硫解—高效液相色谱法测定水果及其制品中的原花色素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原花色素(proanthocyanidins简称PC)是一种以黄烷醇为主要结构单元,以不同连接方式聚合而成的复杂的多酚类植物次生代谢产物,水果是膳食PC的最主要来源。研究表明,PC具有很强的抗氧化、消除自由基、抗高血压、抗肿瘤等一系列重要生理作用,其生理作用及消化吸收率与它的平均聚合度密切相关。目前水果中PC含量分析方法有分光光度法和HPLC法,前者系统误差较大,而后者不能给出总含量和平均聚合度的信息。近年一些酸解-衍生化高效液相色谱法已经用于一些水果样品中PC的含量和平均聚合度的分析,但是这些结果都存在着分析品种单一,标准品不全等缺点。针对这些不足,本项研究对新方法进行了较系统的开发、评价和大量实际样品分析试验。
     对PC的酸解-苄硫醇衍生反应条件进行了研究,考察了苄硫醇试剂浓度、酸的配比和浓度、反应时间、反应温度等条件对衍生反应的影响。最后确定在PC溶液浓度不超过0.4%的水平下,反应液中苄硫醇的浓度为1%;冰乙酸:1 M盐酸= 5:1(v/v),反应温度为90℃,反应时间为60 min。此条件可以保证PC聚合体能够被彻底降解生成相应的黄烷醇及其苄硫醇衍生物。
     以工业品葡萄籽提取物为原料,通过酸解-苄硫醇衍生反应、正相HPLC、反相HPLC等步骤制备纯化了表儿茶素-苄硫醚(EC-S)和没食子酸表儿茶素酯-苄硫醚(ECG-S)两种衍生物。正相色谱分离条件为:色谱柱SinoChrom SiO2 (250 mm×20 mm i.d, 10μm),流动相:乙酸乙酯:石油醚(60:40,v/v),流速:10 mL/min,检测波长:280 nm。反相色谱分离条件为:色谱柱SinoChrom ODS-BP (250 mm×20 mm i.d, 10μm),流动相:70%(v/v)的甲醇(0.05%甲酸),流速10 mL/min,检测波长:280 nm。采用LC-MS法、1H和13C高分辨率二维NMR图谱方法对其进行了结构和纯度分析,结果表明,制备的两种成分确实为目标化合物。
     建立了水果中PC含量和平均聚合度的HPLC分析方法,其色谱条件为:Hypersil BDS C18分析柱(250 mm×4.6 mm i.d., 5μm);流动相A:500μL/L的甲酸水溶液;B:甲醇:乙腈= 1:2,含500μL/L的甲酸。梯度程序(min/B%)为:0/13,8/13,16/40,24/50,27/100,34/100,37/13,45/13。紫外检测器的检测波长为:280 nm;流速为:0.8 mL/min;柱温:35℃;进样量:5μL;峰面积外标法定量。分别统计没食子酸(GA)、儿茶素(CT)、表儿茶素(EC)、没食子酸表儿茶素酯(ECG)、EC-S、ECG-S的峰面积,通过标准曲线求出各种单体的含量和PC总含量,再由黄烷醇单体与衍生物的总浓度/黄烷醇单体浓度,即(CCT+CEC+CECG+ CEC-S +CECG-S)/(CCT+CEC+CECG),计算出样品中的PC平均聚合度。对山楂、葡萄等实际样品进行测定,各成分间有良好的分离,重复定量分析的相对标准偏差在0.4%~4.2%之间,最低检出限为:0.4 ng~4 ng之间,线性范围在0.8 ng~4000 ng之间,回归方程的相关系数达到0.9992~0.9999,45分钟内可以完成一次样品分析。
     采用开发的新方法对葡萄、苹果、山楂及其加工制品中的PC含量和平均聚合度进行了分析,结果表明,红星、金矮生、乔娜金、王林和富士5个品种的苹果中PC总含量范围为:0.14 mg/g~0.26 mg/g,平均聚合度为2.0~2.78;坂田、京亚、田康、计选、前锋、巨峰、漠王, 7个鲜食葡萄品种的籽中原花色素总含量范围为5.2 mg/g~26 mg/g,平均聚合度在2以下;对曾芳德、赤霞珠、梅辰、轭西拉、黑品乐、琼瑶浆、长相思、米勒、宝石、白思南、雷司令、美荣12种酿酒葡萄品种的葡萄籽中的PC进行了分析,PC总含量为8.4 mg/g~32 mg/g,平均聚合度为1.8~4.0;对一种葡萄籽提取物工业产品进行了分析,PC总含量为370 mg/g,平均聚合度为6.08;6种市售保健品中,PC总含量为6 mg/g~51 mg/g,平均聚合度在2.70~4.30之间。山楂鲜果中原花色素总含量为4.8 mg/g,平均聚合度为1.9;汇源山楂果汁、华旗山楂果汁中PC含量分别为0.065 mg/L和0.11 mg/L;而山楂糕、山楂羹、山楂片、果丹皮4种山楂加工制品中,PC含量为1 mg/g~2.4 mg/g,6种产品PC平均聚合度在1.77~2.23之间。
     本项研究还对干制和贮存过程中山楂PC的稳定性进行了研究。结果表明:真空冷冻干燥、80℃热风干燥和自然干燥三种干制条件干燥条件中,真空冷冻干燥后PC成分的损失最小,其总量的保存率为88%;热风干燥和自然干燥后PC成分的保存率分别为76%和25%。鲜果的冷藏试验结果表明,在0℃条件下经过110 d的贮存,山楂鲜果中的原花色素总含量相当于贮存初期含量的80%,好果率、色泽均符合正常标准。同山楂果的干制结果进行比较可以看出,鲜果低温冷藏PC成分损失率较低,适用于山楂原料的短期贮存,干制方法可用于长期贮存。
