基于硼酸识别作用的生物传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感是将生物识别过程(酶-底物、酶-辅酶、抗原-抗体、激素-受体、DNA杂交、凝集素-多糖等)的分子与物理化学检测要素有机组合的现代分析化学分支。生物识别元件(酶、抗体、核酸、受体、细胞器、微生物、组织、生物模拟材料等)的有效固定是构建生物传感器的关键步骤之一。本学位论文中,我们简要综述了电化学酶传感器以及硼酸识别作用的近期进展,并基于硼酸识别作用对糖蛋白酶固定和生物传感开展了研究,主要内容如下:
     1.基于硼酸功能化单体与糖蛋白中1,2-/1,3-邻二醇结构的相互作用,发展了一种糖蛋白酶的高效固定新方法。首先,在镀金金电极(Au-plated Au)上,先后滴涂葡萄糖氧化酶(GOx)-氨基苯硼酸(ABA)复合物和氯金酸钠,使生成GOx-PABA-Aunano生物纳米复合物,最后滴涂壳聚糖(CS),并空气中干燥。本法中,纳米金颗粒生长在酶分子附近,可大大增强酶反应电子转移速率并增敏安培响应。所制得的CS/GOx-PABA-Aunano/Au-plated Au电极在第一代和第二代生物传感模式下都具有很好的分析性能,以其作为生物阳极的单极生物燃料电极的功率密度优于多数文献报道。
     2.构建了一种用于高敏检测尿酸(UA)的安培传感器。在镀铂的金电极(Ptplate/Au)表面,在含有尿酸氧化酶(UOx)的中性水溶液中,借助氯铂酸的化学氧化作用,使糖蛋白UOx结合的3-噻吩硼酸(TBA)聚合,生成UOx-聚(3-噻吩硼酸)(PTBA)-Ptnano生物纳米复合物,随后外裹一层CS膜,制得CS/UOx-PTAB-Ptnano/Ptplate/Au电极。所制酶电极对UA的检测灵敏度达134μAmM-1cm-2,检测限为1μM (S/N=3),线性范围为5μM~1.2mM,并具有优异的操作和储存稳定性。酶电极用于血清样品中UA的分析,结果满意。
     3.提出一种简便的酶催化合成策略,藉此制备了酶-PTBA聚合型生物复合物(PBCs)用于高性能单酶/双酶安培传感。在含辣根过氧化物酶(HRP)的水溶液中,通过加入氧化剂H202,触发酶催化氧化聚合TBA单体,得到HRP-PTBA PBCs;在HRP和GOx混合溶液中,通过加入H202或葡萄糖(有氧条件下GOx和葡萄糖的混合溶液中将产生H202)促发酶催化合成反应,得到GOx-HRP-PTBA PBCs。将所制PBCs简单地滴涂至镀金的金电极(Auplate/Au)表面,再外裹一层CS膜,制得单酶/双酶安培生物传感器。PTBA和TBA可以与酶外壳糖基结合(硼酸-邻二醇相互作用),而较少影响酶活性,UV-vis光谱测试结果表明包埋酶几乎保持了原始酶的比活性。在媒介体Fe(CN)64-存在下,采用循环伏安法、电化学阻抗谱和计时电流法研究了酶电极的电化学行为。CS/HRP-PTBA/Auplate/Au电极对H2O2的检测灵敏度达390μmM-1cm-2检测限为0.1μM,线性范围1~400μM。CS/GOx-HRP-PTBA(H2O2)/Auplae/Au双酶电极对葡萄糖的检测灵敏度达75.1μAmM-1cm-2,检测限为1μM,线性范围为5μM~0.83mM。我们发现,采用Fe(CN)64媒介体,可有效地避免在使用其他可有效翻转GOx的媒介体时所遇到的“异常安培响应”。
     4.基于硼酸-糖蛋白的亲和作用和纳米材料修饰,构建了生物传感层层组装膜和H2O2安培生物传感器。采用化学氧化“一锅法”合成了硼酸功能化的新型多壁碳纳米管(MWCNTs),兼具CNTs的电学/机械特性和硼酸基的糖蛋白亲和性。以16.8~21wt.%糖基化的HRP为模型酶,采用石英晶体微天平、循环伏安法和电化学阻抗谱法,研究了纳米材料和糖蛋白酶的层层组装行为,以及组装材料的生物传感应用。结果表明,该组装策略为酶活性的保持提供了适宜的微环境。所得电极对H2O2的检测灵敏度达184.4μA mN4-1cm-2,检测限为0.2μM,线性范围为1μM~0.6mM。
     5.采用电化学石英晶体微天平(EQCM)技术研究了在弱酸性媒介中,ABA和苯胺的电化学共聚。采用N-乙酰神经氨酸(Neu5Ac)为模板分子,制备了PABA-co-PANI分子印迹聚合物(MIP)。在磷酸缓冲液(PBS, pH7.0)中,所得MIP具有良好的电活性和分子识别特性,PANI的共沉积显著增强了MIP膜在PBS中的稳定性。分析物Neu5Ac特异性结合到硼酸基会导致MIP膜电活性下降,藉此实现了在PBS中差分脉冲伏安检测Neu5Ac。检测灵敏度低至50μM,对葡萄糖等邻二醇类似物有很好的选择性。
     6.提出采用金纳米颗粒(AuNPs)交联团聚比色分析酪氨酸酶(TR)活性。通过碳二亚胺化学合成了硼酸基和酪氨酸基双功能化的AuNPs。在还原剂抗坏血酸存在下,O2辅助TR催化氧化酪氨酸,其酶催化产物以几茶酚形态存在。基于硼酸-邻二醇相互作用,AuNPs发生团聚行为,并与TR活性相关。藉此构建了一个TR活性分析及抑制剂筛选的比色系统。
By combining the biological recognition process (e.g. enzyme-substrate, enzyme-cofactor, antibody-antigen, hormone-receptor, DNA hybridization, lectin-polysaccharide) and physical/chemical detection elements, biosensing has become one of the most attractive branches of modern analytical chemisty. The efficient immobilization of various biological recognition elements (e.g. enzyme, antibody, ssDNA, receptor, organelles, microorganisms, organization, biomimic materials) plays a key role in the fabrication of biosensors. In this dissertation, the recent progress of electrochemical enzymatic biosensors and boronic acid recognition is reviewed. A series of detailed studies on enzyme immobilization and biosensing applications based on boronic acid recognition are conducted, as summarized below.
     1. We propose a new protocol for efficient immobilization of a glycoprotein enzyme based on the interaction of its1,2-or1,3-diols with a boronic acid functionalized monomer. Briefly, casting a mixture of glucose oxidase (GOx) and anilineboronic acid (ABA) followed by a NaAuCl4solution to an Au-plated Au electrode surface yielded a GOx-poly(ABA)(PABA)-gold nanoparticle (Aunano) bionanocomposite, and chitosan (CS) was then cast and air-dried. In the present protocol, the small-sized Aunano or Au subnanostructures can form near/on the enzyme molecule, which greatly promotes the electron transfer of enzymatic reaction and enhances the amperometric responses. The thus-prepared CS/GOx-PABA-Aunano/Au-plated Au electrode worked well in the first-/second generation biosensing modes and as a bioanode in a monopolar biofuel cell, with analytical or cell-power performance superior to those of most analogues hitherto reported.
     2. A highly sensitive amperometric biosensor for uric acid (UA) was proposed. Chemical oxidation of glycoprotein-bound thiophene-3-boronic acid (TBA) monomer by chloroplatinate in neutral aqueous solution containing UOx yielded UOx-PTBA-Ptnano bionanocomposite with high specific enzymatic activity on a platinized (Ptplate) Au electrode, which was then covered by an outer-layer CS film to fabricate a CS/UOx-PTBA-Ptnano/Ptpiate/Au electrode. This electrode exhibited a linear amperometric response to UA concentration from5μM to1.2mM with a sensitivity of134μA mM-1cm-2, a limit of detection (LOD)(S/N=3) of1μM, and excellent operation/storage stability, which also worked well in serum samples.
