三株海洋真菌活性次生代谢产物及其碱调节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋真菌是活性海洋天然产物的重要来源。由于海洋真菌生活在寡营养,弱碱的海水环境中,可能形成独特代谢机制,产生有别于陆生真菌的次生代谢产物,近年来逐渐成为研究的热点之一。为了寻找海洋来源真菌中的“Talented strains”和结构新颖的活性代谢产物,本论文对分离自南海直针小尖柳珊瑚Muricellaabnormalis、海南文昌头苑红树植物海漆Excoecaria agallocha根部样品和东营黄河入海口滩涂植物蒙古鸦葱Scorzonera mongalica三种不同海洋来源样品中分得的真菌,通过化学和生物学相结合的筛选模式,从中获得3株海洋来源“Talentedstrains”;对这3株“Talented strains”进行系统的次生代谢产物研究,并选择其中的一株“Talented strains”进行了碱胁迫发酵培养的初步研究。
     取得的主要研究成果有:
     1.海洋天才真菌的筛选。从实验室菌株库提供的10株海洋来源真菌为筛选对象。以MCF-7肿瘤细胞增殖抑制、抑菌和抗炎试验作为生物活性筛选模型,TLC薄层色谱和HPLC指纹图谱作为化学筛选模型,采用生物活性和化学评价相结合的集成筛选模式,最终获得3株海洋“Talented strains”,并对3株“Talentedstrains”碱胁迫发酵培养条件进行探索研究。
     2.对3株海洋“Talented strains”次生代谢产物进行系统研究。包括对“Talented strains”进行发酵条件摸索,如培养基、发酵天数、碱源及盐度等,选择最佳培养条件进行大发酵,获得发酵浸膏。通过薄层色谱、硅胶柱色谱、Sephadex LH-20柱色谱、反相高效液相色谱等分离方法,从3株海洋天才真菌次生代谢产物中,应用现代波谱技术(UV,IR,NMR,MS,X-Ray等)和化学方法分离鉴定了76个单体化合物的化学结构。其中新化合物23个:从团青霉Penicillium commune518#的代谢产物中获得了12个新的芳香聚酮类化合物(1–12);从扩张青霉Penicillium expansum091006的代谢产物中得到1个新的没药烷型倍半萜衍生物(25)和1个新的二聚苯酚类衍生物(29);从互隔交链孢菌Alternaria alternata007#的代谢产物中得到4个新的混源萜类化合物(40–43)。已知化合物的结构类型涉及苯衍生物、混源萜、吲哚生物碱类化合物及核苷等。运用体外生物活性筛选模型,初步评价了单体化合物的肿瘤细胞增殖抑制活性、抑菌活性、抗炎活性、细菌群体感应活性和逆转多药耐药活性等。肿瘤细胞增殖抑制活性测试表明:甲苯酚三聚体类化合物21–24对HL-60有中等强度的抑制活性,IC50分别为15.7,5.4,18.2和20.8μM;此外化合物22对肿瘤细胞株A549也有较强的抑制活性,IC50为1.9μM。抗炎活性结果表明:对单体化合物进行体外NF-κB通路抗炎抑制活性筛选时,化合物4、44和47有弱的抑制活性,IC50分别为45.9、52.0和41.8μM。抑菌活性结果表明:芳香聚酮类化合物4、5、9和12对白色念珠菌具有抑制作用,MIC分别为15.7、16.4、25.8和23.8μM;化合物1、4–6、9、12、49–51对大肠杆菌具有抑制作用,MIC分别为10.6、3.9、4.1、17.1、6.4、23.8、14.5、2.9、2.6μM;化合物1、4和6对铜绿假交替单胞菌具有抑制作用,MIC分别为10.6、15.7、17.1μM;化合物49和66对金黄色葡萄球菌具有抑制作用,MIC分别为28.9、29.1μM。
     3.初步研究了碱胁迫对海洋来源真菌次生代谢产物化学多样性的影响。发现不同碱源、不同灭菌步骤对海洋真菌次生代谢产物影响较大。从互隔交链孢菌Alternaria alternata007#碱胁迫发酵产物中分离鉴定新化合物5个(61-65),证实了碱胁迫培养发酵是增加海洋真菌化学多样性的有效途径之一。
     综上所述,本文通过对三株海洋“Talented strains”和一株海洋细菌活性次生代谢产物的系统研究,获得了76个单体化合物,其中新化合物23个、活性化合物21个;证实了碱胁迫能够增加海洋真菌的化学多样性,产生系列新的活性代谢产物,并为海洋真菌发酵培养策略研究提供了新的思路。
Marine fungi are a kind of important source for active marine natural products.Because of its specificity of living oligotrophic, weak alkaline environment, marinefungi may have unique secondary metabolic pathways and produce the novelsecondary metabolites. In recent years, marine fungi have gradually become one ofthe hot. By integrated biological and chemical screening methods, three talentedstrains were obtained from different marine-derived samples. Optimizations offermentation condition for talented strains were systematically studied. Furthermore,we attempted to culture one talented strain under alkaline stress, and studied thedifferences in the compounds skeleton of fermentation products compared to thenormal pH culture conditions.
