红景天苷减轻心肌缺血/再灌注损伤中蛋白质O-GlcNAc变化的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
O-连接N-乙酰氨基葡萄糖基化(O-linked N-acetylglucosamine, O-GlcNAc)是发生在细胞浆与细胞核内的、仅单个N-乙酰氨基葡萄糖通过O-糖苷键连接到丝氨酸或苏氨酸(Ser/Thr)羟基上、一种广泛动态的蛋白质翻译后修饰现象,蛋白质的O-GlcNAc可以敏锐地感受环境变化,调节蛋白质间的相互作用,影响细胞的信号级联通路。在多种形式的应激状态下,细胞活化己糖胺生物合成途径(HBP),增加蛋白质的O-GlcNAc修饰水平,从而提高细胞存活,减轻细胞损伤。
     红景天苷是从藏药红景天分离出来的一种苯乙醇类化合物,具有抗缺氧、抗肿瘤、抗衰老、抗肝纤维化等作用。在体动物实验及临床资料证实,红景天苷具有心肌保护作用,但对红景天苷减轻心肌缺血/再灌注损伤机制的研究尚不多。
     本实验通过建立大鼠心肌细胞培养缺血/再灌注损伤模型和离体心脏灌注缺血/再灌注损伤模型,观察红景天苷对心肌缺血/再灌注损伤的保护作用,并通过与四氧嘧啶(O-连接N-乙酰氨基葡萄糖转移酶抑制剂,能够抑制O-GlcNAc的形成)作用比较,探讨O-GlcNAc在这种保护机制中的作用。
     实验一红景天苷对培养大鼠心肌细胞缺血/再灌注损伤的的保护作用
     方法:取1~2 d龄SD乳鼠,分离、培养原代乳鼠心肌细胞,细胞培养3 d后建立缺血/再灌注损伤模型:用缺氧液置换正常培养液,置入三气培养箱(95% N2 + 5% CO2)缺氧培养4 h,然后细胞再置入37℃、21% O2和5% CO2培养箱中继续培养16 h。培养的心肌细胞分为5组(n=6):①正常对照组:用正常培养液培养细胞;②正常培养+红景天苷预处理:红景天苷80 mol/L预处理细胞24 h,然后用正常培养液培养细胞20 h;③缺血/再灌注:细胞正常培养3 d后按照缺血/再灌注模型培养;④缺血/再灌注+红景天苷+四氧嘧啶预处理:红景天苷80 mol/L加四氧嘧啶2.5 mmol/L预处理细胞24 h,然后按照缺血/再灌注组培养;⑤缺血/再灌注+红景天苷预处理:红景天苷80 mol/L预处理细胞24 h,然后按照缺血/再灌注组培养。处理完毕,检测各组细胞存活率、乳酸脱氢酶(LDH)释放量、细胞凋亡、细胞ATP含量、细胞内游离Ca2+水平、葡萄糖摄取率及细胞O-GlcNAc水平。
     结果:与对照组比较,单纯缺血/再灌注损伤导致心肌细胞存活率显著降低为64.7±4.5%,红景天苷预处理组心肌细胞缺血/再灌注后存活率增加至85.8±3.1%,与单纯缺血/再灌注组比较差异显著;加入四氧嘧啶后心肌细胞存活率减少为66.5±2.9%,与红景天苷预处理组比较差异显著。缺血/再灌注损伤导致心肌细胞LDH释放量从9.3±1.5%增加至38.5±2.1%,红景天苷预处理显著降低心肌细胞LDH释放量至21.2±1.7%,与单纯缺血/再灌注组比较差异显著;加入四氧嘧啶后心肌细胞LDH释放量增加至39.3±1.6%,与红景天苷预处理组比较差异显著。缺血/再灌注后心肌细胞凋亡率从6.5±1.2%显著增加至27.2±3.2%;红景天苷预处理组心肌细胞凋亡率为12.4±1.9%,与单纯缺血/再灌注组比较差异显著;加入四氧嘧啶后心肌细胞凋亡率为26.2±2.4%,与红景天苷预处理组比较差异显著。单纯缺血/再灌注损伤导致心肌细胞ATP含量从24.2±2.0 mol/g proteion显著下降至17.9±2.8 mol/g protein,红景天预处理组心肌细胞ATP含量为21.3±3.5 mol/g protein,虽然高于单纯缺血/再灌注组,但是两组比较无显著性差异;加入四氧嘧啶后心肌细胞ATP含量为16.7±1.6 mol/g protein,与红景天苷预处理组比较无显著性差异。与对照组比较,缺血/再灌注损伤导致心肌细胞内Ca2+水平增加到147.2±10.5%,红景天苷预处理后心肌细胞内Ca2+水平从147.2±10.5%显著降低至121.9±9.9%,与单纯缺血/再灌注组比较差异显著;加入四氧嘧啶后心肌细胞内Ca2+水平增加至138.5±9.2%,与红景天苷预处理组比较差异显著。在正常氧和缺血/再灌注培养条件下,红景天苷预处理均可显著增加心肌细胞对葡萄糖的摄取率,分别为对照组的1.8倍和2.5倍,与对照组比较差异显著;缺血/再灌注损伤亦可增加心肌细胞葡萄糖摄取率,为对照组的1.5倍,但与红景天苷预处理组比较差异显著,四氧嘧啶组心肌细胞葡萄糖摄取率为对照组的2.4倍,表明四氧嘧啶不抑制红景天苷预处理对心肌细胞葡萄糖摄取率的增加。缺血/再灌注损伤增加心肌细胞O-GlcNAc水平,为对照组的1.4倍,红景天苷预处理可显著增加心肌细胞中O-GlcNAc水平,为对照组的2.2倍,与单纯缺血/再灌注组比较差异显著;加入四氧嘧啶后心肌细胞O-GlcNAc水平显著下降,为对照组的0.98倍,与红景天苷预处理组比较差异显著。
