前药半乳糖化人血清白蛋白氟尿嘧啶偶联物的合成及靶向作用[J].中国药学杂志,2006,41(10):786-789.
    12.范锋,孙晓飞.去甲斑蝥素-半乳糖衍生物的合成与抗癌活性[J].药学学报,2008,43(2):157-161.
    13.谢斌,金世龙,唐春等.肽-半乳糖苷-阿霉素脂质体在肝细胞癌靶向治疗中的作用[J].现代生物医学进展,2008,8(3):441-444.
    14. Terada T, Iwai M, Kawakami S, et al. Novel PEG-matrixmetalloproteinase-2cleavable peptide-lipid containing galactosylated liposomes for hepatocellularcarcinoma-selective targeting[J]. J Control Release,2006,111(3):333-342.
    15. Gao S, Chen J, Dong L, et al. Targeting delivery of oligonucleotide and plasmidDNA to hepatocyte via galactosylated chitosan vector [J]. Eur J Pharm Biopharm,2005,60(3):327-334.
    16. Cho CS, Cho KY,Park IK, et a1. Receptor-mediated delivery of all trans-retinoicacid to hepatocyte using poly(L-lactic acid)nanoparticles coated withgalactose-carrying polystyrene [J]. J Controlled Release,2001,77(1-2):7-15.
    17. S. J. Seo, H. S. Moon, D. D. Guo. et al. Receptor-mediated delivery ofall-trans-retinoic acid (ATRA) to hepatocytes from ATRA-loadedpoly(N-p-vinylbenzyl-4-o-β-d-galactopyranosyl-d-gluconamide) nanoparticles[J].Materials Science and Engineering: C,2006,26(1):136-141.
    18. M. Dash, F. Chiellini, R.M. Ottenbrite, et al. Chitosan-A versatile semi-syntheticpolymer in biomedical applications[J]. Progress in Polymer Science,2011,26(8):981-1014.
    19. Sunil A. Agnihotri, Nadagouda N. Mallikarjuna, Tejraj M. Aminabhavi. Recentadvances on chitosan-based micro-and nanoparticles in drug delivery[J]. Journalof Controlled Release,2004,100(1):5-28.
    20. Jae Hyung Park, Gurusamy Saravanakumar, Kwangmeyung Kim, et al. Targeteddelivery of low molecular drugs using chitosan and its derivatives[J]. AdvancedDrug Delivery Reviews,2010,62(1):28-41.
    21. Qin Wang, Liang Zhang, Wei Hu, et al. Norcantharidin-associated galactosylatedchitosan nanoparticles for hepatocyte-targeted delivery[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2010,6(2):371-381.
    22.王钦,章良,胡玮等.去甲斑蝥素N-乳糖酰壳聚糖纳米粒的制备与体外抗肿瘤活性[J].中国药学杂志,2009,44(12):913-919.
    23.胡玮,章良,王钦等.去甲斑蝥素N-乳糖酰壳聚糖纳米粒的肝靶向抗肿瘤药效学评价[J].中国新药杂志,2010,19(19):1814-1820.
    24.贝永燕,管敏,周奕等.去甲斑蝥素N-乳糖酰壳聚糖纳米粒的吸收机制及小鼠抑瘤作用研究[J].中国药房,2012,23(1):26-28.
    25. Raffaella Villa, Barbara Cerroni, Lucia Viganò, et al. Targeted doxorubicin deliveryby chitosan-galactosylated modified polymer microbubbles to hepatocarcinomacells[J]. Colloids and Surfaces B: Biointerfaces,2013,110(1):434-442.
    26. Dandan Zheng, Cunxian Duan, Dianrui Zhang, et al. Galactosylated chitosannanoparticles for hepatocyte-targeted delivery of oridonin[J]. International Journalof Pharmaceutics,2012,436(1-2):379-386.
    27. Nuo Zhou, Xiaoli Zan, Zheng Wang, et al. Galactosylated chitosan-polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin[J].Carbohydrate Polymers,2013,94(1):420-429.
    28. Susan M. Alex, M.R. Rekha, Chandra P. Sharma. Spermine grafted galactosylatedchitosan for improved nanoparticle mediated gene delivery[J]. InternationalJournal of Pharmaceutics,2011,410(1-2):125-137.
    29. Tae Hee Kim, In Kyu Park, Jae Woon Nah, et al. Galactosylated chitosan/DNAnanoparticles prepared using water-soluble chitosan as a gene carrier[J].Biomaterials,2004,25(17):3783-3792.