     Our study focused on the new secondary metabolites of marine fungi underalkaline stress, and includes the following three parts:
     1. Screening for the marine-derived talented strains.
     10strains of marine fungi from coral-associated sample in South China Sea, plantsof mangrove forest in Hainan and seaside plants in the Yellow River delta have beenscreened. The EtOAc extracts of these fungi were evalassesed with the combinatorymethod based on chemical and bioactive screening. Three of them were confirmed asmarine-derived talented strains with cytotoxicity or antibiotic or anti-inflammatoryactivities, while one talented strain was chosen to culture under alkaline stress. Inaddition, we carried out the preliminary study of the fermentation under alkalinestress.
     2. Study on secondary metabolites of three talented strains under weak alkalineenvironment
     Optimizations of fermentation condition for talented strains were determinedbased on the research of effect of different conditions, such as medium, fermentationtime, alkali source and salinity. Three strains were fermented separately, and then thewhole broths were extracted with EtOAc in order to get active extracts. These extractswould be subjected to extensive silica gel column chromatography, Sephadex LH-20and HPLC purifications. After processing,76compounds were isolated from these three marine-derived talented strains and identified by means of detailedspectroscopic analysis (such as UV, IR, NMR, MS, X-Ray, etc) and chemicalmethods. Among them,25compounds were new ones, including twelve new aromaticpolyketides compounds (1–12) obtained from P. commune518#, one new phenolicbisabolane sesquiterpenoid (25) and one new diphenyl ether derivative (29) from P.expansum091006, Four new meroterpenoids,(40–43) from A. alternata007#. Theknown compounds refer to phenolic compounds, meroterpenoids, indole alkaloids andnucleosides. Compounds21–24exhibited moderate cytotoxicity against HL-60cellline with IC50values of15.7,5.4,18.2and20.8μM, respectively; Compound22alsohad significant cytotoxicity against A549cell line with an IC50value of1.9μM.Compounds4,44and47exhibited weak anti-inflammatory on the transcriptionalactivity of NF-κB in stimulated RAW264.7cells with IC50values of45.9,52.0and41.8μM, respectively. Compounds1,4–6,9and12showed antibiotic activity againstC. albicans, E. coli, P. aeruginosa or S.aureus with MIC values ranged from2.6μMto29.1μM.
     3. Preliminary evaluation of the effect of alkaline stress on chemical diversity ofsecondary metabolites of marine fungal strains
     To further research the effect of alkaline stress on chemical diversity of secondarymetabolites of marine fungal strains, the secondary metabolites of A. alternata007#under alkaline stress culture condition were studied by comparing the retention timeof their production. And we found that the alkali sources and the steps of sterilizationplayed an important part in the formation of secondary metabolites of this fungus. Thestrain A. alternata007#cultured under alkaline stress was found to produce6different meroterpenoids, five of which (61–65) were new ones. More importantly, itwas established that marine fungi could increase the chemical diversity of secondarymetabolites under alkaline stress.
     Summarily,23new compounds and53known ones were obtained in this work, and21of these compounds showed cytotoxic, anti-inflammatory and antibiotic activities.
引文
[1] Berdy J. Bioactive microbial metabolites. J. Antibiot.2005,58:1–26.
    [2]唐军,傅大煦.靶向小分子创新药物.现代生物医学进展.2010,10(20):3997–4000.
    [3] Bhatnagar I., Kim S.K. Immense essence of excellence: marine microbial bioactivecompounds. Mar. drugs2010,8:2673–2701.