     结结论:红景天苷能够显著地减轻心肌细胞的缺血/再灌注损伤,红景天苷预处理能够提高细胞存活率、降低LDH漏出、抑制细胞凋亡、减轻细胞内Ca2+超载、抑制ATP的消耗,促进细胞对葡萄糖的摄取和提高细胞O-GlcNAc水平。OGT抑制剂四氧嘧啶抑制了红景天苷对O-GlcNAc水平的提高,同时消除了红景天苷对心肌细胞的保护作用,表明红景天苷对心肌细胞缺血/再灌注损伤的保护作用主要是通过促进细胞对葡萄糖的摄取和提高细胞O-GlcNAc水平介导,提高细胞ATP含量亦可能是其作用机制之一。
     实验二红景天苷对离体灌注心脏缺血/再灌注损伤的保护作用
     方法:采用Langendorff非循环灌注,灌注液为37℃、95% O2及5% CO2混合气体饱和的KH液。建立缺血/再灌注损伤模型:平衡灌注30 min,然后停止灌注30 min,再复灌注30 min。18只SD大鼠随机分为三组(n=6):①单纯缺血/再灌注组:停止灌注30 min,复灌注30 min;②缺血/再灌注+红景天苷+四氧嘧啶预处理:红景天苷80 mol/L及四氧嘧啶2.5 mmol/L在停灌注前20 min加入灌注液,然后按照缺血/再灌注组灌注;③缺血/再灌注+红景天苷预处理:红景天苷80 mol/L在停灌注前20 min加入灌注液,然后按照缺血/再灌注组灌注。记录左心室内压最大上升和下降速率(±dP/dt)、左室发展压(LVDP)及冠状动脉流量(CF),收集再灌注后冠状动脉流出液检测LDH释放量,检测心肌ATP含量、心肌细胞凋亡、O-GlcNAc水平及心肌超微结构变化。
     结果:各组心脏停灌前LVDP、+dP/dt、-dP/dt和CF无显著差异,再灌注30 min后单纯缺血/再灌注组、四氧嘧啶组和红景天苷预处理组LVDP的恢复百分率分别为76.4±5.2%、73.8±5.2%和85.9±4.7%,+dP/dt的恢复百分率分别为75.2±6.3%、72.9±5.8%和88.2±6.1%,-dP/dt的恢复百分率分别为79.1±4.4%、74.4±7.2%和87.4±6.8%,红景天苷预处理组与单纯缺血/再灌注组和四氧嘧啶组差异显著。再灌注30 min后单纯缺血/再灌注组、红景天苷预处理组和四氧嘧啶组CF的恢复百分率分别为76.2±5.1%、78.1±5.4%和79.6±4.9%,三组比较无显著差异。与单纯缺血/再灌注组比较,红景天苷预处理显著降低LDH释放量,两组比较差异显著。加入四氧嘧啶后LDH释放量增加,与红景天苷预处理组比较差异显著。TUNEL染色显示单纯缺血/再灌注组21.3±3.5%的细胞发生凋亡,而红景天苷预处理组9.5±2.6%的细胞发生凋亡,两组比较差异显著;加入四氧嘧啶后细胞凋亡增加到19.8±3.1 %,与红景天苷预处理组比较差异显著。再灌注30 min后三组心肌ATP含量分别为1.48±0.18 mol/g tissue、1.42±0.13 mol/g tissue和1.51±0.17 mol/g tissue,三组比较无显著差异。红景天苷预处理可显著增加心肌中O-GlcNAc水平,为单纯缺血/再灌注对照组的1.9倍,加入四氧嘧啶后抑制了红景天苷对细胞O-GlcNAc水平的增加,O-GlcNAc水平为单纯缺血/再灌注对照组的1.2倍,红景天苷预处理组与单纯缺血/再灌注组和四氧嘧啶组差异显著。电镜观察显示红景天苷预处理组心肌结构清晰,肌节结构清楚,细胞无水肿,线粒体形态、大小正常;单纯缺血/再灌注组心肌超微结构大致正常,部分细胞肌纤维挛缩,线粒体略肿胀;四氧嘧啶组肌丝收缩较明显,部分线粒体肿胀明显,细胞内致密颗粒增多,提示可能存在钙超载。
     结论:用离体心脏灌注模型可排除麻醉药物、神经、激素等影响心肌机械功能因素的干扰,本实验进一步观察了红景天苷对离体灌注心脏缺血/再灌注损伤的保护作用,红景天苷能够显著地提高左心功能恢复率、降低LDH释放量、抑制细胞凋亡和更好的保存心肌组织的超微结构,而且红景天苷亦能显著提高离体灌注心脏的O-GlcNAc水平。OGT抑制剂四氧嘧啶抑制了红景天苷对O-GlcNAc水平的提高,消除了红景天苷的心肌保护作用,进一步表明红景天苷对心肌细胞缺血/再灌注损伤的保护作用是通过提高细胞O-GlcNAc水平介导。
Objective: The modification of proteins with O-linked N-acetylglucosamine (O-GlcNAc) is increasingly recognized as an important posttranslational modification that modulates cellular function. Recent studies suggested that augmentation of O-GlcNAc levels increase cell survival following stress. Salidroside, one of the active components of Rhodiola rosea, shows potent anti-hypoxia property and protective effects on myocardial ischemia/reperfusion injury in isolated rat heart. However, the mechanisms have yet to be elucidated. In the present study, we reported the cardioprotection of salidroside from ischemia and reperfusion and discussed the relationship between protective effect of salidroside and O-GlcNAc levels.