    30. Y.K Park, Y.H Park, B.A Shin, et al. Galactosylated chitosan-graft-dextran ashepatocyte-targeting DNA carrier[J]. Journal of Controlled Release,2000,69(1):97-108.
    31. I.K Park, T.H Kim, Y.H Park, et al. Galactosylated chitosan-graft-poly(ethyleneglycol) as hepatocyte-targeting DNA carrier[J]. Journal of Controlled Release,2001,76(3):349-362.
    32. Shuying Gao, Jiangning Chen, Xuerong Xu, et al. Galactosylated low molecularweight chitosan as DNA carrier for hepatocyte-targeting[J]. International Journal ofPharmaceutics,2003,255(1-2):57-68.
    33. Yoshinori Kato, Hiraku Onishi, Yoshiharu Machida. Biological characteristics oflactosaminated N-succinyl-chitosan as a liver-specific drug carrier in mice[J].Journal of Controlled Release,2001,70(3):295-307.
    34. Di Stefano G, Kratz F, Lanza M, et al. Doxorubicin coupled to lactosaminatedhuman albumin remains confined within mouse liver cells after the intracellularrelease from the carrier [J]. Dig Liver Dis,2003,35(6):428-433.
    35. Di Stefano G, Lanza M, Kratz F, Merina L, Fiume L. A novel method for couplingdoxorubicin to lactosaminated human albumin by an acid sensitive hydrazone bond:synthesis, characterization and preliminary biological properties of the conjugate[J].Eur J Pharm Sci,2004,23(4-5):393-397.
    36. Luigi Fiume, Luigi Bolondi, Corrado Busi, et al. Doxorubicin coupled tolactosaminated albumin inhibits the growth of hepatocellular carcinomas inducedin rats by diethylnitrosamine[J]. Journal of Hepatology,2005,43(4):645-652.
    37. Yoshie Maitani, Kumi Kawano, Kazuyo Yamada, et al. Efficiency of liposomessurface-modified with soybean-derived sterylglucoside as a liver targeting carrierin HepG2cells[J]. Journal of Controlled Release,2001,75(3):381-389.
    38. Wassana Yeeprae, Shigeru Kawakami, Fumiyoshi Yamashita, et al. Effect ofmannose density on mannose receptor-mediated cellular uptake of mannosylatedO/W emulsions by macrophages[J]. Journal of Controlled Release,2006,114(2):193-201.
    39. Higuchi Y, Nishikawa M, Kawakami S, et al. Uptake characteristics ofmannosylated and fucosylated bovine serum albumin in primary cultured ratsinusoidal endothelial cells and Kupffer cells[J]. In J Pharm,2004,287(1-2):147-154.
    40. Weiss SI, Sieverling N, Niclasen M, et al. Uronic acids functionalizedpolyethyleneimine (PEI)-polyethyleneglycol (PEG)-graft-copolymers as novelsynthetic gene carriers[J]. Biomaterials,2006,27(10):2302-2312.
    41. Opanasopit P, Sakai M, Nishikawa M, et al. Inhibition ofliver metastasis bytargeting of immunomodulators using mannosylated liposome carriers[J]. JControlled Release,2002,80(1-3):283-294.
    42. Dierling AM, Cui ZR. Targeting primaquine into liver using chylomicron emulsionsfor potential vivax malaria therapy[J]. Int J Pharm.2005,303(1-2):143-152.
    43.杨冬华.抗体介导的肝癌靶向治疗现状及展望[J].中华肝病杂志,2005,13(5):380-381.
    44. Lisa H. Butterfield. Immunotherapeutic strategies for hepatocellular carcinoma[J].Gastroenterology,2004,127(5): S232-S241.
    45.陈鹰,汛韧,黄威.肝癌特异性多柔比星免疫磷脂纳米粒的实验研究[J].中国药师,2002,5(12):712-714.
    46. J. L. Wang, G. P. Tang, J. Shen, et al. A gene nanocomplex conjugated withmonoclonal antibodies for targeted therapy of hepatocellular carcinoma[J].Biomaterials,2012,33(18):4597-4607.
    47. Lina Wang, Weijun Su, Ze Liu, et al. CD44antibody-targeted liposomalnanoparticles for molecular imaging and therapy of hepatocellular carcinoma[J].Biomaterials,2012,33(20):5107-5114.
    48.彭泽,甄永苏.单克隆抗体与博来霉素A6偶联物对肝癌的实验研究[J].药学学报,1991,26(5):331-335.
    49. Kanekura T., Chen X., Kanzaki. Basigi(CD147)is expressed on melanoma cells andinduces tumor cell invasion by stimulating production of matrix metalloproteinasesby fibroblasts[J]. Int J Cancer,2002,99(4):520—528.