    [4] Tao L.Y., Zhang J.Y., Liang Y.J., et al. Anticancer effect and structure-activity analysis ofmarine products isolated from metabolites of mangrove fungi in the south China sea. Mar.drugs2010,8:1094–1105.
    [5]史清文,霍长虹,李力更等.海洋天然产物化学研究的历史回顾.中草药,2009,40:1687–1695.
    [6] Blunt J.W., Copp B.R., Hu W.P., et al. Marine natural products. Natural Product reports2009,26:170–244.
    [7]朱伟明,王俊锋.海洋真菌生物活性物质研究之管见.菌物学报2011,30:218–228.
    [8] Bugni T.S., Ireland C.M. Marine-derived fungi: a chemically and biologically diverse groupof microorganisms. Natural Product reports2004,21:143–163.
    [9] Blunt J.W., Copp B.R., Keyzers R.A., et al. Marine natural products. Natural Productreports2012,29:144–222.
    [10] Takahashi C., Numata A., Ito Y., et al. Leptosins, antitumour metabolites of a fungus isolatedfrom a marine alga. J. Chem. Soc., Perkin Trans.1.1994,13:1859–1864.
    [11] Mayer A.M., Glaser K.B., Cuevas C., et al. The odyssey of marine pharmaceuticals: a currentpipenline perspective. Trends in Pharmacological Sciences,2010,31:255–265.
    [12] Jensen P.R., Fenical w. Strategies for the discovery of secondary metabolites from marinebacteria: Ecological perspectives. Annu. Rev. Microbiol.1994,48:559–584.
    [13] Stierle A.C., Cardelline J.H., Singleton F.L. A marine Micrococcus produces metabolitesascribed to sponge Tedania ignis. Cell Mol. Life Sci,1988,44:1021.
    [14] Elyakov G.B., Kuznetsova T., Mikhailov V.V., et al. Brominated diphenyl ethers from amarine bacterium associated with the sponge Dysidea sp. Cell Mol. Life Sci.1991,47:632–633.
    [15]戈惠明,谭仁祥.共生菌——新活性天然产物的重要来源.化学进展,2009,21:30–46.
    [16] Mohamed L., Gross H. Pontius A. et al. Polyketides with potent cytotoxicity from themarine-derived fungus Phoma sp. Org. Lett.2009,11:5014–5017.
    [17] Mohamed L., Kehraus S., Krick A., et al Mode of action of epoxyphomalins A and B andcharacterrization of related metabolites from the marine-derived fungus Paraconiothyrium sp.J. Nat. Prod.2010,73:2053–2056.
    [18] Kito K., Ookura R.; Yoshida S., et al. New cytotoxic14-membered macrolides frommarine-derived fungus Aspergillus ostianus. Org. Lett.2008,10:225–228.
    [19] Cohen E., Koch L., Thu K.M., et al. Novel terpenoids of the fungus Aspergillus insuetusisolated from the mediterranean sponge Psammocinia sp. collected along the coast of israel.Bioorg. Med. Chem.2011,19:6587–6593.
    [20] Sun L.L., Shao C.L., Chen J.F., et al. New bisabolane sesquiterpenoids from a marine-derivedfungus Aspergillus sp. isolated from the sponge Xestospongia testudinaria. Bioorg. Med.Chem. Lett.2012,22:1326–1329.
    [21] Ueda J.Y. Takagi M., Shin-ya K. New xanthoquinodin-like compounds, JBIR-97,-98and-99,obtained from marine sponge-derived fungus Tritiachiun sp. SpB081112Mef2. J. Antibiot.2010,63:615–618.
    [22] Liu H.B., Edrada-Ebel R., Ebel R., et al. Drimane sesquiterpenoids from the fungusAsperillus ustus isolated from the marine sponge Suberites domuncula. J. Nat. Prod.2009,72:1585–1588.
    [23] kasettrathat C., Ngamrojanavanich N., Wiyakrutta S., et al. Cytotoxia and antiplasmodialsubstances from marine-derived fungi, Nodulisporium sp. and CRI247-01. Phytochemistry2008,69:2621–2626.
    [24] Shao C.L., Wang C.Y., Wei M.Y., et al. Aspergilones A and B, two benzylazaphilones withan unprecedented carbon skeleton from the gorgonian-derived fungus Aspergillus sp. Bioorg.Med. Chem. Lett.2011,21:690–693.