     PartⅠ:Protective effects of salidrosides via increased protein O-GlcNAc on ischemia and reperfusion injury in cardiomyocytes
     Methods: Cardiomyocytes were isolated from 1-to 2-day-old Sprague- Dawley rats. Within 2 days of isolation, cardiomyocytes were exposed to 4 h of ischemia and 16 h of reperfusion, and then cell viability, apoptosis, glucose uptake, ATP levels and cytosolic Ca2+ concentration were determined, and O-GlcNAc levels were assessed by Western blotting. Salidroside (80 M), salidroside (80 M) plus alloxan (2.5 mM) were added 24 h before ischemia/reperfusion were induced.
     Results: Compared to untreated cells following ischemia/reperfusion, treatment with salidroside markedly improved cell viability from 64.7±4.5% to 85.8±3.1%, decreased LDH release from 38.5±2.1% to 21.2±1.7%, reduced cell apoptosis from 27.2±3.2% to 12.4±1.9%, reduced cytosolic Ca2+ concentration from 147.2±10.5% to 121.9±9.9%, increased ATP content from 17.9±2.8 mol/g protein to21.3±3.5 mol/g protein, as well as significantly improving cardiomyocytes glucose uptake by 1.7-fold and increasing O-GlcNAc levels by 1.6-fold. However, alloxan, an inhibitor of O-GlcNAc transferase that should block the formation of O-GlcNAc, markedly decreased cell viability to 66.5±2.9%, increased LDH release to 39.3±1.6%, increased cell apoptosis to 26.2±2.4%, elevated cytosolic Ca2+ concentration to 138.5±9.2%, and reversed the increase in O-GlcNAc levels seen with salidroside to 98.8±9.8%. Conclusions: Salidroside significantly improved cell viability, decreased LDH release, attenuated cells apoptosis, as well as attenuating cytosolic Ca2+ elevation, stimulating glucose uptake and increasing O-GlcNAc levels compared to untreated cells following ischemia/reperfusion. Alloxan prevented salidroside-induced increase in O-GlcNAc and also blocked the protective effects of salidroside. These findings suggested that cardioprotection of salidroside was associated with enhanced glucose uptake and increased protein O-GlcNAc levels.