    50.杨绍兴,汤传吴,刘晓晴. CD147分子及其与肿瘤关系的研究进展[J].军事医学,2012,36(11):867-869.
    51. Riethdorf S., Reimers N., Assmann V., et al. High incidence of EMMPRINexpression in human tumor[J]. Int J Cancer,2006,119(8):1800-1810.
    52. Huang Y, Jiang J, Dou K, et a1. HAb18G/CD147enhances the secretion of matrixmetalloDroteinases (MMP)via cGMP/NO sensitive capacitative calcium entry(CCE) and accordingly attenuates adhesion ability of fibroblasts[J]. Eur J Cell Biol,2005,84(1):59-73.
    53.王贤辉,陈志南,郭晓楠. CD147分子与MMPs在肝癌细胞系中表达的相关性[J].第四军医大学学报,2001,22(3):217-219.
    54.王为东,李玉军. CD147和CK19在肝细胞癌中的表达及临床意义[J].临床肿瘤学杂志,2012,17(4):334-338.
    55.张庆,张力,陈新国. CD147表达在预测肝移植术后肝癌复发中的临床意义[J].中华器官移植杂志,2007,28(11):666-669.
    56. Ya-Mei Wu, Juan Tang, Pu Zhao, et al. Enhanced expression of Hab18g/CD147andactivation of integrin pathway in HCC cells under3-D co-culture conditions[J].Cell Biology International,2009,33(2):199-206.
    57. Zhang Q, Zhou J, Ku XM, et al. Expression of CD147as a significantly unfavorableprognostic factor in hepatocellular carcinoma[J]. Eur J Cancer Prev,2007,16(3):196-202.
    58. Tang W, Hemler M E. Caveolin-1regulates matrix metalloproteinases-1inductionand CD147/EMMPRIN cell surface clustering[J]. J Biol Chem,2004,279(12):11112-11l18.
    59. Yang J M, O Neill P, Jin W, et a1. Extracelllular matrix metallo proteinaseinducer(CD147) confers resistance of breast cancer ceils to Anoikis throughinhibition of Bim[J]. J Biol Chem,2006,281(14):9719-9727.
    60. Liang Q, Xiong H, Gao G, et a1. Inhibition of basigin expression in glioblastomacell line via antisense RNA reduces tumor cell invasion and angiogenesis[J].Cancer Biol Ther,2005,4(7):759-762.
    61. Hong-Yong Cui, Tao Guo, Shi-Jie Wang, et al. Dimerization is essential forHAb18G/CD147promoting tumor invasion via MAPK pathway[J]. Biochemicaland Biophysical Research Communications,2012,419(3):517-522.
    62. Kathryn T. Iacono, Amy L. Brown, Mark I. Greene, et al. CD147immunoglobulinsuperfamily receptor function and role in pathology[J]. Experimental andMolecular Pathology,2007,83(3):283-295.
    63.郭晓楠,陈志南.肝癌膜相关抗原Habl8g为CD147分子的鉴定[J].肿瘤防治研究,2000,27(1):7-10.
    64.刘成刚,陈志南,米力等.抗人肝癌单抗HAb18F(ab’)2片段的制备及纯化[J].空军总医院学报,1999,15(1):16-18.
    65.邢金良,杨向民,王永庆等.抗人HAb18G分子单链抗体基因的构建及在大肠杆菌中的分泌表达[J].肿瘤免疫学,2003,19(7):479-482.
    66.邢金良,王永庆,杨向民等.抗人肝癌单克隆抗体HAb18Fab基因的克隆和表达[J].细胞与分子免疫学杂志,2003,19(6):570-573.
    67.宫路路,林瑞新,李晓萌等. CD147-shRNA对肝癌细胞CD147表达的抑制作用[J].中国普通外科杂志,2010,19(1):41-47.
    68.李海峰,董红霖,刘继敏等.转染CD147干扰质粒肝癌细胞7721的鉴定[J].中国药物与临床,2012,12(9):1120-1122.
    69.张思河,杨向民,邢金良等.不同免疫方案制备抗HAb18G/CD147胞外区多克隆抗血清的比较[J].细胞与分子免疫学杂志,2005,21(1):65-68.
    70.王乐天,毛沙,吕裕霞等.抗人CD147单克隆抗体对人肝癌细胞MHCC97-H裸鼠肝脏原位移植瘤生长抑制的实验研究[J].中国医院用药评价与分析,2010,10(1):31-33.