     本实验建立的用于分析水果中PC的酸解苄硫醇衍生HPLC法,以制备的EC-S、ECG-S衍生物等为标准对照品,具有操作简单准确快速等优点,不仅可以测出PC成分的总含量,而且还可以提供PC聚合程度的重要信息,可用于苹果、葡萄、山楂及其提取物、相关工业品以及保健食品的分析和质量评价。从实际样品分析结果可以看出,不同品种之间无论从PC含量还是平均聚合度都有较大的差异。山楂果实中PC含量较高,甚至接近葡萄籽提取物保健品中的含量,而其平均聚合度却明显低于所分析的保健品,因此是一种良好的水果PC资源。
Proanthocyanidins (PC) is a complex polyphenolic plant secondary metabolite, which is polymerized in different ways taking flavanols as the main structural unit. Fruits are the main source of dietary PC. The results show that, PC has a series of important physiological effects, such as strong antioxidant, eliminating free radicals, anti-hypertensive, and anti-tumor. Its physiological effects and absorption rate are closely related to the average degree of polymerization. Currently, the analytical methods of PC content in fruits are spectrophotometry and HPLC method. The spectrophotometry method has a larger system errors and the HPLC method fails in providing the total content and the average degree of polymerization. In recent years, a number of thiolysis-high performance liquid chromatography methods have been used for the analysis of PC content and average degree of polymerization of some fruit samples. However, the results of those methods all have such flaws as little variety analyzed and standard product incomplete. According to these deficiencies, this study develops and evaluates a new method based on a large number of actual samples analysis.
     This study conducts research on the PC thiolysis reaction conditions, and investigated the effects of the Benzyl-thiol reagent concentration, ratio of acid concentration, reaction time and reaction temperature on the derivative reaction. It is finally determined that when the PC concentration level is less than 0.4%, the benzyl mercaptan concentration in the reaction solution is 1%; Acetic acid:1 M HCl = 5:1 (v/v), with the reaction temperature is 90℃and the reaction time is 60 minutes. This condition can guarantee that the PC polymer can be completely degraded and generate the corresponding flavanols and the benzyl mercaptan derivatives.