     PartⅡ:Cardioprotective effects of salidroside with increased O-GlcNAc on ischemia and reperfusion injury rat hearts in vitro
     Methods: Rat hearts were excised and perfused at a constant pressure of 75 mm Hg with KHB equilibrated with 95% O2 and 5% CO2, and then were subjected to 30 min of global, no-flow ischemia followed by 30 min of reperfusion. There were three experimental groups (n=6):①I/R groups: ischemia and reperfusion;②Salidroside groups: salidroside (80 M) added 20 min before the start of ischemia;③Alloxan groups: salidroside (80 M) plus alloxan (2.5mM), an inhibitor of OGT, added 20 min before the start of ischemia. Cardiac function, ATP content, LDH release, cardiomyocyte apoptosis and ultrastructural alterations were examined.
     Results: There was no significant difference in contractile function among three groups before ischemia. After 30min of ischemia and 30min of reperfusion, salidroside significantly increased cardioal functional recovery compared with the I/R group. The recovery rates of LVDP in I/R groups, salidroside groups and alloxan groups were 76.4±5.2%, 73.8±5.2% and 85.9±4.7%, respectively; The recovery rates of +dP/dt were 75.2±6.3%, 72.9±5.8% and 88.2±6.1%, respectively; The recovery rates of -dP/dt were 79.1±4.4%, 74.4±7.2% and 87.4±6.8%, respectively. Treatment with salidroside markedly reduced cell apoptosis from 21.3±3.5% to 9.5±2.6%, significantly increased O-GlcNAc levels by 1.9-fold compared to untreated hearts following ischemia/reperfusion. However, alloxan, an inhibitor of O-GlcNAc transferase, blocked the increase of O-GlcNAc induced by salidroside, markedly increased cell apoptosis to 19.8±3.1%. Electron microscopy studies demonstrated better cardiomyocyte structure and mitochondrial integrity in salidroside group than those in I/R group and alloxan group.
     Conclusions: Salidroside showed protective effects from ischemia and reperfusion injury in perfused rat isolated hearts. It increased hemodynamic recovery rate, attenuated cardiomyocytes apoptosis, and increased O-GlcNAc levels. Alloxan prevented the salidroside-induced increase in O-GlcNAc and also blocked the protective effects of salidroside. Salidroside cardioprotection from ischemia and reperfusion injury in perfused rat hearts was associated with increased O-GlcNAc.
引文
1. Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase. J Biol Chem. 1999, 274(45): 32015-32022.
    2. Zachara NE and Gerald WH, The emerging significance of O-GlcNAc in cellular regulation. Chem Rev, 2002, 102:431-438.
    3. Whisenhunt TR,Xiaoyong Y, Damon BB,et al. Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology, 2006, 16(6): 551-563.
    4. Park SY, Jiwon R, Wan L. O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in ratprimary adipocytes. Exp Mol Med, 2005, 37(3): 220-229.
    5. Moley KH, Mueckler M. Glucose transport and apoptosis Apoptosis, 2000, 5: 99-105.
    6. Slawson C, Zachara NE, Keith V, et al.Perturbations in o-linked-n- acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem, 2005, 280(38): 32944-32956.
    7. Zachara NE, Niall OD,Win DC, et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. J Biol Chem, 2004, 279(29): 30133-30142.
    8. Tamas N, Voraratt C, Richard BM, et al. Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylgluco- samine. Am J Physiol Cell Physiol, 2006, 290: C57-C65.
    9. Du XL, Takeshi M, Diane E, et al. Inhibition of GAPDH activity bypoly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. Proc Natl Acad Sci USA, 2000, 97(7): 12222-12226.