     3. We propose a facile one-pot enzymatic polymerization protocol to prepare enzyme-PTBA polymeric biocomposites (PBCs) for high-performance mono-/bi-enzyme amperometric biosensing. Briefly, horseradish peroxidase (HRP)-catalyzed chemical oxidation/polymerization of TBA monomer was conducted in aqueous solution containing HRP (or plus GOx) by either directly added or GOx-glucose generated oxidant H2O2, and the mono-/bi-enzyme amperometric biosensors were prepared simply by casting the prepared PBCs on Au-plated Au electrode (Aupiate/Au), followed by coating with an outer-layer CS film. The PTBA is used here due to its (and TBA's) capability of covalent bonding with enzyme at the glycosyl sites (so-called boronic acid-diol interaction) which less affects enzymatic activity, and UV-vis spectrophotometric tests confirmed that the encapsulated HRP almost possesses its pristine enzymatic specific activity. The enzyme electrodes were studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry in the presence of Fe(CN)64-mediator. The CS/HRP-PTBA/Auplate/Au electrode responded linearly to H2O2concentration from1to400μM with a sensitivity of395μA mM-1cm-2and a LOD of0.1μM. The bienzyme CS/GOx-HRP-PTBA(H2O2)/Aupiate/Au electrode responded linearly to glucose concentration from5μM to0.83mM with a sensitivity of75.1μA mM-1cm-2and a LOD of μM, and it is found that the use of Fe(CN)64-mediator here favorably avoids the "unusual amperometric responses" observed when other mediators that can also efficiently turn over GOx are used.
     4. A layer-by-layer (LBL) bionanocomposite assembly was fabricated based on boronic acid-glycoprotein affinity and modified multiwalled carbon nanotubes (MWCNTs) for amperometric H2O2biosensing. Boronic acid functionalized MWCNTs were prepared by chemical oxidation in one-pot manner, which combine together the electrical/mechanical properties of MWCNTs and bioaffinity of boronic acid toward glycoproteins. By using HRP of a glycosylation degree of about16.8-21wt.%as a model glycoenzyme, the LBL assembly was studied by quartz crystal microbalance, cyclic voltammetry, and electrochemical impedance spectroscopy for biosensing application. The LBL assembly provides a favorable microenvironment to retain the bioactivity of the enzyme and to prevent enzyme molecule leakage. The resulting biosensor responded linearly to H2O2concentration from1μM to0.6mM with a sensitivity of184.4μA mM-1cm-2and a LOD of0.2μM.
     5. Electrochemical quartz crystal microbalance was used to study the electrochemical copolymerization of ABA and aniline in a weak acidic medium, and a PABA-co-polyaniline (PANI) based molecular imprinted polymer (MIP) was prepared using N-acetylneuraminic acid (Neu5Ac) as template molecules. The Neu5Ac-eluted MIP showed good electroactivity and molecular recognition behavior in phosphate buffer solution (PBS, pH7.0), and the codeposition of PANI can notably improve the stability of the MIP films in this PBS. The specific binding of analytes to the boronic acid moieties decreased the film electroactivity, thus sensitive differential pulse voltammetric determination of Neu5Ac was performed in PBS (pH7.0) with a LOD of50μM, and high selectivity against analogue diols such as glucose was obtained.
     6. A sensitive colorimetric analysis was developed for tyrosinase (TR) activity using the principle of crosslinking-induced gold nanoparticles (AuNPs) aggregation. Boronic acid and tyrosine bifunctionalized AuNPs were synthesized by carbodiimide chemistry. In the presence of reducing agent ascorbic acid, TR catalyzes the oxidation of tyrosine with aid of O2, and the enzymatic product exists as the desired catechol structure. Based on the boronic acid-diols interaction, an aggregation behavior of AuNPs occurred, which is dependent on TR activity. Thus, a sensitive TR activity assay and inhibitor screening colorimetric system are achieved.
引文
[1]Dhand, C., M. Das, M. Datta, and B.D. Malhotra. Recent advances in polyaniline based biosensors. Biosens. Bioelectron.,2011,26(6):2811-2821.
    [2]Ronkainen, N.J., H.B. Halsall, and W.R. Heineman. Electrochemical biosensors. Chem. Soc. Rev.,2010,39(5):1747-1763.
    [3]Upadhyay, S., M.K. Sharma, G. Rama Rao, B.K. Bhattacharya, V.K. Rao, and R. Vijayaraghavan. Application of bimetallic nanoparticles modified screen printed electrode for the detection of organophosphate compounds using an enzyme inhibition approach. Anal. Methods,2011,3(10):2246-2253.
    [4]Kotanen, C.N., F.G. Moussy, S. Carrara, and A. Guiseppi-Elie. Implantable enzyme amperometric biosensors. Biosens. Bioelectron.,2012,35(1):14-26.
    [5]Guiseppi-Elie, A. An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal. Bioanal. Chem.,2011,399(1):403-419.
    [6]Yahiro, A., S. Lee, and D. Kimble. Bioelectrochemistry:I. enzyme utilizing bio-fuel cell studies. Biochim. Biophys. Acta,1964,88(2):375-383.
    [7]Heller, A. Miniature biofuel cells. Phys. Chem. Chem. Phys.,2003,6(2):209-216.
    [8]Katz, E. and I. Willner. A biofuel cell with electrochemically switchable and tunable power-output. J.Am.Chem. Soc., 2003,125(22):6803-6813.
    [9]Meredith, M.T. and S.D. Minteer. Biofuel cells:enhanced enzymatic bioelectrocatalysis. Annu. Rev. Anal. Chem.,2012,5:157-179.
    [10]Barton, S.C., J. Gallaway, and P. Atanassov. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev.,2004,104(10):4867-4886.
    [11]Deng, L., C. Chen, M. Zhou, S. Guo, E. Wang, and S. Dong. Integrated self-powered microchip biosensor for endogenous biological cyanide. Anal. Chem.,2010,82(10): 4283-4287.
    [12]Amir, L., T.K. Tam, M. Pita, M.M. Meijler, L. Alfonta, and E. Katz. Biofuel cell controlled by enzyme logic systems. J. Am. Chem. Soc.,2008,131(2):826-832.
    [13]Yang, X.-Y., G. Tian, N. Jiang, and B.-L. Su. Immobilization technology:a sustainable solution for biofuel cell design. Energy Environ. Sci.,2012,5(2):5540-5563.
    [14]Davis, F. and S.P.J. Higson. Biofuel cells—recent advances and applications. Biosens. Bioelectron.,2007,22(7):1224-1235.
    [15]Clark, L.C. and C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci.,1962,102(1):29-45.
    [16]Wang, J. Electrochemical glucose biosensors. Chem. Rev.,2008,108(2):814-825.
    [17]Chen, X., J. Zhu, R. Tian, and C. Yao. Bienzymatic glucose biosensor based on three dimensional macroporous ionic liquid doped sol-gel organic-inorganic composite. Sens. Actuators B:Chem.,2012,163(1):272-280.
    [18]Niu, X., C. Chen, H. Zhao, Y. Chai, and M. Lan. Novel snowflake-like Pt-Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose sensing. Biosens. Bioelectron.,2012,36(1):262-266.
    [19]Karyakin, A.A. Principles of direct (mediator free) bioelectrocatalysis. Bioelectrochemistry, 2012,88:70-75.
    [20]Deng, S., G. Jian, J. Lei, Z. Hu, and H. Ju. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens. Bioelectron.,2009,25(2):373-377.
    [21]Bao, S.J., C.M. Li, J.F. Zang, X.Q. Cui, Y. Qiao, and J. Guo. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater.,2008,18(4): 591-599.
    [22]Wang, Z., S. Liu, P. Wu, and C. Cai. Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem.,2009,81(4):1638-1645.
    [23]Courjean, O., F. Gao, and N. Mano. Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew. Chem. Int. Ed.,2009, 48(32):5897-5899.
    [24]Torres-Salas, P., A. del Monte-Martinez, B. Cutino-Avila, B. Rodriguez-Colinas, M. Alcalde, A.O. Ballesteros, and F.J. Plou. Immobilized biocatalysts:novel approaches and tools for binding enzymes to supports. Adv. Mater.,2011,23(44):5275-5282.
    [25]Sassolas, A., L.J. Blum, and B.D. Leca-Bouvier. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv.,2012,30(3):489-511.