    [25] Zheng C.J., Shao C.L., Guo Z.Y., et al. Bioactive hydroanthraquinones and anthraquinonedimers from a soft coral-derived Alternaria sp. fungus. J. Nat. Prod.2012,75:189–197.
    [26] Lu Z.Y., Zhu H.J., Fu P., et al. Cytotoxic polyphenols from the marine-derived fungusPenicillium expansum. J. Nat. Prod.2010,73:911–914.
    [27] Lu Z.Y., Wang Y., Miao C.D., et al. Sesquiterpenoids and benzofuranoids from themarine-derived fungus Aspergillus ustus094102. J. Nat. Prod.2009,72:1761–1767.
    [28] Liu D., Li X.M., Meng L., et al. Nigerapyrones A-H, α-pyrone derivatives from the marinemangtove-derived endophytic fungus Aspergillus niger MA-132. J. Nat. Prod.201174:1787–1791.
    [29] Tao Y.W., Zeng X.J., Mou C.B., et al.1H and13C NMR assignments of three nitrogencontaining compounds from the mangrove endophytic fungus (ZZF08). Magn. Reson. Chem.2008,46:501–505.
    [30] Huang C.H., Pan J.H., Chen B., et al. Three bianthraquinone derivatives from the mangroveendophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar. Drugs2011,9:832–843.
    [31] Cui C.M., Li X.M., Li C.S., et al. Cytoglobosins A-G, Cytochalasans from a marine-derivedendophytic fungus, Chaetomium globosun QEN-14. J. Nat. Prod.201073:729–733.
    [32] Greve H., Schupp P.J., Eguereva E., et al. Apralactone A and a new stereochemical class ofcurvularins from the marine fungus Curvularia sp. Eur. J. Org. Chem.2008,5085–5092.
    [33] Cui C.M., Li X.M., Meng L., et al.7-Nor-ergosterolide, a pentalactone-containing norsteroidand related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J. Nat.Prod.201073:1780–1784.
    [34] Elsebai M.F., Natesan L., Kehraus S., et al. HLE-inhibitory alkaloids with a polyketideskeleton from the marine-derived fungus Coniothyrium cereale. J. Nat. Prod.201174:2282–2285.
    [35] Oh H., Jensen P.R., Murphy B.T., et al. Cryptosphaerolide, a cytotoxic Mcl-1inhibitor from amarine-derived ascomycete related to the genus cryptosphaeria. J. Nat. Prod.201073:998–1001.
    [36] Kato H., Yoshida T., Tokue T., et al. Notoamides A-D: prenylated indole alkaloids isolatedfrom a marine-derived fungus, Aspergillus sp. Angew. Chem. Int. Ed.2007,46:2254–2256.
    [37] Gu W.X., Cueto M., Jensen P.R., et al. Microsporins A and B: new histone deacetylaseinhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phasesynthesis of microsporin A. Tetrahedron2007,63:6535–6541.
    [38] Sun Y., Takada K., Takemoto Y., et al. Gliotoxin analogues from a marine-derived fungus,penicillium sp., and their cytotoxia and histone methyltransferase inhibitory activities. J. Nat.Prod.201275:111–114.
    [39] Du L., Li D.H., Zhu T.J., et al. New alkaloids and diterpenes from a deep ocean sedimentderived fungus Penicillium sp. Tetrahedron2009,65:1033–1039.
    [40] Li D.H., Wang F.P., Xiao X., et al. Trisorbicllinone A, a novel sorbicillin trimer, from a deepsea fungus, Phialocephala sp. FL30r. Tetrahedron Letters2007,48:5235–5238.
    [41] Li D.H., Cai S.X., Zhu T.J., et al. Three new sorbicillin trimers, trisorbicillinones B, C and D,from a deep ocean sediment derived fungus, Phialocephala sp. FL30r. Tetrahedron2010,66:5101–5106.
    [42] Fremlin L., Piggott A.M., Lacey E., et al. Cottoquinazoline A and Cotteslosins A and B,metabolites from an Australian marine-derived strain of Aspergillus versiclor. J. Nat. Prod.200972:666–670.
    [43] Sun Y., Tian L., Huang J., et al. Trichodermatides A-D, Novel polyketides from themarine-derived fungus Trichoderma reesei. Org. Lett.2008,10:393–396.