    10. Guinez C, Lemoine J, Michalski J, et al. 70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked Af-acetylglucosamine. Biochem Biophys Res Commun, 2004, 319: 21-26.
    11. Zachara NE, Hart GW. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta, 2004, 1673(1-2): 13-28.
    12. Parker GJ, Kelli CL, Rodrick PT, et al. Insulin resistance of glycogen synthase mediated by O-Linked N-Acetylglucosamine.J Biol Chem, 2003, 278(12): 10022-10027.
    13. Wells L, Gao Y, Mahoney JA, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase.J Biol Chem, 2002, 277(3): 1755-1761.
    14. Maslova LV, Kondrat'ev BIu, Maslov LN, et al. The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eksp Klin Farmakol, 1994, 57(6): 61-63.
    15. Lishmanov IB, Naumova AV, Afanas'ev SA, et al. Contribution of the opioid system to realization of inotropic effects of Rhodiola rosea extracts in ischemic and reperfusion heart damage in vitro. Eksp Klin Farmakol, 1997, 60(3): 34-36.
    16.崔建华,王引虎,张西洲,等.药物对高原人体运动时NO和NOS的影响.高原医学杂志,2001 ,11(1) :9-10.
    17.谢乐斯,刘艳丽,董丹,等.红景天甙对小鼠免疫功能的影响及杀瘤效应.大连医科大学学报,2003 ,25 (1) :22-24.
    18.赵文.藏产红景天混合提取物对BALB/c小鼠免疫功能的影.实验动物科学与管理,1998,12( 2) :25-26.
    19.张汝学,王玉芝.红景天多糖对小鼠体内脾淋巴细胞转化反应及NK细胞活性的影响.中国药理学通报,1993, 9( 4) :278-278.
    20. Zhang Y, Liu Y. Study on effects of salidroside on lipid peroxidationon oxidative stress in rat hepatic stellate cells. Zhong Yao Cai, 2005, 28(9): 794-796.
    21. Maimeskulova LA, Maslov LN, Lishmanov IuB, et al. The partici- pation of the mu-, delta- and kappa-opioid receptors in the realization of the anti-arrhythmia effect of Rhodiola rosea. Eksp Klin Farmakol, 1997, 60(1): 38-39.
    22. Lishmanov IB, Naumova AV, Afanas'ev SA, et al. Contribution of the opioid system to realization of inotropic effects of Rhodiola rosea extracts in ischemic and reperfusion heart damage in vitro. Eksp Klin Farmakol, 1997; 60(3):34-36.
    23. Zhang L, Yu H, Sun Y, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol. 2007,564, 18-25.
    24.宋斌,黄山杉,刘庆国,等.红景天苷对大鼠心肌缺血/再灌注损伤的保护作用.辽宁中医杂志,2005,32(3): 258-265.
    25. Spasov AA, Wikman GK, Mandrikov VB, et al. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine, 2000, 7(2): 85-89.
    26.宗普.人类心肌预适应的最新研究进展.国外医学,疾病分册, 1996, 287(5):284-287.
    27. Liu GS, Thornton J, Van Winkle DM, et al. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991, 84(1): 350-356.
    28. Wall TM, Sheehy R, Hartman JC. Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther. 1994, 270(2): 681-689.
    29. Schultz JE, Rose E, Yao Z, et al. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol. 1995,268(5 Pt 2): H2157-2161.
    30. Goto M, Liu Y, Yang XM, et al. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res. 1995, 77(3): 611-621.
    31. Miki T, Cohen MV, Downey JM. Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. Mol Cell Biochem. 1998, 186(1-2): 3-12.
    32. Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997, 29(1): 207-216.
    33. Sakamoto J, Miura T, Goto M, et al. Limitation of myocardial infarct size by adenosine A1 receptor activation is abolished by protein kinase C inhibitors in the rabbit. Cardiovasc Res. 1995, 29(5): 682-688.
    34. Tong H, Chen W, Steenbergen C, et al. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res. 2000, 87(4): 309-315.
    35. Krieg T, Qin Q, McIntosh EC, et al. ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. Am JPhysiol Heart Circ Physiol. 2002, 283(6): H2322-2330.
    36. Krieg T, Qin Q, Philipp S, et al. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. Am J Physiol Heart Circ Physiol. 2004, 287(6): H2606-2611.
    37. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999, 399(6736): 601-605.