     Taking the industrial Grape Seed Extract as the raw materials and through the following steps including thiolysis, normal-phase HPLC, and RP-HPLC, we purified such two derivatives as epicatechin-benzyl sulfide (EC-S) and gallic acid epicatechin-benzyl sulfide (ECG-S). The Normal phase chromatography conditions are: column SinoChrom SiO2 (250 mm×20 mm i.d, 10μm); mobile phase: Ethyl acetate: petroleum ether(60:40,v/v); flow: 10 mL/min; detection: UV at 280 nm. The RP chromatographic conditions are: column SinoChrom ODS-BP (250 mm×20 mm id, 10μm); mobile phase: 70% (v/v) methanol (0.05% formic acid); flow: 10 mL/min; detection: UV at 280 nm. Using the LC-MS method and the ~1H and ~(13)C high-resolution two-dimensional NMR profiles method to analyze and confirm their structure and purity. The results show that the two prepared components are indeed the target compounds.
     The HPLC analysis method was established to analyze the PC content and average degree of polymerization of the fruit. The chromatographic conditions are: column: Hypersil BDS C18(250 mm×4.6 mm i.d., 5μm); mobile phase A:500μL/L aqueous Formic acid; mobile B: methanol: acetonitrile = 1:2 v/v ; 500μL / L of formic acid. The gradient procedure was: 0 min~8 min, 13% B (isocratic); 8 min~16 min, 13%~40% B (linear gradient); 16 min~24 min, 40%~50% B (linear gradient); 24 min~27 min, 50%~100% B (linear gradient); 27 min~34 min, 100% B (isocratic), 34 min~37 min, 100%~13% B (linear gradient); 37 min~45 min, 13% B (isocratic). Detection UV: 280 nm; flow: 10 mL/min; temperature: 35℃; injection quantity: 10μL. The external standard calibration curves were used in quantification. Count respectively the peak area of gallic acid (GA), catechin (CT), epicatechin (EC), (ECG), EC-S, and ECG-S. Obtain the content of various monomer and the total content of PC through the Standard curve. And then, calculate the PC average degree of polymerization of the samples by using the total concentration/flavanols monomer concentration of the flavanols monomer and the derivatives, or (CCT+CEC+CECG+ CEC-S +CECG-S)/(CCT+CEC+CECG). By this method, the actual samples of hawthorn, grape et al. were measured. The main components were separated and determined well. RSD of these components were 0.4%~4.2%. The detection limit was 0.4 ng~4 ng, The linearity range was 0.8 ng~4000 ng. The correlation coeffeicent (r) was 0.9992~0.9999. The analytic time of one sample was 45 min.
     Using the new method, analyze the PC content and average degree of polymerization of the grape, apple, hawthorn and its processing products. The results showed that, the total PC content is 0.14 mg/g~0.26 mg/g in such five kinds of apples as Hongxing, Jinaixing, Qiaonajin, Wanglin and Fushi, and the average degree of polymerization is 2.0~2.78. The total content of the proanthocyanidins in the seed of such seven table grapes as Bantian, Jingya, Tiankang, Jixuan, Qianfeng, Jufeng, and Mowang is 5.2 mg/g~26 mg/g. The average degree of polymerization is below 2. Analyze the PC content of the seed of 12 kinds of wine grape such as Zengfangde, Chixianzhu, Meizhenge, Xila, Heipinle, Qiongyaojiang, Changxiangsi, Mile, Baoshi, Baisinan, Leisiling, and Meirong. The total content of PC is 8.4 mg/g~32 mg/g, the average degree of polymerization is 1.8~4.0. Analyze a kind of grape seed extract industrial product. The total PC content is 370 mg/g, and the average degree of polymerization is 6.08. In the six kinds of commercial health products, the total PC content is 6 mg/g~51 mg/g, and the average degree of polymerization is between the 2.70~4.30. The total content of proanthocyanidins in the hawthorn fruit is 4.8 mg/g, and the average degree of polymerization is of 1.9. The PC content of Huiyuan Hawthorn Juice and Huaqi Hawthorn Juice are respectively 0.065 and 0.11 mg/L. While in the four kinds of processed hawthorn products including the hawthorn cake, hawthorn soup, hawthorn slice, and sweetend roll, the PC content is 1 mg/g~2.4 mg/g, and the average degree of polymerization of the PC of the six kinds of products is between 1.77~2.23.