    [26]Wang, X., X. Liu, X. Yan, P. Zhao, Y. Ding, and P. Xu. Enzyme-nanoporous gold biocomposite:excellent biocatalyst with improved biocatalytic performance and stability. PLoS One,2011,6(9):e24207.
    [27]Yasutaka, K., Y. Takato, K. Takashi, M. Kohsuke, and Y. Hiromi. Enhancement in adsorption and catalytic activity of enzymes immobilized on phosphorus- and calcium-modified MCM-41. J. Phys. Chem. B,2011,115(34):10335-10345.
    [28]Cosnier, S. and M. Holzinger. Electrosynthesized polymers for biosensing. Chem. Soc. Rev., 2011,40(5):2146-2156.
    [29]Wang, Y., X. Wang, B. Wu, Z. Zhao, F. Yin, S. Li, X. Qin, and Q. Chen. Dispersion of single-walled carbon nanotubes in poly (diallyldimethylammonium chloride) for preparation of a glucose biosensor. Sens. Actuators B:Chem.,2008,130(2):809-815.
    [30]Park, B.-W., D.-Y. Yoon, and D.-S. Kim. Recent progress in bio-sensing techniques with encapsulated enzymes. Biosens. Bioelectron.,2010,26(1):1-10.
    [31]Luo, X., A.J. Killard, A. Morrin, and M.R. Smyth. Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal. Chim. Acta,2006, 575(1):39-44.
    [32]Nien, P.C., T.S. Tung, and K.C. Ho. Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly (3,4-ethylenedioxythiophene) film. Electroanalysis,2006, 18(13-14):1408-1415.
    [33]Li, M., C. Deng, Q. Xie, Y. Yang, and S. Yao. Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing. Electrochim. Acta,2006,51(25):5478-5486.
    [34]Zhang, Z., H. Liu, and J. Deng. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Anal. Chem.,1996,68(9):1632-1638.
    [35]Zhou, Q., Q. Xie, Y. Fu, Z. Su, X. Jia, and S. Yao. Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J. Phys. Chem. B,2007,111(38):11276-11284.
    [36]Bahshi, L., M. Frasconi, R. Tel-Vered, O. Yehezkeli, and I. Willner. Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme- Pt nanoparticles composite electrodes. Anal. Chem.,2008,80(21):8253-8259.
    [37]Yehezkeli, O., Y.M. Yan, I. Baravik, R. Tel-Vered, and I. Willner. Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes:a generic paradigm for electrically contacted enzyme systems. Chem. Eur. J.,2009,15(11):2674-2679.
    [38]Baravik, I., R. Tel-Vered, O. Ovits, and I. Willner. Electrical contacting of redox enzymes by means of oligoaniline-cross-linked enzyme/carbon nanotube composites. Langmuir,2009, 25(24):13978-13983.
    [39]Tel-Vered, R. and I. Willner. Bis-aniline-crosslinked enzyme-metal nanoparticle composites on electrodes for bioelectronic applications. Isr. J. Chem.,2010,50(3):321-332.
    [40]Fu, Y., C. Zou, Q. Xie, X. Xu, C. Chen, W. Deng, and S. Yao. Highly sensitive glucose biosensor based on one-pot biochemical preoxidation and electropolymerization of 2, 5-dimercapto-1,3,4-thiadiazole in glucose oxidase-containing aqueous suspension. J. Phys. Chem. B,2009,113(5):1332-1340.
    [41]Yang, S., W.Z. Jia, Q.Y. Qian, Y.G. Zhou, and X.H. Xia. Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity. Anal. Chem.,2009,81(9): 3478-3484.
    [42]Lykourinou, V., Y.Chen, X.-S.Wang,L. Meng,T.Hoang, L.-J.Ming,R.L.Musselman, and S. Ma. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF:a new platform for enzymatic catalysis. J. Am. Chem. Soc.,2011,133(27): 10382-10385.
    [43]Fu, Y., P. Li, L. Bu, T. Wang, Q. Xie, J. Chen, and S. Yao. Exploiting metal-organic coordination polymers as highly efficient immobilization matrixes of enzymes for sensitive electrochemical biosensing. Anal. Chem.,2011,83(17):6511-6517.
    [44]Gao, Y. and I. Kyratzis. Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—a critical assessment. Bioconjugate Chem.,2008,19(10):1945-1950.
    [45]Zeng, Y.L., H.W. Huang, J.H. Jiang, M.N. Tian, C.X. Li, C.R. Tang, G.L. Shen, and R.Q. Yu. Novel looped enzyme-polyamidoamine dendrimer nanohybrids used as biosensor matrix. Anal. Chim. Acta,2007,604(2):170-176.
    [46]Delvaux, M., A. Walcarius, and S. Demoustier-Champagne. Bienzyme HRP--GOx-modified gold nanoelectrodes for the sensitive amperometric detection of glucose at low overpotentials. Biosens. Bioelectron.,2005,20(8):1587-1594.
    [47]Ley, C., D. Holtmann, K.-M. Mangold, and J. Schrader. Immobilization of histidine-tagged proteins on electrodes. Colloids Surf., B,2011,88(2):539-551.
    [48]Haddour, N., S. Cosnier, and C. Gondran. Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins. J. Am. Chem. Soc., 2005,127(16):5752-5753.
    [49]Ganesana, M., G. Istarnboulie, J.-L. Marty, T. Noguer, and S. Andreescu. Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens. Bioelectron.,2011,30(1):43-48.
    [50]Schlossbauer, A., D. Schaffert, J. Kecht, E. Wagner, and T. Bein. Click chemistry for high-density biofunctionalization of mesoporous silica. J. Am. Chem. Soc.,2008,130(38): 12558-12559.
    [51]Villalonga, R., C. Camacho, R. Cao, J. Hernandez, and J.C. Matias. Amperometric biosensor for xanthine with supramolecular architecture. Chem. Commun.,2007(9):942-944.
    [52]Camacho, C., J.C. Matias, R. Cao, M. Matos, B. Chico, J. Hernandez, M.A. Longo, M.A. Sanroman, and R. Villalonga. Hydrogen peroxide biosensor with a supramolecular layer-by-layer design. Langmuir,2008,24(15):7654-7657.
    [53]Yang, H.W., D.C. Kim, S.-H. Yoo, S. Park, and D.J. Kang. Constructing LBL-assembled functional bio-architecture using gold nanorods for lactate detection. Mater. Res. Bull.,2012, 47(10):3056-3060.
    [54]Takahashi, S., K. Sato, and J.-i. Anzai. Layer-by-layer construction of protein architectures through avidin-biotin and lectin-sugar interactions for biosensor applications. Anal. Bioanal. Chem.,2012,402(5):1749-1758.
    [55]Yao, H. and N. Hu. pH-controllable on-off bioelectrocatalysis of bienzyme layer-by-layer films assembled by concanavalin A and giucoenzymes with an electroactive mediator. J. Phys. Chem. B,2010,114(30):9926-9933.
    [56]Yang, S., Z. Chen, X. Jin, and X. Lin. HRP biosensor based on sugar-lectin biospecific interactions for the determination of phenolic compounds. Electrochim. Acta,2006,52(1): 200-205.
    [57]Pallarola, D., N. Queralto, F. Battaglini, and O. Azzaroni. Supramolecular assembly of glucose oxidase on concanavalin A-modified gold electrodes. Phys. Chem. Chem. Phys.,2010,12(28): 8071-8083.
    [58]Li, W., R. Yuan, Y. Chai, H. Zhong, and Y. Wang. Study of the biosensor based on platinum nanoparticles supported on carbon nanotubes and sugar-lectin biospecific interactions for the determination of glucose. Electrochim. Acta,2011,56(11):4203-4208.
    [59]Pallarola, D., N. Queralto, W. Knoll, O. Azzaroni, and F. Battaglini. Facile glycoenzyme wiring to electrode supports by redox-active biosupramolecular glue. Chem. Eur. J.,2010, 16(47):13970-13975.
    [60]Li, F., Z. Wang, W. Chen, and S. Zhang. A simple strategy for one-step construction of bienzyme biosensor by in-situ formation of biocomposite film through electrodeposition. Biosens. Bioelectron.,2009,24(10):3030-3035.