    [44] Zhang M., Wang W.L., Fang Y.C., et al. Cytotoxic alkaloids and antibiotic nordammaranetriterpenoids from the marine-derived fungus Aspergillus sydowi. J. Nat. Prod.200871:985–989.
    [45] Du L., Zhu T.J., Fang Y.C., et al. Aspergiolide A, a novel anthraquinone derivative withnaphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungusAspergillus glaucus. Tetrahedron2007,63:1085–1088.
    [46] Du L., Zhu T.J., Liu H.B., et al. Cytotoxic polyketides from a marine-derived fungusAspergillus glaucus. J. Nat. Prod.200871:1837–1842.
    [47] Gao S.S., Li X.M., Zhang Y., et al. Comazaphilones A-F, azaphilone derivatives from themarine sediment-derived fungus Penicillium commune QSD-17. J. Nat. Prod.2011,74:256–261.
    [48] Chen L., Fang Y.C., Zhu T.J., et al. Gentisyl alcohol derivatives from the marine-derivedPenicillium terrestre. J. Nat. Prod.200871:66–70.
    [49] Li D.H., Zhu T.J., Kurtan T., et al. Chloctanspirones A and B, novel chlorinated polyketideswith an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre.Tetrahedron2011,67:7913–7918.
    [50] Liu R., Lin Z.J., Zhu T.J., et al. Novel open-chain cytochalsins from the marine-derivedfungus Spicaria elegans. J. Nat. Prod.200871:1127–1132.
    [51] Wang F.Z., Wei H.J., Zhu T.J., et al. Three new cytochalasina from the marine-deribedfungus Spicaria elegans KLA03by supplementing the cultures with L-and D-tryptophan.Chem&Biodivers.2011,8:887–894.
    [52] Li C.S., An C.Y., Li X.M., et al. Triazole and dihydroimidazole alkaloids from the marinesediment-derived fungus Penicillium paneum SD-44. J. Nat. Prod.201174:1331–1334.
    [53] Wei H., Inada H., Hayashi A., et al. Prenylterphenyllin and its dehydroxyl analogs, newcytotoxia sunstances from a marine-derived fungus Aspergillus candidus IF10. J. Antibiot.2007,60:586–590.
    [1]朱伟明,王俊锋.海洋真菌生物活性物质研究之管见.菌物学报,2011,30:218–228.
    [2] Blunt J.W., Copp B.R., Hu W.P., et al. Marine natural products. Natural Product Reports,2009,26:170–244.
    [3] Grabley S., Thiericke R.. Drug Discovery from Nature. Springer,2000, pp.143
    [4] Monaghan R.L., Polishook J.D., Pecore V.J., et al. Discovery of novel secondary metabolitesfrom fungi–is it really a random walk through a random forest? Can. J. Bot.,1995,73(Suppl.): S925–S93.
    [5] Zaika L.L. Spices and herbs: their antimicrobial activity and its determination. J. Food Safety,1988,9:97–118.
    [6] Yun B.S., Lee I.K., Yoo I.D., et al. Two p-terphenyls from mushroom Paxillus panuoideswith free radical scavenging activity. J. Micobiol. Biotechnol.,2000,10:233–237.
    [7]朱天骄,崔承彬,顾谦群等.海洋微生物的分离培养及抗肿瘤活性初筛.青岛海洋大学学报,2002,32:123–126.
    [8] Wang H., Wang Y., Wang W., et al. Anti-influenza Virus polyketides from the acid-tolerantfungus penicillium purpurogenum JS03-21. J. Nat. Prod.,2011,74:2014–2018.
    [9]王国富,朱鸿飚,朱瑞俊. pH值对葡萄糖溶液颜色单位的影响.发酵科技通讯,2003,32:30–32.
    [10]仪宏,王丽丽,冯惠勇等.含葡萄糖培养基高温灭菌变色及其防范措施的研究.酿酒,2003,30:42–43.
    [1] Zhang C.L., Zheng B.Q., Lao J.P. et al. Clavatol and patulin formation as the antagonisticprinciple of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl.Microbiol. Biotechnol.2008,78,833–840.
    [2] Aly A.H., Edrada-Ebel R., Wray V., et al. Bioactive metabolites from the endophytic fungusAmpelomyces sp. Isolated from the medicinal plant Urospermum picroides. Phytochemistry2008,69,1716–1725.