     This research also studied the stability of hawthorn PC during the drying and storage process. The results show that among the three drying conditions including vacuum freeze-drying, 80℃drying, and natural drying, the Vacuum freeze-drying has the minimum loss of PC components, and the retention rate of the whole amount is 88%; the retention rate of the PC components of hot air drying and natural drying are 76% and 25%. The results of the experiment on the frozen fruits show that after stored for 110 days in 0℃, the total amount of proanthocyanidins in the hawthorn fruits is 80% of that in the initial storage, the rate of good fruit is high, and the color and luster of the fruit meet the normal standard. Through the comparison with the result of dried and dehydrated hawthorn fruit, we can see that under refrigeration, the fruit has a lower loss rate of its PC components and is suitable for short-term storage of the hawthorn raw materials, while the dried method can be used for long-term storage.
     The thiolysis-HPLC method, developed in this study to analyze PC in the fruit, takes the prepared EC-S, ECG-S derivatives as the standard reference substance, and has the advantages of simple, accurate, and quick operation. It can not only measure the total content of the PC components, but also can provide important information of the degree of polymerization of PC. It can be used the analysis and quality evaluation of apples, grapes, hawthorn and its extracts, related industrial products, and health food. From the analysis results of the actual sample, we can see that there is a large variety in the PC content and the average degree of polymerization between different species. The hawthorn fruit has a higher PC content, even close to that in the the grape seed extract health products, while its average degree of polymerization is much lower than the analyzed health care products. Therefore, it is a good fruit PC resource.
引文
[1]国植,徐莉.原花青素:具有广阔发展前景的植物药[J].国外医药-植物药分册,1996,11(5):196-204.
    [2]罗冠中.原花青素的提取、分离及抗氧化性、稳定性的研究[D].天津:天津科技大学,2006.
    [3]步文磊,王茵.原花青素的生物活性及作用机制研究进展[J].国外医学卫生学分册,2007,34 (5):311-315.
    [4]王忠合,朱俊晨,陈惠音.葡萄籽原花青素提取物的保健功能与应用[J].食品科技,2006(4): 135-139.
    [5]陈笳鸿,汪咏梅,吴冬梅,等.毛杨梅树皮提取物抗氧化及清除自由基活性初步研究[J].林产化学与工业,2007,27:1-7.
    [6]杨其蒀.天然药物化学[M].北京:中国医药科技出版社,1996,6.
    [7]何钊,任其龙.层析法分离葡萄籽中原花青素的研究[J].食品科学,2004,25(8):70-73.
    [8]孙达旺.植物单宁化学[M].北京:中国林业出版社,1992:130-142.
    [9]韩菊,魏福祥,瞿丽萍,等.葡萄籽中低聚原花色素的性能研究[J].食品科学,2003,24(2):36-38.
    [10] Toshiaki A,Ikunori K,Danji F.Antioxidative properties of procyanidins B-1 and B-3 from azuki beans in aqueous systems [J].Agri.Biol.Chem.,1988,52(11):2717-2722.
    [11] Bagchi D,Bagchi M, Sthos S J,et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention [J].Toxicology,2000,148:187-197.
    [12] Del-Bas J M,Fernandez-Larrea J,Blay M,et al.Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats [J].FASEB J,2005,19(3):479-481.