    [61]Kuivila, H.G., A.H. Keough, and E.J. Soboczenski. Areneboronates from diols and polyols. J. Org. Chem.,1954,19(5):780-783.
    [62]Liu, X.C. and W.H. Scouten. Studies on oriented and reversible immobilization of glycoprotein using novel boronate affinity gel. J. Mol. Recognit.,1996,9(5-6):462-467.
    [63]Liu, S., B. Miller, and A. Chen. Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase. Electrochem. Commun.,2005,7(12): 1232-1236.
    [64]Liu, S., L. Bakovic, and A. Chen. Specific binding of glycoproteins with poly (aniline boronic acid) thin film. J. Electroanal. Chem.,2006,591(2):210-216.
    [65]Liu, T., H. Su, X. Qu, P. Ju, L. Cui, and S. Ai. Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens. Actuators B:Chem.,2011,160(1):1255-1261.
    [66]Cui, L., M. Xu, J. Zhu, and S. Ai. A novel hydrogen peroxide biosensor based on the specific binding of horseradish peroxidase with polymeric thiophene-3-boronic acid monolayer in hydrophilic room temperature ionic liquid. Synth. Met.,2011,161(15-16):1686-1690.
    [67]Tan, Y., W. Deng, C. Chen, Q. Xie, L. Lei, Y. Li, Z. Fang, M. Ma, J. Chen, and S. Yao. Immobilization of enzymes at high load/activity by aqueous electrodeposition of enzyme-tethered chitosan for highly sensitive amperometric biosensing. Biosens. Bioelectron., 2010,25(12):2644-2650.
    [68]Zebda, A., C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin, and S. Cosnier. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun.,2011,2:370.
    [69]Han, K., Z. Liang, and N. Zhou. Design strategies for aptamer-based biosensors. Sensors, 2010,10(5):4541-4557.
    [70]Lei, J. and H. Ju. Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev.,2012,41(6):2122-2134.
    [71]Gao, W., H. Dong, J. Lei, H. Ji, and H. Ju. Signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA. Chem. Commun.,2011,47(18):5220-5222.
    [72]Wei, Q., Y. Zhao, B. Du, D. Wu, Y. Cai, K. Mao, H. Li, and C. Xu. Nanoporous PtRu alloy enhanced nonenzymatic immunosensor for ultrasensitive detection of microcystin-LR. Adv.-Funct, Mater.,2011,21(21):4193-4198.
    [73]Li, Y., M. Hong, Y. Lin, Q. Bin, Z. Lin, Z. Cai, and G. Chen. Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. Chem. Commun.,2012,48(52):6562-6564.
    [74]Jiang, B., M. Wang, Y. Chen, J. Xie, and Y. Xiang. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosens. Bioelectron.,2012,32(1):305-308.
    [75]Han, X.X., L. Chen, W. Ji, Y. Xie, B. Zhao, and Y. Ozaki. Label-free indirect immunoassay using an avidin-induced surface-enhanced raman scattering substrate. Small,2011,7(3): 316-320.
    [76]Tan, L., Q. Xie, and S. Yao. Electrochemical piezoelectric quartz crystal impedance study on the interaction between concanavalin A and glycogen at Au electrodes. Bioelectrochemistry, 2007,70(2):348-355.
    [77]Wang, Y., X. Zhu, M. Wu, N. Xia, J. Wang, and F. Zhou. Simultaneous and label-free determination of wild-type and mutant p53 at a single surface plasmon resonance chip preimmobilized with consensus DNA and monoclonal antibody. Anal. Chem.,2009,81(20): 8441-8446.
    [78]Kurkina, T., A. Vlandas, A. Ahmad, K. Kern, and K. Balasubramanian. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed.,2011, 50(16):3710-3714.
    [79]Baker, G.A., R. Desikan, and T. Thundat. Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers. Anal. Chem.,2008,80(13):4860-4865.
    [80]Sakata, T. and Y. Miyahara. Noninvasive monitoring of transporter-substrate interaction at cell membrane. Anal. Chem.,2008,80(5):1493-1496.
    [81]Haupt, K. Molecularly imprinted polymers in analyticalchemistry. Analyst,2001,126(6): 747-756.
    [82]Kloskowski, A., M. Pilarczyk, A. Przyjazny, and J. Namiesnik. Progress in development of molecularly imprinted polymers as sorbents for sample preparation. Crit. Rev. Anal. Chem., 2009,39(1):43-58.
    [83]Ye, L. and K. Mosbach. Molecular imprinting:synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater.,2008,20(3):859-868.
    [84]Lakshmi, D., A. Bossi, M.J. Whitcombe, I. Chianella, S.A. Fowler, S. Subrahmanyam, E.V. Piletska, and S.A. Piletsky. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal. Chem.,2009,81(9):3576-3584.
    [85]Cunliffe, D., A. Kirby, and C. Alexander. Molecularly imprinted drug delivery systems. Adv. Drug Delivery Rev.,2005,57(12):1836-1853.
    [86]Cambre, J.N. and B.S. Sumerlin. Biomedical applications of boronic acid polymers. Polymer, 2011,52(21):4631-4643.
    [87]Egawa, Y., T. Seki, S. Takahashi, and J.-i. Anzai. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mater. Sci. Eng. C,2011,31(7):1257-1264.
    [88]Cheng, F. and F. Jakle. Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polym. Chem.,2011,2(10):2122-2132.
    [89]Li, H., H. Wang, Y. Liu, and Z. Liu. A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem. Commun., 2012,48(34):4115-4117.
    [90]Qu, Y., J. Liu, K. Yang, Z. Liang, L. Zhang, and Y. Zhang. Boronic acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment. Chem. Eur. J.,2012,18(29):9056-9062.
    [91]Lin, Z., J. Zheng, Z. Xia, H. Yang, L. Zhang, and G. Chen. One-pot synthesis of phenylboronic acid-functionalized core-shell magnetic nanoparticles for selective enrichment of glycoproteins. RSC Adv,2012,2(12):5062-5065.
    [92]Okutucu, B.and S. Onal. Molecularly imprinted polymers for separation of various sugars from human urine. Talanta,2011,87:74-79.
    [93]Zhao, Y.-H. and D.F. Shantz. Phenylboronic acid functionalized SBA-15 for sugar capture. Langmuir,2011,27(23):14554-14562.
    [94]Liang, L. and Z. Liu. A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem. Commun.,2011,47(8): 2255-2257.
    [95]Li, Y., W. Xiao, K. Xiao, L. Berti, J. Luo, H.P. Tseng, G. Fung, and K.S. Lam. Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew. Chem. Int. Ed.,2012,51(12):2864-2869.
    [96]Zhao, Y., B.G. Trewyn, I.I. Slowing, and V.S.Y. Lin. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J. Am. Chem. Soc.,2009,131(24):8398-8400.
    [97]Xu, J., D. Yang, W. Li, Y. Gao, H. Chen, and H. Li. Phenylboronate-diol crosslinked polymer gels with reversible sol-gel transition. Polymer,2011,52(19):4268-4276.
    [98]Roy, D. and B.S. Sumerlin. Glucose-sensitivity of boronic acid block copolymers at physiological pH. ACS Macro Lett.,2012,1(5):529-532.
    [99]Wu, W., N. Mitra, E.C.Y. Yan, and S. Zhou. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano, 2010,4(8):4831-4839.
    [100]Ghosh, K.K., E. Yap, H. Kim, J.-S. Lee, and Y.-T. Chang. A colorimetric pH indicators and boronic acids ensemble array for quantitative sugar analysis. Chem. Commun.,2011,47(13): 4001-4003.
    [101]Shoji, E. and M.S. Freund. Potentiometric sensors based on the inductive effect on the pKa of poly(aniline):a nonenzymatic glucose sensor. J. Am. Chem. Soc.,2001,123(14):3383-3384.
    [102]Wang, W., X. Gao, and B. Wang. Boronic acid-based sensors. Curr. Org. Chem.,2002,6(14): 1285-1317.
    [103]Burress, J.W., S. Gadipelli, J. Ford, J.M. Simmons, W. Zhou, and T. Yildirim. Graphene oxide framework materials:theoretical predictions and experimental results. Angew. Chem. Int. Ed., 2010,49(47):8902-8904.