    [3] Astudillo L., Schmeda-Hirschmann G., Soto R., et al. Acetophenone derivatives from Chileanisolate of Trichoderma pseudokoningii Rifai. World J. Microbiol. Biotechnol.2000,16,585–587.
    [4] Gammon D.W., Hunter R., Wilson S.A. An efficient synthesis of7-hydroxy-2,6-dimethylchro-meno[3,4-d] oxazol-4-one–a protected fragment of novenamine. Tetrahedron2005,61,10683–10688.
    [5] Morais A.A., Fo R.B., Fraiz Jr S.V. Synthesis of three natural1,3-diarylpropanes: two revisedstructures. Phytochemistry1989,28,239–242.
    [6] Yonezawa Y., Shimizu K., Uchiyama M., et al. Total syntheses of naturally occurringbis(methylthio)silvatin and its three stereoismers. Heterocycles1997,45,1151–1159.
    [7] Scott PM., Polonsky J., Merrien M. Configuration of the3,12double bond of roquefortine. J.Agric. Food Chem.,1979,27:201–202.
    [8] Musuku A., Selala M.I., Bruynme D.T., et al. Isolation and structure determination of a newroquefortine-related mycotoxin from penicilium verrucosum var. cyclopium isolated fromcassava. J. Nat. prod.1994,57:983–987.
    [9] Yadav J.S., Reddy K.B., Prasad A.R., et al. Stereoselective synthesis of (+)-sordidin, themale-produced aggregation pheromone of the banana weevil Cosmopolites sordidus.Tetrahedron2008,64:2063–2070.
    [10]苏熠东,郑云红,李援朝. IBX在有机合成中的研究进展.化学试剂,2005,27:719–725.
    [11] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays. J. Immunol. Methods1983,65,55–63.
    [12] Skehan P., Storeng R., Scudiero D., et al. New colorimetric cytotoxicity assay foranticancer-drug screening. J. Natl. Cancer Inst.1990,82,1107–1112.
    [13] Zaika LL. Spices and herbs: their antimicrobial activity and its determination. J. Food Safety,1988,9:97–118.
    [14] Aquila S., Weng Z.Y., Zeng, Y.Q., et al. Inhibition of NF-κB activation and iNOS inductionby ent-kaurane diterpenoids in LPS-stimulated RAW264.7murine macrophages. J. Nat. Prod.2009,72:1269–1272.
    [15] Aquila S., Weng Z.Y., Zeng Y.Q., et al. Inhibition of NF-κB activation and iNOS induction byent-kaurane diterpenids in LPS-stimulated RAW264.7murine macrophages. J. Nat. Prod.2009,72:1269–1272.
    [16]尹守亮,常亚婧,邓苏萍等.以病原菌群体感应系统为靶标的新型抗菌药物的研究进展.药物化学,2011,46:613–621.
    [17] Wang L.N., Zou S.S., Yin S.L., et al. Construction of an effective screening system fordetection of Pseudomonas aeruginosa quorum sensing inhibitors and its application inbioautographic thin-layer chromatography. Biotechnol. Lett.2011,33:1381–1387.
    [18] Li X., Sun B., Zhu C.J., et al. Reversal of p-glycoprotein-mediated multidrug resistance bymacrocyclic bisbibenzyl derivatives in adriamycin-resistant human myelogenousleukemia(K562/AO2) cells. Toxicology in Vitro2009,23:29–36.
    [1] Lu Z.Y., Zhu H.J., Fu, P., et al. Cytotoxic polyphenols from the marine-derived fungusPenicillium expansum. J. Nat. Prod.2010,73,911–914.
    [2] Trisuwan K., Rukachaisirikul V., Kaewpet M., et al. Sesquiterpene and xanthone derivativesfrom the sea fan-derived fungus Aspergillus sydowii PSU-F154. J. Nat. Prod.2011,74,1663–1667.
    [3] Hanasaki T., Nagayama K., Hatsuda Y. Two new metabolites, sydonic acid andhydroxysydonic acid from Aspergillus sydowi. Agric. Biol. Chem.,1978,42:37–40.
    [4] Itabashi T., Nozawa K., Nakajima S., et al. A new azaphilone, falconensin H, from Emericellafalconensis. Chem. Pharm. Bull.1993,41,2040–2041.