    38. Costa AD, Garlid KD, West IC, et al. Protein kinase G transmits the cardio- protective signal from cytosol to mitochondria. Circ Res. 2005, 97 (4): 329 -336.
    39. Bolli R, Dawn B, Tang XL, et al. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol. 1998, 93(5): 325-338.
    40. Lochner A, Marais E, Genade S, et al. Nitric oxide: a trigger for classic preconditioning? Am J Physiol Heart Circ Physiol. 2000, 279(6): H2752-2765.
    41. Cohen MV, Yang XM, Downey JM. Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct sparing strategies. Cardiovasc Res. 2006, 70(2): 231-239.
    42. Tong H, Imahashi K, Steenbergen C, et al. Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidy- linositol-3-kinase--dependent pathway is cardioprotective. Circ Res. 2002, 90 (4): 377-379.
    43. Juhaszova M, Zorov DB, Kim SH, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004, 113(11): 1535-1549.
    44. Hausenloy DJ, Yellon DM, Mani-Babu S, et al. Preconditioning protects byinhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol. 2004, 287(2): H841-849.
    45. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res. 2004, 61(3): 372-385.
    46.金祝秋.药物行预适应的心肌保护作用.国外医学生理、病理科学与临床分册, 1997, 17(2): 106-109.
    47. Hori M, Kitaze M. Adenosine, the heart and coronary circulation. Hypertension, 1991, 18(5): 565-574.
    48. Brew EC, Mitchell MB, Rechring TF, et al. Role of bradykinin in cardiac function pretection after global ischemia reperfusion in rat heart. Am J Phsiol, 1995, 269:H1370- 1378.
    49. Elliott GT. Monophosphoryl lipid A induces delayed preconditioning against cardiac ischmia reperfusion injury. J Mol Cell Cardiol, 1998, 30(1): 3-17.
    50. Speechly Dick ME, Mocann MM, Yellow DM. Proteir kinase C Its role in ischemic preconditioning in the rat. Cir Res, 1994, 75(3): 586-591.
    51. Pemow J, Bohm F, Beltran E, et a1. L-arginine protects from ischemia/reperfusion-induced endothelial dysfunction in humans in vivo.J Appl Physiol, 2003.
    52. Martin W, Cindy R,Cindy R,et a1.Statin inhibit reoxygenation induced eardiomyocyce apoptosis : role for glycogen synthase kinase 3βand transcription factorβ-catenin.J Mole Cell Cardiol, 2004, 37(3): 681-689.
    53. Zaugg M, Lucchinetti E, Garcia C, et al. Anaesthetics and cardiac preconditioning. Part II. Clinical implications. Br J Anaesth, 2003, 91: 566-576.
    54. Dasilva R, Grampp T, Pasch T,et al . Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology, 2004, 100:59-69.
    55. Kahraman S,Kilinc K,Dal D,et a1.Propofol attenuates formation of lipid peroxides in tourniquet induced ischemia—repefusion injury.Br J Anesth, 1997,78(3): 279-281.
    56.龙村.体外循环学.北京:人民军医出版社,2004: 94-95.
    57. Undi H, Hisham A E, Burhan IG.. Cytochrome P450 2E1 (CYP2E1) is the principal enzyme responsible for urethane metabolism: comparative studies using CYP2E1-null and wild-type mice. J Pharmacol Exp Ther, 2003, 305: 557–564.
    58. Peng T, Cooper CW, and Munson PL. The hypocalcemic effect of urethane in rats. J Pharmacol Exp Ther, 1972, 182: 522-527.
    59. Kotanidou A, Augustine MK, Choi RA, et al. Urethan anesthesia protects rats against lethal endotoxemia and reduces TNF-αrelease. J Appl Physiol, 1996, 81:2304-2311.
    60. Tanja P, Giorgio D, Vittorio G. Experimental urethane anaesthe-sia prevents digoxin intoxication: electrocardiographic and histological study in rabbit. Pharmaco Res, 2000, 42 (4):355-359.
    61. Iskit AB, Guc MO. Comparison of sodium pentobarbitone and urethane anaesthesia in a rat model of coronary artery occlusion and reperfusion arrhythmias: interaction with L-NAME. Pharmacol Res, 1996, 33:13-18.
    62. Jahania MS, Sanchez JA, Narayan P, et al. Heart preservation for transplantation: principles and strategies. Ann Thorac Surg, 1999, 268(5): 1983-1987.