    [104]Bapat, A.P., D. Roy, J.G. Ray, D.A. Savin, and B.S. Sumerlin. Dynamic-covalent macromolecular stars with boronic ester linkages. J. Am. Chem. Soc.,2011,133(49): 19832-19838.
    [105]Pham, T.A., N.A. Kumar, and Y.T. Jeong. Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine. Colloids Surf. A,2010,370(1-3):95-101.
    [106]Zayats, M., E. Katz, and I. Willner. Electrical contacting of flavoenzymes and NAD(P)+-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes. J. Am. Chem. Soc.,2002,124(49):14724-14735.
    [107]Zayats, M., E. Katz, and I. Willner. Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer. J. Am. Chem. Soc.,2002,124(10):2120-2121.
    [108]Yan, Y., O. Yehezkeli, and I. Willner. Integrated, electrically contacted NAD(P)+-Dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications. Chem. Eur. J., 2007,13(36):10168-10175.
    [109]Chen, W., Y. Cheng, and B. Wang. Dual-responsive boronate crosslinked micelles for targeted drug delivery. Angew. Chem. Int. Ed,2012,51(22):5293-5295.
    [110]Tan, J., H.F. Wang, and X.P. Yan. Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica. Anal. Chem.,2009,81(13):5273-5280.
    [111]Fang, H., G. Kaur, and B. Wang. Progress in boronic acid-based fluorescent glucose sensors. J. Fluoresc.,2004,14(5):481-489.
    [112]Tong, A.J., A. Yamauchi, T. Hayashita, Z.Y. Zhang, B.D. Smith, and N. Teramae. Boronic acid fluorophore/β-cyclodextrin complex sensors for selective sugar recognition in water. Anal. Chem.,2001,73(7):1530-1536.
    [113]Zhang, X., L. Chi, S. Ji, Y. Wu, P. Song, K. Han, H. Guo, T.D. James, and J. Zhao. Rational design of d-PeT phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of a-hydroxyl carboxylic acids and monosaccharides. J. Am. Chem. Soc., 2009,131(47):17452-17463.
    [114]Kong, B., A. Zhu, Y. Luo, Y. Tian, Y. Yu, and G. Shi. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem., 2011,123(8):1877-1880.
    [115]Ali, S.R., Y. Ma, R.R. Parajuli, Y. Balogun, W.Y.C. Lai, and H. He. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem.,2007,79(6):2583-2587.
    [116]Liu, A., S. Peng, J.C. Soo, M. Kuang, P. Chen, and H. Duan. Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal. Chem.,2010, 83(3):1124-1130.
    [117]Qian, R., L. Ding, L. Bao, S. He, and H. Ju. In situ electrochemical assay of cell surface sialic acids featuring highly efficient chemoselective recognition and a dual-functionalized nanohorn probe. Chem. Commun.,2012,48(32):3848-3850.
    [118]Pogorelova, S.P., M. Zayats, T. Bourenko, A.B. Kharitonov, O. Lioubashevski, E. Katz, and I. Willner. Analysis of NAD(P)+/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals. Anal. Chem.,2003,75(3):509-517.
    [119]Song, S.Y., Y.D. Han, Y.M. Park, C.Y. Jeong, Y.J. Yang, M.S. Kim, Y. Ku, and H.C. Yoon. Bioelectrocatalytic detection of glycated hemoglobin (HbAlc) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron.,2012,35(1):355-362.
    [120]Zhong, X., H. Bai, J. Xu, H. Chen, and Y. Zhu. A reusable interface constructed by 3-aminophenylboronic acid-functionalized multiwalled carbon nanotubes for cell capture, release, and cytosensing. Adv. Funct. Mater.,2010,20(6):992-999.
    [121]Wang, J., J. Gao, D. Liu, D. Han, and Z. Wang. Phenylboronic acid functionalized gold nanoparticles for highly sensitive detection of Staphylococcus aureus. Nanoscale,2012,4(2): 451-454.
    [122]De Guzman, J.M., S.A. Soper, and R.L. McCarley. Assessment of glycoprotein interactions with 4-[(2-aminoethyl)carbamoyl]phenylboronic acid surfaces using surface plasmon resonance spectroscopy. Anal. Chem.,2010,82(21):8970-8977.
    [123]Pribyl, J. and P. Skladal. Quartz crystal biosensor for detection of sugars and glycated hemoglobin. Anal. Chim. Acta,2005,530(1):75-84.
    [124]Morita, K., N. Hirayama, H. Imura, A. Yamaguchi, and N. Teramae. Grafting of phenylboronic acid on a glassy carbon electrode and its application as a reagentless glucose sensor. J. Electroanal. Chem.,2011,656(1):192-197.
    [125]Guo, Z., I. Shin, and J. Yoon. Recognition and sensing of various species using boronic acid derivatives. Chem. Commun.,2012,48(48):5956-5967.
    [126]Hsiao, H.Y., M.L. Chen, H.T. Wu, L.D. Huang, W.T. Chien, C.C. Yu, F.D. Jan, S. Sahabuddin, T.C. Chang, and C.C. Lin. Fabrication of carbohydrate microarrays through boronate formation. Chem. Commun.,2010,47(4):1187-1189.
    [127]Abad, J.M., M. Velez, C. Santamaria, J.M. Guisan, P.R. Matheus, L. Vazquez, I. Gazaryan, L. Gorton, T. Gibson, and V.M. Fernandez. Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. J. Am. Chem. Soc.,2002, 124(43):12845-12853.
    [128]Liu, S., U. Wollenberger, J. Halamek, E. Leupold, W. Stocklein, A. Warsinke, and F.W. Scheller. Affinity Interactions between phenylboronic acid-carrying self-assembled monolayers and flavin adenine dinucleotide or horseradish peroxidase. Chem. Eur. J.,2005, 11(14):4239-4246.
    [129]Lin, P., S. Chen, K. Wang, M. Chen, A.K. Adak, J.R. Hwu, Y. Chen, and C. Lin. Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal. Chem.,2009,81(21):8774-8782.
    [130]Ho, J.A., W.L. Hsu, W.C. Liao, J.K. Chiu, M.L. Chen, H.C. Chang, and C.C. Li. Ultrasensitive electrochemical detection of biotin using electrically addressable site-oriented antibody immobilization approach via aminophenyl boronic acid. Biosens. Bioelectron.,2010,26(3): 1021-1027.
    [131]Moreno-Guzman, M., I. Ojeda, R. Villalonga, A. Gonzalez-Cortes, P. Yanez-Sedeno, and J.M. Pingarron. Ultrasensitive detection of adrenocorticotropin hormone (ACTH) using disposable phenylboronic-modified electrochemical immunosensors. Biosens. Bioelectron.,2012,35(1): 82-86.
    [132]Rather, J.A. and K. De Wael. Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology. Sens. Actuators B:Chem.,2012,176(1): 110-117.
    [133]Poh, H.L. and M. Pumera. Nanoporous carbon materials for electrochemical sensing. Chem. Asian J.,2011,7(2):412-416.
    [134]Vashist, S.K., D. Zheng, K. A1-Rubeaan, J.H.T. Luong, and F.-S. Sheu. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv.,2011, 29(2):169-188.
    [135]Liu, Y., X. Dong, and P. Chen. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev.,2012,41(6):2283-2307.
    [136]Guo, S. and S. Dong. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev.,2011,40(5):2644-2672.
    [137]Chen, S., Y. Chen, G. He, S. He, U. Schroder, and H. Hou. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosens. Bioelectron.,2012,34(1):282-285.
    [138]Shan, C., H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem.,2009,81(6):2378-2382.
    [139]Cui, R., Z. Han, and J.J. Zhu. Helical carbon nanotubes:intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem. Eur. J.,2011,17(34):9377-9384.
    [140]Yin, H., Y. Zhou, X. Meng, K. Shang, and S. Ai. One-step "green" preparation of graphene nanosheets and carbon nanospheres mixture by electrolyzing graphite rob and its application for glucose biosensing. Biosens. Bioelectron.,2011,30(1):112-117.