    71.杨连君,隋廷仿,陈志南.单克隆抗体导向的超抗原葡萄球菌肠毒素A抗肝癌实验研究[J].中国肿瘤生物治疗杂志,1999,6(4):265-267.
    72.刘晓波,蔡美英.抗人肝癌免疫毫微粒的制备及体外免疫学性质的鉴定[J].中国免疫学杂志,2000,16(5):262-265.
    73.李云春,王仲琼,蔡美英等.抗肝癌米托蒽醌免疫毫微粒的体外抗癌活性[J].同位素,2001,14(2):71-75.
    74.李云春,陈绪全,蔡美英等.单抗导向阿霉素免疫毫微粒的131I标记及其体内抗肝癌作用[J].同位素,2002,15(1):12-15.
    75. Cheng Jin, Wenqing Yang, Ling Bai, et al. Preparation and characterization oftargeted DOX–PLGA–PEG micelles decorated with bivalent fragment HAb18F(ab′)2for treatment of hepatocellular carcinoma[J]. Journal of Controlled Release,2011,152(S1): e14-e15.
    76.丁秀娟,陈重,许琼明等.白头翁化学成分研究[J].中草药,2010,39(10):405-407.
    77.杨世林,许琼明,刘艳丽等.白头翁皂苷类物质(23-羟基齐墩果酸-3-O-α-L-吡喃鼠李糖-(1→2)-α-L-吡喃阿拉伯糖苷)的制备方法及其制剂的制备方法与其在制备治疗癌症药物中的应用.中华人民共和国专利: ZL96100318.9.
    78.杨世林,许琼明,刘艳丽等.白头翁活性组分的制备方法及其制剂的制备方法与其在制备抗肿瘤药物中的应用.中华人民共和国专利: ZL96100318.9.
    79. Qiang Ding, Li-Xin Yang, Hai-Wei Yang, et al. Cytotoxic and antibacterialtriterpenoids derivatives from Clematis ganpiniana[J]. Journal ofEthnopharmacology,2009,126(3):382-385.
    80. Charles Gauthier, Jean Legault, Karl Girard-Lalancette, et al. Haemolytic activity,cytotoxicity and membrane cell permeabilization of semi-synthetic and naturallupane-and oleanane-type saponins[J]. Bioorganic&Medicinal Chemistry,2009,17(5):2002-2008.
    81. Rooney S, Ryan MF. Effects of alpha-hederin and thymoquinone, constituents ofNigella sativa, on human cancer cell lines[J]. Anticancer Res,2005,25(3B):2199-2204.
    82. Rooney S, Ryan MF. Modes of action of alpha-hederin and thymoquinone, activeconstituents of Nigella sativa, against HEp-2cancer cells[J]. Anticancer Res,2005,25(6B):4255-4259.
    83. Martin Chwalek, Nathalie Lalun, Hélène Bobichon, et al. Structure-activityrelationships of some hederagenin diglycosides: Haemolysis, cytotoxicity andapoptosis induction[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2006,1760(9):1418-1427.
    84. Bang SC, Seo HH, Shin HR, et al. A convenient preparation of a disaccharide motifand its role in the cytotoxicity of the triterpenoid saponin, alpha-hederin[J]. ArchPharm Res,2008,31(5):555-561.
    85. Swamy S.M., Huat, B.T. Intracellular glutathione depletion and reactive oxygenspecies generation are important in alpha-hederin-induced apoptosis of P388cells.Mol[J]. Cell Biochem,2003,245(1-2):127-139.
    86. C Mba Gachou, M Laget, H Guiraud-Dauriac, et al. The protective activity ofα-hederin against H2O2genotoxicity in HepG2cells by alkaline comet assay[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis,1999,445(1):9-20.
    87.刘包欣子,王瑞平,邹玺等.常春藤皂苷元对胃癌细胞MGC-803增殖、黏附、侵袭和迁移能力的影响[J].中国实验方剂学杂志,2013,19(4):212-215.
    88.刘包欣子,王瑞平,邹玺等.常春藤皂苷元对结肠癌细胞LoVo增殖、黏附、侵袭和迁移能力的影响[J].南京中医药大学学报,2013,29(1):44-47.
    89.郝英魁,杨学东.载药壳聚糖纳米粒的研究进展[J].中国药学杂志,2005,40(17):1292-1295.
    90. M.H.El-Shabouri. Positively charged nanoparticles for improving the oralbioavailability of cyclosporin-A[J]. International Journal of Pharmaceutics,2002,249:101-108.
    91.王家明,高慧敏,洪玉梅等.预知子中α-常春藤皂苷的HPLC分析[J].中国药学杂志,2006,41(16):1212-1214.