    63.李忠东,周采璋.离体心脏低温保存的研究进展.中华胸心血管外科杂志,1994 ,10(4):361-362.
    64. Southard J. Advances in organ preservation. Transplant Proc, 1989, 21:1195-1196.
    65. Ku K, Oku H, Alam MS. Prolonged hypothermic cardiac storage with histidine-trypophan-ketoglutarate solution: comparsion with glucose-insulin- potassium and university of Wisconsin solutions. Transplantation, 1997, 64: 971-975.
    66. Cohen NM, W ise RM, Wechsle AS, et al. Elective cardiac arrest with a hyperpolizing adenosion tripho sphate sensitive potassium channel opener. J Thorac Cardiovasc Surg, 1993,106 (2): 317-3281.
    67. Fukuda H, Luo CS, Gu X, et al. The effect of K(atp) channel activation on myocardial cationic and energetic status during ischemia and reperfusion: role in cardioprotection. J Mo l Cell Cardiol, 2001, 33(3): 545-560.
    68. Hachida M, Lu H,Ohkado A, et al. Effect of ATP-potassium channel opener nicorandil on long-term cardiac preservation. J Cardiovascular Surg (Torino), 2000, 41(4): 533-539.
    69. Zachara NE, O'Donnell N, Cheung WD, et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem, 2004, 279, 30133–30142.
    70. Yu S, Liu M, Gu X,et al. Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cell Mol Neurobiol, 2008, 28:1067-1078.
    71. Bhawanjit KB, Anna K J, Anastasis S, et al. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent Pathway. J Biol Chem, 2000, 275:8508-8514.
    72. Liu J, Pang Y, Chang T,et al. Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol, 2006, 40:303–312.
    73. Konrad RJ, Zhang F, Hale JE,et al. Alloxan is an inhibitor of the enzymeO-linked N-acetylglucosamine transferase. Biochem Biophys Res Commun, 2002, 293:207-212.
    74. Moley KH, Mueckler MM, Glucose transport and apoptosis. Apoptosis, 2000, 5: 99–105.
    75. Brookes PS, Yoon Y, Robotham JL,et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol, 2004, 287:C817–C833.
    76. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res, 2004, 61: 448–460.
    77. Chen JM, Russo MJ, Hammond KM. Alternate waiting list strategies for heart transplantation maxinize donor organ utilization. Ann Thorac Surg 2005, 80: 224-228.
    78. Jahania MS, Sanchez JA, Narayan P, et al: Heart preservation for transplantation: principles and strategies. Ann Thorac Surg, 1999, 68: 1983-1987.
    79. Saitoh Y, Hashimoto M, Ku K, et al: Heart preservation in HTK solution: role of coronary vasculature in recovery of cardiac function. Ann Thorac Surg, 2000, 69: 107-112.
    80. Yotsumoto G, Jeschkeit S, Funcke C, et al: Total recovery of heart grafts of non-heart-beating donors after 3 hours of hypothermic coronary oxygen persufflation preservation in an orthotopic pig transplantation model. Transplantation. 2003,75:750-757.
    81. Del Nido P J, Wilson G J, Mickle D A, et al. The role of cardioplegic solution buffering in myocardial protection. A biochemical and his topathological assessment. J Thorac Cardiovasc Surg, 1985, 89(5): 689-699.
    82. Hachida M, Ookado A, Nonoyama M, et al. Effect of HTK solution for myocardial preservation. J Cardiovasc Surg, 1996, 37(3): 269- 274.
    83. Maggi CA, Manzini S, Parlani M, et al: An analysis of the effects ofurethane on cardiovascular responsiveness to catecholamines in terms of its interference with Ca 2 + mobilization from both intra and extracellular pools. Experientia, 1984, 40: 52-59.
    84. Masters TN, Fokin AA, Schaper J, et al. Changes in the preserved heart that limit the length of preservation. J Heart Lung Transplant, 2002, 21 (5): 590-599.
    85. Armstrong JM, Borg F, Scatton B, et al. Urethane inhibits cardiovascular responses mediated by the stimulation of alpha-2 adrenoceptors in the rat. J Pharmacol Exp Ther, 1982, 223(2): 524-535.
    86. Koblin DD. Urethane: Help or Hindrance? Anesth Analg, 2002, 94:241-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700