    [141]Shi, W., Q. Wang, Y. Long, Z. Cheng, S. Chen, H. Zheng, and Y. Huang. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun.,2011, 47(23):6695-6697.
    [142]Yang, X., L. Haubold, G. DeVivo, and G.M. Swain. Electroanalytical performance of nitrogen-containing tetrahedral amorphous carbon thin-film electrodes. Anal. Chem.,2012, 84(14):6240-6248.
    [143]Campbell, F.W. and R.G. Compton. The use of nanoparticles in electroanalysis:an updated review. Anal. Bioanal. Chem.,2010,396(1):241-259.
    [144]Saha, K., S.S. Agasti, C. Kim, X. Li, and V.M. Rotello. Gold nanoparticles in chemical and biological sensing. Chem. Rev.,2012,112(5):2739-2779.
    [145]Pandey, P., S.P. Singh, S.K. Arya, V. Gupta, M. Datta, S. Singh, and B.D. Malhotra. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir,2007,23(6):3333-3337.
    [146]Han, M., S. Liu, J. Bao, and Z. Dai. Pd nanoparticle assemblies—as the substitute of HRP, in their biosensing applications for H2O2 and glucose. Biosens. Bioelectron.,2012,31(1): 151-156.
    [147]Wei, H. and E. Wang. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem.,2008,80(6):2250-2254.
    [148]Asati, A., S. Santra, C. Kaittanis, S. Nath, and J.M. Perez. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed.,2009,48(13):2308-2312.
    [149]Chen, W., J. Chen, Y.-B. Feng, L. Hong, Q.-Y. Chen, L.-F. Wu, X.-H. Lin, and X.-H. Xia. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst,2012,137(7):1706-1712.
    [150]Corgie, S.C., P. Kahawong, X. Duan, D. Bowser, J.B. Edward, L.P. Walker, and E.P. Giannelis. Self-assembled complexes of horseradish peroxidase with magnetic nanoparticles showing enhanced peroxidase activity. Adv. Funct. Mater.,2012,22(9):1940-1951.
    [151]Hu, L., K. Huo, R. Chen, B. Gao, J. Fu, and P.K. Chu. Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. Anal. Chem.,2011,83(21):8138-8144.
    [152]Sanchez, C., K.J. Shea, and S. Kitagawa. Recent progress in hybrid materials science. Chem. Soc. Rev.,2011,40(2):471-472.
    [153]Zhong, H., R. Yuan, Y. Chai, W. Li, X. Zhong, and Y. Zhang. In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites:Characterization and application for a glucose amperometric biosensor. Talanta,2011,85(1):104-111.
    [154]Shi, J., H. Zhang, A. Snyder, M.-x. Wang, J. Xie, D. Marshall Porterfield, and L.A. Stanciu. An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black. Biosens. Bioelectron.,2012,38(1):314-320.
    [155]Zhang, Y., S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, and X. Sun. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Adv.,2012,2(2):538-545.
    [156]Wu, B., D. Hu, Y. Kuang, B. Liu, X. Zhang, and J. Chen. Functionalization of carbon nanotubes by an ionic-liquid polymer:dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew. Chem. Int. Ed.,2009, 48(26):4751-4754.
    [157]Wen, D., S. Guo, J. Zhai, L. Deng, W. Ren, and S. Dong. Pt nanoparticles supported on TiO2 colloidal spheres with nanoporous surface:preparation and use as an enhancing material for biosensing applications. J. Phys. Chem. C,2009,113(30):13023-13028.
    [158]Chen, K.-J., C.-F. Lee, J. Rick, S.-H. Wang, C.-C. Liu, and B.-J. Hwang. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosens. Bioelectron.,2012,33(1):75-81.
    [159]Liu, Z., H. Wang, B. Li, C. Liu, Y. Jiang, G. Yu, and X. Mu. Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem.,2012,22(30):15085-15091.
    [160]Wen, Z., S. Ci, and J. Li. Pt nanoparticles inserting in carbon nanotube arrays:nanocomposites for glucose biosensors. J. Phys. Chem. C,2009,113(31):13482-13487.
    [161]Qiu, J.-D., L. Shi, R.-P. Liang, G.-C. Wang, and X.-H. Xia. Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem. Eur. J.,2012,18(25):7950-7959.
    [162]Mateo, C., J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, and R. Fernandez-Lafuente. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol.,2007,40(6):1451-1463.
    [163]Rahman, M.A., N.H. Kwon, M.S. Won, E.S. Choe, and Y.B. Shim. Functionalized conducting polymer as an enzyme-immobilizing substrate:an amperometric glutamate microbiosensor for in vivo measurements. Anal. Chem.,2005,77(15):4854-4860.
    [164]Sarma, A.K., P. Vatsyayan, P. Goswami, and S.D. Minteer. Recent advances in material science for developing enzyme electrodes. Biosens. Bioelectron.,2009,24:2313-2322.
    [165]Sanchez, C., P. Belleville, M. Popall, and L. Nicole. Applications of advanced hybrid organic-inorganic nanomaterials:from laboratory to market. Chem. Soc. Rev.,2011,40(2): 696-753.
    [166]Springsteen, G. and B. Wang. A detailed examination of boronic acid-diol complexation. Tetrahedron,2002,58(26):5291-5300.
    [167]Mader, H.S. and O.S. Wolfbeis. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim. Acta,2008,162(1):1-34.
    [168]Matsumoto, A., N.Sato, K.Kataoka, and Y.Miyahara.Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J. Am. Chem. Soc,2009,131(34):12022-12023.
    [169]Frasconi, M., R. Tel-Vered, M. Riskin, and I. Willner. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Anal. Chem,2010,82(6):2512-2519.
    [170]Xu, Y., Z. Wu, L. Zhang, H. Lu, P. Yang, P. Webley, and D. Zhao. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica Anal. Chem.,2009, 81(1):503-508.
    [171]Yeap, W.S., Y.Y. Tan, and K.P. Loh. Using detonation nanodiarnond for the specific capture of glycoproteins. Anal. Chem.,2008,80(12):4659-4665.
    [172]Yao, N., G. Yao, C. Deng, X. Zhang, and P. Yang. Facile synthesis of aminophenylboronic acid-functionalized magnetic nanoparticles for selective separation of glycopeptides and glycoproteins. Chem. Commun.,2008(43):5577-5579.
    [173]Lin, Z.A., J.N. Zheng, F. Lin, L. Zhang, Z. Cai, and G.N. Chen. Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. J. Mater. Chem.,2011,21(2):518-524.
    [174]Fujita, N., S. Shinkai, and T.D. James. Boronic acids in molecular self-assembly. Chem. Asian J.,2008,3(7):1076-1091.
    [175]Zhang, X., Y. Wu, Y. Tu, and S. Liu. A reusable electrochemical immunosensor for carcinoembryonic antigen via molecular recognition of glycoprotein antibody by phenylboronic acid self-assembly layer on gold. Analyst,2008,133(4):485-492.
    [176]Fu, Y., C. Chen, Q. Xie, X. Xu, C. Zou, Q. Zhou, L. Tan, H. Tang, Y. Zhang, and S. Yao. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance. Anal. Chem.,2008,80(15):5829-5838.
    [177]Zhang, J., S. Song, L. Wang, D. Pan, and C. Fan. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc.,2007,2(11): 2888-2895.
    [178]Tang, D., R. Yuan, and Y. Chai. Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal. Chem.,2008,80(5):1582-1588.
    [179]Trasatti, S. and O. Petrii. Real surface area measurements in electrochemistry. Pure Appl. Chem.,1991,63(5):711-734.
    [180]Douglass Jr, E.F., P.F. Driscoll, D. Liu, N.A. Burnham, C.R. Lambert, and W.G. McGimpsey. Effect of electrode roughness on the capacitive behavior of self-assembled monolayers. Anal. Chem.,2008,80(20):7670-7677.
    [181]Wu, B., S. Hou, F. Yin, J. Li, Z. Zhao, J. Huang, and Q. Chen. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens. Bioelectron.,2007,22(6): 838-844.
    [182]Grabar, K.C., R.G. Freeman, M.B. Hommer, and M.J. Natan. Preparation and characterization of Au colloid monolayers. Anal. Chem.,1995,67(4):735-743.