    [5] Tanahashi T., Takenaka Y., Nagakura N., et al. Dibenzofurans from the cultured lichenmycobionts of Lecanora cinereocarnea. Phytochemistry2001,58,1129–1134.
    [6] Kiriyama N., Nitta K., Sakacuchi Y., et al. Studies on the metabolic products of Aspergillusterreus. Ⅲ. Metabolites of the strain IFO8835.(1). Chem. Pharm. Bull.1977,25.2593–2601.
    [7] Haritakun R., Rachtawee P., Chanthaket R., et al. Butyrolactones from the fungus Aspergillusterreus BCC4651. Chem. Pharm. Bull.2010,58,1545–1548.
    [8] Kimura Y., Tani K., Kojima A., et al. Cyclo-(L-tryptophyl-L-phenylalanyl), a plant growthregulator produced by the fungus Penicillium sp. Phytochemistry,1996,41:665–669.
    [9] Barrow C.J., Cai P., Snyder J.K., et al. WIN64821, a new competitive antagonist to substanceP, isolated from an Aspergillus species: structure determination and solution conformation. J.Org. Chem.1993,58:6016–6021.
    [10]牛雪梅,黎胜红,纳智等。疏花毛蕚香茶菜的化学成分研究.中草药,2003,34:300–303.
    [11] Monde K., Satoh H., Nakamura M., et al. Organochlorine compounds from a terrestrialhigher plant: structures and origin of chlorinated orcinol derivatives from diseased bulbs ofLilium maximowiczii. J. Nat. Prod.1998,61:913–921.
    [12] Verotta L., Orsini F., Pelizzoni F., et al. Polyphenolic glycosides from african proteaceae. J.Nat. Prod.1999,62:1526–1531.
    [13] Itoh T.; Mase T. A novel practical synthesis of benzothiazoles via Pd-catalyed thiolcross-coupling. Org. Lett.,2007,9:3687–3689.
    [14] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays. J. Immunol. Methods1983,65,55–63.
    [15] Skehan P., Storeng R., Scudiero D., et al. New colorimetric cytotoxicity assay foranticancer-drug screening. J. Natl. Cancer Inst.1990,82,1107–1112.
    [16] Li X.; Sun B.; Zhu C.J.; et al. Reversal of p-glycoprotein-mediated multidrug resistance bymacrocyclic bisbibenzyl derivatives in adriamycin-resistant human myelogenousleukemia(K562/AO2) cells. Toxicology in Vitro2009,23:29–36.
    [1] Geris R., Simpson T.J. Meroterpenoids produced by fungi. Nat. Prod. Rep.2009,26:1063–1094.
    [2] Liebermann B., Ellinger R., Gunther W., et al. Tricycloalternarenes produced by Alternariaalternata related to ACTG-toxins. Phytochemistry1997,46:297–303.
    [3] Nussbaum R., Gunther W., Heinze S., et al. New tricycloalternarenes produced by thephytopathogenic fungus Alternaria alternata. Phytochemistry1999,52:593–399.
    [4] Kono Y., Gardner J.M., Takeuchi S. Structure of the Host-selective toxins produced by apathotype of Alternaria citri causing brown spot disease of mandarins. Agric. Biol. Chem.1986,50:801–804.
    [5] Ohtani I., Kusumi T., Kashman Y., et al. High-field FT NMR application of Mosher’s method.The absolute configurations of marine terpenoids. J. Am. Chem. Soc.1991,113:4092–4096.
    [6] Kono Y., Gardner J.M., Suzuki Y., et al. New minor components of host-selectiveACTG-toxin and a novel sesquiterpene produced by a pathotype of Alternaria citri causingbrown spot. J. Pesticide Sci.1989,14:223–228.
    [7] Yuan L., Zhao P.J., Ma J., et al. Tricycloalternarenes A-E: Five new mixed terpenoids from theendophytic fungal strain Alternaria alternata Ly83. Helv. Chim. Acta.2008,91:1588–1594.
    [8] Aly A.H., Edrada-Ebel R., Indriani I.D., et al. Cytotoxic metabolites from the fungal endophyteAlternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J. Nat.Prod.2008,71:972–980.
    [9] Okuno T., Natsume I., Sawai K., et al. Structure of antifungal and phytotoxic pigmentsproduced by Alternaria sps. Tetrahedron Lett.1983,24:5653–5656.