    [13] Dong G Z.Molecular mechanisms of the chemopreventive effect of resveratrol[J].Mutation Research,2003,523-524:145-150.
    [14] Huynh T H,Tee R W.Selective induction of apoptaosis in human nummary cancer cell [MCF7] by pycnogenol [J].Anticancer Res,2000,20(4):2417-2420.
    [15]周素娟.葡萄籽提取物原花青素的研究概况及其在我国保健食品中的应用[J].中国食品卫生杂志,2007,19(3):284-286.
    [16]万本屹,李宏,东海涿.葡萄籽原花青素提取及其应用研究进展[J].粮食与油脂,2002,(2):43-45.
    [17] Svedstrom U,Vuorela H,Kostiainen R,et al.Isolation and identification of oligomeric procyanidins from Crataegus leaves and flowers [J].Phytochemistry,2002,60:821-825.
    [18]杜晓.落叶松原花色素的分级及精细化利用研究[D].成都:四川大学, 2006.
    [29] Shoji T,Masumoto S,Moriichi N,et al.Apple (Malus pumila) procyanidins fractionated according to the degree of polymerization using normal-phase chromatography and characterized by HPLC- ESI/MS and MALDI-TOF/MS[J].Chromatography A,2006,1102:206-213.
    [20]刘睿,段玉清,谢笔钧,等.高粱外种皮中原花青素的提取工艺及其组分鉴定[J].农业工程学报,,2004,20(1):242-245.
    [21] Payne M J.Hurst W J.Stuart D A.et al.Determination of total procyanidins in selected chocolateand confectionery products using DMAC[J].J.AOAC.Int.2010,93(1):89-96.
    [22] Truchado P,Ferreres F,Tomas-Barberan F A.Liquid chromatography-tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey,and their potential as floral origin markers[J].Chromatogra A,2009,1216(43):7241-7248.
    [23] Piror R L,Lazarus S A,Cao G H,et al.Indentification of procyanidins and anthocyanins in blueberries and cranberries (vaccinium spp.) using High-Performance Liquid Chromatography/Mass spectrometry[J].journal of agricultural and food chemistry,2001,49(3): 1270-1276.
    [24] Packer L,Rimbach G,Virgili F.Antioxidant activity and biologic properties of procyanidin-rich extract from pine (Pinus Maritima) bark,Pycnogenol [J].Free Radical Biology and Medicine,1999,27(5-6):704-724.
    [25] Wanq J X,Xiao X H,Li G K.Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs[J].Chromatogra A,2008,11(1198-1199):45-53.
    [26]吴燕华,刘文力,阎红,等.高效液相色谱法测定苹果中的酚类物质[J].分析化学,2002,7:826-828.
    [27] Guyot S, Doco T, Souquet J M,et al.Characterization of highly polymerized procyanidins in cider apple(malus sylvestris var. kermerrien) skin and pulp[J].Phytochemistry,1997,44(2):352-357.
    [28]高光跃,冯毓秀,秦秀芹.山楂类果实的化学成分分析及质量评价[J].药学学报,1995,30(2):138-143.
    [29]高光跃,秦香芹.山楂属主要植物叶子生药学研究[J].天然产物研究与开发,1994,6(4):27-34.
    [30]刘霞.山楂黄酮类成分的分析测定,吉林农业大学学报,1997,19(3):47.
    [31]李建中,马良,崔同,等.山楂果实中主要活性物质的高效液相色谱分析[J].色谱,2005,23(1):112.
    [32] Cui T,Li J Z,Kayahara H,et al.Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatographic[J].J.Agric.Food Chem., 2006, 54(13): 4574-4581.
    [33] Tauchert M.Efficacy and safety of Crataegus extract WS 1442 in comparison with placebo in patients with chronic stable New York Heart Association class-Ⅲheart failure[J].Am.Heart J.,2002,143(5):910-915.