    [183]Tan, Y., Q. Xie, J. Huang, W. Duan, M. Ma, and S. Yao. Study on glucose biofuel cells using an electrochemical noise device. Electroanalysis,2008,20(14):1599-1606.
    [184]Tan, Y., W. Deng, B. Ge, Q. Xie, J. Huang, and S. Yao. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Biosens. Bioelectron.,2009,24(7):2225-2231.
    [185]Chen, C., L. Wang, Y. Tan, C. Qin, F. Xie, Y. Fu, Q. Xie, J. Chen, and S. Yao. High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped. Biosens. Bioelectron.,2011,26(5):2311-2316.
    [186]Seker, E., M.L. Reed, and M.R. Begley. Nanoporous gold:fabrication, characterization, and applications. Materials,2009,2(4); 2188-2215.
    [187]Qiu, H., L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao. Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens. Bioelectron.,2009,24(10):3014-3018.
    [188]Hoogvliet, J., M. Dijksma, B. Kamp, and W. Van Bennekom. Electrochemical pretreatment of poly crystalline gold electrodes to produce a reproducible surface roughness for self-assembly: a study in phosphate buffer pH 7.4. Anal. Chem.,2000,72(9):2016-2021.
    [189]Khiew, P., N. Huang, S. Radiman, and M. Ahmad. Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Mater. Lett.,2004,58(3-4):516-521.
    [190]Link, S. and M.A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B,1999,103(21):4212-4217.
    [191]Zhou, Y., H. Itoh, T. Uemura, K. Naka, and Y. Chujo. Synthesis of novel stable nanometer-sized metal (M= Pd, Au, Pt) colloids protected by a π-conjugated polymer. Langmuir,2002,18(1):277-283.
    [192]Ma, Y., N. Li, C. Yang, and X. Yang. One-step synthesis of water-soluble gold nanoparticles/polyaniline composite and its application in glucose sensing. Colloids Surf. A, 2005,269(1-3):1-6.
    [193]Tokareva, I., S. Minko, J.H. Fendler, and E. Hutter. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Am. Chem. Soc.,2004,126(49):15950-15951.
    [194]Fu, Y., P. Li, Q. Xie, X. Xu, L. Lei, C. Chen, C. Zou, W. Deng, and S. Yao. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv. Funct. Mater.,2009,19(11):1784-1791.
    [195]Tan, Y., W. Deng, Y. Li, Z. Huang, Y. Meng, Q. Xie, M. Ma, and S. Yao. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications. J. Phys. Chem. B,2010,114(15):5016-5024.
    [196]Dixon, M. The determination of enzyme inhibitor constants. Biochem. J.,1953,55:170-171.
    [197]Zhang, S., N. Wang, H. Yu, Y. Niu, and C. Sun. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry,2005,67(1):15-22.
    [198]Zhang, Z., Y. Xie, Z. Liu, F. Rong, Y. Wang, and D. Fu. Covalently immobilized biosensor based on gold nanoparticles modified TiO2 nanotube arrays. J. Electroanal. Chem.,2011, 650(2):241-247.
    [199]Thibault, S., H. Aubriet, C. Arnoult, and D. Ruch. Gold nanoparticles and a glucose oxidase based biosensor:an attempt to follow-up aging by XPS. Microchim. Acta,2008,163(3): 211-217.
    [200]Luo, X.L., J.J. Xu, Y. Du, and H.Y. Chen. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem.,2004,334(2):284-289.
    [201]Zhao, S., K. Zhang, Y. Bai, W. Yang, and C. Sun. Glucose oxidase/colloidal gold nanoparticles immobilized in nafion film on glassy carbon electrode:Direct electron transfer and electrocatalysis. Bioelectrochemistry,2006,69(2):158-163.
    [202]Rakhi, R.B., K. Sethupathi, and S. Ramaprabhu. A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J. Phys. Chem. B,2009,113(10):3190-3194.
    [203]Yang, W., J. Wang, S. Zhao, Y. Sun, and C. Sun. Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochem. Commun.,2006,8(4):665-672.
    [204]Xue, M.H., Q. Xu, M. Zhou, and J.J. Zhu. In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochem. Commun.,2006,8(9):1468-1474.
    [205]Liu, Y., X. Feng, J. Shen, J. Zhu, and W. Hou. Fabrication of a novel glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite. J. Phys. Chem. B,2008, 112(30):9237-9242.
    [206]Kwon, K.Y., J. Youn, J.H. Kim, Y. Park, C. Jeon, B.C. Kim, Y. Kwon, X. Zhao, P. Wang, and B.I. Sang. Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosens. Bioelectron.,2010,26(2):655-660.
    [207]Shim, J., G.Y. Kim, and S.H. Moon. Covalent co-immobilization of glucose oxidase and ferrocenedicarboxylic acid for an enzymatic biofuel cell. J. Electroanal. Chem.,2011, 653(1-2):14-20.
    [208]Lee, J.Y., H.Y. Shin, S.W. Kang, C. Park, and S.W. Kim. Improvement of electrical properties via glucose oxidase-immobilization by actively turning over glucose for an enzyme-based biofuel cell modified with DNA-wrapped single walled nanotubes. Biosens. Bioelectron.,2010, 26(5):2685-2688.
    [209]Nien, P., J. Wang, P. Chen, L. Chen, and K. Ho. Encapsulating benzoquinone and glucose oxidase with a PEDOT film:application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresour. Technol.,2010,101(14):5480-5486.
    [210]Yu, C., M. Yen, and L. Chen. A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosens. Bioelectron.,2010,25(11):2515-2521.
    [211]Lakshmi, D., M.J. Whitcombe, F. Davis, P.S. Sharma, and B.B. Prasad. Electrochemical detection of uric acid in mixed and clinical samples:a review. Electroanalysis,2011,23(2): 305-320.
    [212]Maxwell, S., H. Thomason, D. Sandler, C. Leguen, M. Baxter, G. Thorpe, A. Jones, and A. Barnett. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur. J. Clin. Invest.,1997,27(6):484-490.
    [213]Sanders, G.T.B., A.J. Pasman, and F.J. Hoek. Determination of uric acid with uricase and peroxidase. Clin. Chim. Acta,1980,101(2-3):299-303.
    [214]Bera, R.K., A. Anoop, and C.R. Raj. Enzyme-free colorimetric assay of serum uric acid. Chem. Commun.,2011,47(41):11498-11500.
    [215]Kand'ar, R., P. Drabkova, and R. Hampl. The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. J. Chromatogr. B,2011,879(26): 2834-2839.
    [216]Nakaminami, T., S.-i. Ito, S. Kuwabata, and H. Yoneyama. Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer. Anal. Chem.,1999,71(10):1928-1934.
    [217]Lin, Z., Z. Chen, Y. Liu, J. Wang, and G. Chen. An electrochemiluminescent biosensor for uric acid based on the electrochemiluminescence of bis-[3,4, 6-trichloro-2-(pentyloxycarbonyl)-phenyl] oxalate on an ITO electrode modified by an electropolymerized nickel phthalocyanine film. Analyst,2008,133(6):797-801.
    [218]Xiao, C., X. Chu, Y. Yang, X. Li, X. Zhang, and J. Chen. Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Biosens. Bioelectron., 2011,26(6):2934-2939.
    [219]Kumar, S.S., K. Kwak, and D. Lee. Electrochemical sensing using quantum-sized gold nanoparticles. Anal. Chem.,2011,83(9):3244-3247.
    [220]Sun, C.-L., C.-T. Chang, H.-H. Lee, J. Zhou, J. Wang, T.-K. Sham, and W.-F. Pong. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano,2011,5(10): 7788-7795.
    [221]Raoof, J.B., R. Ojani, M. Amiri-Aref, and M. Baghayeri. Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sens. Actuators B:Chem.,2012,166-167(0):508-518.
    [222]Usman Ali, S.M., N.H. Alvi, Z. Ibupoto, O. Nur, M. Willander, and B. Danielsson. Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires. Sens. Actuators B:Chem.,2011,152(2):241-247.