    92.王钦,胡玮,张学农等.去甲斑蝥素N-乳糖酰壳聚糖纳米粒的制备及其特性研究[J].中草药,2009,40(1):40-45.
    93.张灿,丁娅,沈健.新型肝靶向载体N-乳糖酰化壳聚糖纳米粒的制备与表征[J].中国药科大学学报,2003,34(5):387-390.94刘利,万涛,李世普.半乳糖基化壳聚糖材料的合成与表征[J].武汉理工大学学报,2007,29(12):29-31.
    95. Antonio Rampino, Massimiliano Borgogna, Paolo Blasi, et al. Chitosannanoparticles: Preparation, size evolution and stability[J]. International Journal ofPharmaceutics,2013,4555(1-2):219-228.
    96.唐勤,孙晓辉陈毫等.制备方法和工艺对姜黄素-磷脂复合物-壳聚糖微球体外性质的影响[J].中草药,2012,43(12):2377-2385.97宋平,谢志辉,张智萍等.半水杨酸壳聚糖/卵磷脂纳米粒的制备[J].精细化工,2012,29(10):972-975.
    98.苏德伦,王仕成,张安京.基于遗传算法的正弦波四参数曲线拟合[J].理论与实践,2005,25(6):18-20.
    99. Kazutoyo Miura, Andrew C. Orcutt, Olga V. Muratova, et al. Development andcharacterization of a standardized ELISA including a reference serum on each plateto detect antibodies induced by experimental malaria vaccines[J]. Vaccine,2008,26(2):193-200.
    100. Ke-Jing Huang, Hong Wang, Ming Ma, et al. Real-time imaging of nitric oxideproduction in living cells with1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacence by invert fluorescencemicroscope[J]. Nitric Oxide,2007,16(1):36-43.
    101. John D. Hansen, Louis Du Pasquier, Marie-Paule Lefranc, et al. The B7family ofimmunoregulatory receptors: A comparative and evolutionary perspective[J].Molecular Immunology,2009,46(3):457-472.
    102. Maryam Amidi, Enrico Mastrobattista, Wim Jiskoot, et al. Chitosan-based deliverysystems for protein therapeutics and antigens[J]. Advanced Drug Delivery Reviews,2010,62(1):59-82.
    103. Krzysztof Bielawski, Robert Czarnomysy, Anna Muszyńska, et al. Cytotoxicityand induction of apoptosis of human breast cancer cells by novel platinum(II)complexes[J]. Environmental Toxicology and Pharmacology,2013,35(1):254-264.
    104. Nick S. White, Rachel J. Errington. Fluorescence techniques for drug deliveryresearch: theory and practice[J]. Advanced Drug Delivery Reviews,2005,57(1,2):17-42.
    105.黄静,邱慧芳,史阳等.载顺铂转铁蛋白长循环脂质体对肺癌A549小鼠移植瘤的抑制作用[J].同济大学学报(医学版),2013,34(1):13-16.
    106. Han Byul Kang, Hong-Kun Rim, Jin Yeong Park, et al. In vivo evaluation of oralanti-tumoral effect of3,4-dihydroquinazoline derivative on solid tumor[J].Bioorganic&Medicinal Chemistry Letters,2012,22(2):1198-1201.
    107. Twan Lammers, Fabian Kiessling, Wim E. Hennink, et al. Drug targeting to tumors:Principles, pitfalls and (pre-) clinical progress[J]. Journal of Controlled Release,2012,161(2):175-187.
    108. Meirong Huo, Aifeng Zou, Chengli Yao, et al. Somatostatin receptor-mediatedtumor-targeting drug delivery using octreotide-PEG-deoxycholic acidconjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosanmicelles[J]. Biomaterials,2012,33(7):6393-6407.
    109. K. Foubert, F. Cuyckens, K. Vleeschouwer, et al. Rapid quantification of14saponins ofMaesa lanceolataby UPLC–MS/MS[J]. Talanta,2010,81(4-5):1258-1263.
    110. Zhen Yang, Wei Zhu, Song Gao, et al. Simultaneous determination of genistein andits four phase II metabolites in blood by a sensitive and robust UPLC–MS/MSmethod: Application to an oral bioavailability study of genistein in mice[J]. Journalof Pharmaceutical and Biomedical Analysis,2010,53(1):81-89.
    111. Guowen Li, Xiaoli Zeng, Yan Xie, et al. Pharmacokinetic properties ofisorhamnetin, kaempferol and quercetin after oral gavage of total flavones ofHippophae rhamnoides L. in rats using a UPLC–MS method[J]. Fitoterapia,2012,83(1):182-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700