    [34] Tauchert M,Gildor A,Lipinski.High-dose Crataegus wxtract WS in the treatment of NYHA stageⅡheart failure[J].Herz,1999,24(6):465-474.
    [35] Zapfe J G.Clinical efficacy of Crataegus extract WS 1442 in congestive heart failure NYHA classⅡ[ J].Phytomedicine,2001,8(4):262-266.
    [36] Weikl A,Assmus K D,Neukum-Schmidt A,et al.Crataegus special extract WS 1442. assessment of objective effectiveness in patients with heart failure (NYHAⅡ)[J].Fortschr Med,1996, 114(24): 291-296.
    [37] Dennehy C.Botanicals in cardiovascular health[J].Clin Obstet Gynecol,2001,44(4):814-823.
    [38] Rigelsky Janene M,Sweet Burgunda V.Hawthorn:Pharmacology and therapeutic uses[J]. Am.J. Health-system Pharmacy,2002,59(5):417-422.
    [39] De S P A,Bonsel G, Vander K A,et al.Introduction to the pharmacoeconomics of herbal medicines[J].Pharmacoeconomics,2000,18(1):1-7.
    [40] Annon J,Johns C M.Hawthorn[J].Toxicology and Clinical Pharmacology of Hebal Products, 2000,253-258.
    [41] Michael T,Murray N D.Naturalnsupport for congestive heart failure[J].Am.J.Natur.Med,1997, 4(5): 14-17.
    [42] Wagner H.Phytomedicine research in Germany[J].Environ. Health Perspect,1999,107(10):779-781.
    [43] Loew D.Phytotherapy in heart failure[J].Phytomedicine,1997,4(3):267-271.
    [44] Ammeon H P T.Crataegus; Heart-circulation efficacy of Crataegus extracts: flavonoids and procyanidins. PartⅠ.History and active substances[J].Dtsch Apoth Ztg,1994,134(26):33-36.
    [45] Ammeon H P T.Crataegus Influence of Crataegus extracts, flavonoids, and procyanidines on the heart circulation. Part 3. Influence on the circulation[J].Dtsch Apoth Ztg,1994,134 (28): 35-36, 39-42.
    [46] Folium Cum Flore Crataegi.WHO monographs on selected medicinal phants[R].66-81.
    [47] Almakdessi S.Protective effect of Crataegus oxyacantha against reperfusion arrhythmias after global no-flow ischemia in the rat heart[J].Basic Res Cardiol,1999,94(2):71-77.
    [48] Shahat A A.Anti-HIV activity of flavonoids and proanthocyconidins from Crataegus sinaica[J].Phytomedicine,1998,5(2):133-136.
    [49] Min B S.Inhibitory activities of Korean plant on HIV-Ⅰp rotease[J].Nat.Prod.Sci.,1998,4(4): 241-244.
    [50] Sroka Z,Cisowski W,Seredynska M,et al.Phenolic extracts from meadowsweet and hawthorn flowers have antioxidative properties[C].Z Naturforsch,2001,56(9-10):739-744.
    [51] Zhang Z,Chang Q,Zhu M,et al.Characterization of antioxidants present in hawthorn fruits[J]. Nuer.Biochem,2001,12(3):144-152.
    [52] Da S,Lva A P,Rocha R,et al.Antioxidants in medical plant extracts:A research study of the antioxidant capacity of Crataegus,hamamelis and hydrastis [J].Phytother Res,2000,14(8):612-616.
    [53] Bahorun T,Trotin F,Vasseur J,et al.Antioxidants activity of carataegus monogyna extracts[J]. Plant.Met,1994,(60):323-328.
    [54] Satoh K,Anzai S,Sakagami H.Enhancement of radical intensity and cytotoxic activety of ascorbate by crataegus cuneata Sieb et.Zucc.Extracts[J].Anticancer Res,1998,18(4A):2749-2753.
    [55]李时珍,本草纲目[M],人民文生出版社,北京,1982.