    [10] Gao S.S., Li X.M., Wang B.G. Perylene derivatives produced by Alternaria alternata, anendophytic fungus isolated from Laurencia species. Nat. Prod. Comm.2009,4:1477–1480.
    [11] Arnone A., Assante G., Caronna T., et al. Comparative evaluation of photodynamic efficiencyof some natural quinonoid fungal toxins. Phytochemistry1988,27:1669–1674.
    [12] Stinson E.E., Osman S.F., Pfeffer P.E. Structure of Altertoxin I, a mycotoxin from Alternaria.J. Org. Chem.1982,47:4110–4113.
    [13]韩秀丽,林贞健,陶洪文等.红海榄共生真菌Penicillium sp. HK13-8细胞毒活性成分研究.中国海洋药物杂志2009,29:11–16.
    [14] Maeda U., Hara N., Fujimoto Y., et al. N-fatty acyl tryptamines from Annona reticulata.Phytochemistry1993,34:1633–1635.
    [15] Aquila S., Weng Z.Y., Zeng Y.Q., et al. Inhibition of NF-κB activation and iNOS induction byent-kaurane diterpenids in LPS-stimulated RAW264.7murine macrophages. J. Nat. Prod.2009,72:1269–1272.
    [16] Zaika L.L. Spices and herbs: their antimicrobial activity and its determination. J. Food Safety,1988,9:97–118.
    [17] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays. J. Immunol. Methods1983,65,55–63.
    [18] Skehan P., Storeng R., Scudiero D., et al. New colorimetric cytotoxicity assay foranticancer-drug screening. J. Natl. Cancer Inst.1990,82,1107–1112.
    [19] Li X., Sun B., Zhu C.J., et al. Reversal of p-glycoprotein-mediated multidrug resistance bymacrocyclic bisbibenzyl derivatives in adriamycin-resistant human myelogenousleukemia(K562/AO2) cells. Toxicology in Vitro2009,23:29–36.
    [1]牛雪梅,黎胜红,纳智等。疏花毛蕚香茶菜的化学成分研究.中草药,2003,34:300–303.
    [2]杨辉,侯爱君,姜北等.三台花中的一新奇化合物——SerratuminA.云南植物研究,2000,22:75–80.
    [3] Rasmussen T., Jensen J., Antoni, et al. Structure and synthesis of bromoindoles from themarine sponge Pseudosuberites hyalinus. J. Nat. Prod.1993,56:1553–1558.
    [4] Kuberski S., Gebickl J. Evidence for a ketene intermediate in the photochemicaltransformation of matrix-isolated O-nitrobenzaldehyde. J. Mol. Struct.1992,275:105–110.
    [5]韩秀丽,林贞健,陶洪文等.红海榄共生真菌Penicillium sp. HK13-8细胞毒活性成分研究.中国海洋药物杂志2009,29:11–16.
    [6]杨顺丽,刘锡葵.竹叶菜中的核苷类化学成分.中国天然产物,2003,1:196–198.
    [7]李莉娅,邓志威,李军等.中国海南海绵Cinachyrella australiensis化学成分研究.北京大学学报(医学版).2004,36:12–17.
    [8]冯育林,吴蓓,李云秋等.骆驼蹄瓣茎的化学成分研究.中草药,2009,40:536–538.
    [9] Shigemori H., Tenma M., Shimazaki K., et al. Three new metabolites from the marine yeastAureobasidium pullulans. J. Nat. Prod.1998,61:696–698.
    [10] Rahalison L., Hamburger M., Hostettmann K., et al. A bioautographic agar overlay methodfor the detection of antifungal compounds from higher plants. Phytochemical analysis,1991,2:199–203.
    [1] Mossman T. Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assay. J. Immunol. Meth.1983,65,55-63.
    [2] Skehan P., Storeng R., Scudiero D., et al. New colorimetric cytotoxicity assay for anticancerdrug screening. J. Natl. Cancer Inst.,1990,82,1107-1112.
    [3] Voigh W. Sulforhodamine B assay and chemosensitivity. Methods Mol. Med.2005,110,39-48.
    [4] Zaika L.L. Spices and herbs: their antimicrobial activity and its determination. J. Food Safety,1988,9,97-118
    [5] Wang H., Wang Y., Wang W., et al. Anti-influenza Virus polyketides from the acid-tolerantfungus penicillium purpurogenum JS03-21. J. Nat. Prod.,2011,74:2014–2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700