    [56] Corder R,Warburton R C,Khan N Q,et al.The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction[J].Clin.Sei.,2004,107:513-517.
    [57] Muller A,Linke W,Klaus W.Crataegus extract blocks potassium currents in guinea pig ventricular cardiac myocytes [J].Planta Med,1999,65(4):335-339.
    [58] Fitzpatrick D F,Bing B,Maggi D A,et al.Vasodilationg procyanidins derived from grape seeds[J].Ann.N.Y.Acad.Sci.,2002,957:78-89.
    [59] Bate-Smith E C.Phytochemistry of proanthocyanidins[J].Phytochem,1975,(14):1107-1113.
    [60] Porter L J,Hrstich J N,Chan B G.The conversion of proantho-cyanidins and prodelphenidins tocyanidins[J].Phytochemistry,1986,25:223-230.
    [61] Singleton V,Rossi J.Colorimetry of total phenolic substances with phosphomolibdic- phosphotungstic acid reagents[J].Am.J.Enol.Vatic.,1965,16:144-158.
    [62] Price M L,Scoyoc S V,Brter L G.A critical avaluation of the vanillin reaction as an assay for tannin in sorghum grain[J].J.Agric.Food Chem.,1978,(26):1214-1218.
    [63]孙芸,谷文英.硫酸-香草醛法测定葡萄籽原花青素的含量[J].食品与发酵工业,2003,29(9):43-46.
    [64]姚开,何强,吕远平,等.葡萄籽提取物中原花青素含量的测定[J].食品与发酵工业,2002,28(3):17-19.
    [65]陈召桂,卢艳花,魏东芝.HPLC测定葡萄籽提取物中原花青素B2的含量[J].中成药,2007,29(11):1645-1647.
    [66]冯建光,陈利琼.葡萄籽提取物中OPC的测定[J].中国食品添加剂,2007,4:156-159.
    [67]李海生,吴贵华.HPLC法用于北山楂和云南山楂中主要有机酸和维生素C的分析比较[J].中草药,1990,21(4):13-14.
    [68] Rigaud J,Escribano-Bailon M T,Prieur C,et al.Normal-phase high-performance liquid chromatographic separation of procyanidin from cacao beans and grape seeds [J].Chromatogra A, 1993,654(2):255-260.
    [69]孙学谦.高效液相色谱测定山楂中的有机酸[J].大连轻工业学院学报,1997,16(l):20-23.
    [70]刘文民.山楂中主要活性成分的HPLC及HPCE法分析研究[D].保定:河北农业大学食品科技学院,2002.
    [71] Svedstrom U,Vuorela H,Kostiainen R.High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamer in hawthorn [J].Chromatogra A,2002,968(1-2):53-60.
    [72]郝慧英,赵光鳌,陈蕴.用HPLC测定苹果酒贮藏过程中多酚的变化[J].食品科技,2005,5:73-76.
    [73]乜兰春,孙建设.不同品种苹果果实主要酚类物质含量的研究[J].中国食品学报,2005, 5(3):118-121.
    [74]孙承锋,姜竹茂,杨建荣.反相高效液相色谱法测定苹果多酚的含量[J].分析检测,2006,27(4):185-191.
    [75]孙海峰,吕海涛,周莎莎.HPLC法测定苹果浓缩汁中的多酚类物质[J].食品科学,2008,29(4):314-317.
    [76]陈磊,杨建荣,黄雪松.高效液相色谱法快速测定红富士苹果渣中的6种多酚[J].食品与发酵工业,2008,34(8):158-161.
    [77]赵超敏,车振明.苹果多酚HPLC检测条件的优化研究[J].食品科学,2008,29(12):536-540.
    [78]李学鹏,励建荣,杨建荣.苹果中多酚类物质HPLC检测方法的建立[J],中国食品学报,2008,6:116-120.
    [79]莫燕霞,胡宝祥,胡伟,等.高效液相色谱法测定茶叶中茶多酚[J].理化检验化学分册,2008.44(7):593-596.
    [80]戴军.茶叶及茶多酚中儿茶素的高效液相色谱分析方法研究[J].色谱,2001,19(5):388-402.
    [81]赵恂,杭太俊,王玉,等.茶多酚的指纹图谱和主要成分的含量测定方法研究[J].药物分析杂志,2007,27(3):389-394.
    [82]吴白乙拉,包俊杰.用HPLC方法对中国茶叶中茶多酚等成分含量的定量分析[J].内蒙古民族大学学报,2009,24(1):34-37.
    [83]朱勤艳,陈振宇.茶中茶多酚的高效液相色谱法分离分析[J].分析实验室,1999,18(4):70-72.
    [84]李萌,王华燕,胡文祥,等.HPLC法快速测定茶多酚中儿茶素类及咖啡因含量[J].中国医药导刊,2007,9(6):506-507.
    [85] Fulcrand H,Remy S,ouguet J M.Study of wine tannin oligomers by on-line liquid chromatography electro-spray ionization mass spectrometry[J].J.Agric.Food Chem.,1999,47 (3): 1023-1028.
    [86] Gu L,Kelm M,Hammerstone J F,et al.Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method [J].J.Agric.Food Chem.,2002,50(17):4852-4860.
    [87] Thompson R S,Jacques D,Haslam E,et al. Plant proanthocyanidins. part I. introduction; the isolation,structure,and distribution in nature of plant procyanidins[J].J.Chem.Soc.Perkin Trans. I ,1387-1399.
    [88] Due?as M, Sun B, Hernández T,et al.Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.) [J].J.Agric.Food Chem.,2003,51(27):7999-8004.
    [89] Guyot S,Marnet N,Drilleau J.Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states[J].J.Agric.Food Chem.,2001,49(1):14-20.
    [90] Karonen M,Leikas A,Loponen J,et al.Reversed-phase HPLC-ESI/MS analysis of birch leaf proanthocyanidins after their acidic degradation in the presence of nucleophiles[J].Phytochem Anal., 2007,18(5):378-386.
    [91] Kennedy J A, Jones G P.Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol[J].J.Agric.Food Chem.,2001,49(4):1740-1746.
    [92] Labarbe B,Cheynier V,Brossaud F,et al.Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization[J].J.Agric.Food Chem.,1999, 47(7): 2719-23.
    [93] Vidal S,Meudec E,Cheynier V,et al.Mass spectrometric evidence for the existence of oligomeric anthocyanins in grape skins[J].J.Agric.Food Chem.,2004,52(23):7144-7151.
    [94] Rigaud J, Perez-Ilzarbe J,Ricardo Da Silva J, Cheynier V. Micro-method of proanthocyanidin identification using thiolysis monitored by high-performance liquid chromatography[J].Chromatogra A,1991,540,401-405.
    [95] Guyot S,Marnet N,Drilleau J F.Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states[J].J.Agric.Food Chem.,2001,49(1):14-20.
    [96] Rigaud J,Perez-Ilzarbe J.,Da Silva J M,et al. Micromethod for identification of proanthocyanidin using thiolysis monitored by high-performance liquid-chromatography. Chromatogra A,1991,40,401-405.
    [97]Lazarus S A,Adamson G E,Hammerstone J F,et al.High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in food stuffs[J].J.Agric.Food Chem.,1999,47,3693- 3701.
    [98]Sheryl A,Lazarus,Gary E,et al.High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages[J].J.Agric.Food Chem.,1999,47(9):3693-3701.
    [99]J,Manuel P,Jorge S,et al.Influeced of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis[J].Food Chemistry,2006,94:406-414.
    [100]Prieur C,Rigaud J,Cheynier V,et al.Oligomeric and polymeric procyanidins from grape seeds[J].Phytochemistry,1994,36,781-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700