    [223]Chu, H., X. Wei, M. Wu, J. Yan, and Y. Tu. An electrochemiluminescent biosensor based on polypyrrole immobilized uricase for ultrasensitive uric acid detection. Sens. Actuators B: Chem.,2012,163(1):247-252.
    [224]Zanon, N.C.M., O.N. Oliveira Jr, and L. Caseli. Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids:Possible use as a uric acid sensor. J. Colloid Interface Sci.,2012,373(1):69-74.
    [225]Kan, J., X. Pan, and C. Chen. Polyaniline-uricase biosensor prepared with template process. Biosens. Bioelectron,2004,19(12):1635-1640.
    [226]Pan, X., S. Zhou, C. Chen, and J. Kan. Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline. Sens. Actuators B:Chem.,2006,113(1): 329-334.
    [227]Chen, D., Q. Wang, J. Jin, P. Wu, H. Wang, S. Yu, H. Zhang, and C. Cai. Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes. Anal. Chem.,2010,82(6):2448-2455.
    [228]Behera, S. and C.R. Raj. Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid. Biosens. Bioelectron.,2007,23(4):556-561.
    [229]Park,J.-Y.,B.-Y.Chang, H. Nam, and S.-M. Park.Selective electrochemical sensing of glycated hemoglobin (HbAlc) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes. Anal. Chem.,2008,80(21):8035-8044.
    [230]Lin, Z., J. Pang, H. Yang, Z. Cai, L. Zhang, and G. Chen. One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem. Commun.,2011,47(34):9675-9677.
    [231]Villalonga, R., P. Diez, P. Yanez-Sedeno, and J.M. Pingarron. Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxide biosensor. Electrochim. Acta,2011,56(12):4672-4677.
    [232]Huang, Y., X. Qin, Z. Li, Y. Fu, C. Qin, F. Wu, Z. Su, M. Ma, Q. Xie, S. Yao, and J. Hu. Fabrication of a chitosan/glucose oxidase-poly(anilineboronic acid)-Aunano/Au-plated Au electrode for biosensor and biofuel cell. Biosens. Bioelectron.,2012,31(1):357-362.
    [233]Huang, J., Q. Xie, Y. Tan, Y. Fu, Z. Su, Y. Huang, and S. Yao. Preparation of Pt/multiwalled carbon nanotubes modified Au electrodes via Pt-Cu co-electrodeposition/Cu stripping protocol for high-performance electrocatalytic oxidation of methanol. Mater. Chem. Phys.,2009, 118(2-3):371-378.
    [234]Polsky, R., R. Gill, L. Kaganovsky, and I. Willner. Nucleic acid-functionalized Pt nanoparticles:catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem.,2006,78(7):2268-2271.
    [235]Su, Y., Q. Xie, C. Chen, Q. Zhang, M Ma, and S. Yao. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes. Biotechnol. Prog.,2008,24(1):262-272.
    [236]Bergmeyer, H., Methods of Enzymatic Analysis.1963, New York:Academic Press.
    [237]Kloke, A., F. von Stetten, R. Zengerle, and S. Kerzenmacher. Strategies for the fabrication of porous platinum electrodes. Adv. Mater.,2011,23(43):4976-5008.
    [238]Wang, X., F. Yin, and Y. Tu. A uric acid biosensor based on Langmuir-Blodgett film as an enzyme-immobilizing matrix. Anal. Lett.,2010,43(9):1507-1515.
    [239]Ahuja, T., Rajesh, D. Kumar, V.K. Tanwar, V. Sharma, N. Singh, and A.M. Biradar. An amperometric uric acid biosensor based on Bis[sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode. Thin Solid Films,2010,519(3):1128-1134.
    [240]Lei, Y., X. Liu, X. Yan, Y. Song, Z. Kang, N. Luo, and Y. Zhang. Multicenter uric acid biosensor based on tetrapod-shaped ZnO nanostructures. J. Nanosci. Nanotechnol.,2012, 12(1):513-518.
    [241]Tao, H., X. Wang, Y. Hu, Y. Ma, Y. Lu, and Z. Hu. Construction of uric acid biosensor based on biomimetic titanate nanotubes. J. Nanosci. Nanotechnol.,2010,10(2):860-864.
    [242]Ahuja, T., V. Tanwar, S. Mishra, D. Kumar, A. Biradar, and Rajesh. Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor. J. Nanosci. Nanotechnol.,2011,11(6):4692-4701.
    [243]Bhambi, M., G. Sumana, B.D. Malhotra, and C.S. Pundir. An amperomertic uric acid biosensor based on immobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film. Artif. Cells Blood Substit. Biotechnol.,2010,38(4):178-185.
    [244]Wang, Y., L. Yu, Z. Zhu, J. Zhang, and J. Zhu. Novel uric acid sensor based on enzyme electrode modified by ZnO nanoparticles and multiwall carbon nanotubes. Anal. Lett.,2009, 42(5):775-789.
    [245]Luo, Y.-C., J.-S. Do, and C.-C. Liu. An amperometric uric acid biosensor based on modified Ir-C electrode. Biosens. Bioelectron.,2006,22(4):482-488.
    [246]Zhang, Y., G. Wen, Y. Zhou, S. Shuang, C. Dong, and M.M.F. Choi. Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane. Biosens. Bioelectron.,2007,22(8):1791-1797.
    [247]Zhang, F., X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu, Y. Xian, L. Jin, and K. Yamamoto. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta,2004,519(2):155-160.
    [248]Rawal, R., S. Chawla,.N. Chauhan, T. Dahiya, and C.S. Pundir. Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite. Int. J. Biol. Macromol.,2012,50(1):112-118.
    [249]Jena, B.K. and C.R. Raj. Enzyme integrated silicate-Pt nanoparticle architecture:a versatile biosensing platform. Biosens. Bioelectron.,2011,26(6):2960-2966.
    [250]Takahashi, S., S. Kurosawa, and J.-i. Anzai. Electrochemical determination of L-lactate using phenylboronic acid monolayer-modified electrodes. Electroanalysis,2008,20(7):816-818.
    [251]Rick, J. and T.-C. Chou. Amperometric protein sensor-fabricated as a polypyrrole, poly-aminophenylboronic acid bilayer. Biosens. Bioelectron.,2006,22(3):329-335.
    [252]Aibare, S., H. Yamashua, E. Mori, M. Kato, and Y. Morita. Isolation and characterization of five neutral isoenzymes of horseradish peroxidase. J. Biochem.,1982,92(2):531-539.
    [253]Deore, B.A., I. Yu, J. Woodmass, and M.S. Freund. Conducting poly(anilineboronic acid) nanostructures:controlled synthesis and characterization. Macromol. Chem. Phys.,2008(209): 1094-1105.
    [254]Kobayashi, S. and A. Makino. Enzymatic polymer synthesis:an opportunity for green polymer chemistry. Chem. Rev.,2009,109(11):5288-5353.
    [255]Kim, S.-C., P. Huh, J. Kumar, B. Kim, J.-O. Lee, F.F. Bruno, and L.A. Samuelson. Synthesis of polyaniline derivatives via biocatalysis. Green Chem.,2007,9:44-48.
    [256]Cholli, A.L., M. Thiyagarajan, J. Kumar, and V.S. Parmar. Biocatalytic approaches for synthesis of conducting polyaniline nanoparticles. Pure Appl. Chem.,2005,77(1):339-344.
    [257]Walde, P. and Z. Guo. Enzyme-catalyzed chemical structure-controlling template polymerization. Soft Matter,2011,7(2):316-331.
    [258]Cruz-Silva, R., E. Amaro, A. Escamilla, M. Nicho, S. Sepulveda-Guzman, L. Arizmendi, J. Romero-Garcia, F. Castillon-Barraza, and M. Farias. Biocatalytic synthesis of polypyrrole powder, colloids, and films using horseradish peroxidase. J. Colloid Interface Sci.,2008, 328(2):263-269.
    [259]Caramyshev, A.V., E.G. Evtushenko, V.F. Ivanov, A.R. Barcelo, M.G. Roig, V.L. Shnyrov, R.B. van Huystee, I.N. Kurochkin, A.K. Vorobiev, and I.Y. Sakharov. Synthesis of conducting polyelectrolyte complexes of polyaniline and poly (2-acrylamido-3-methyl-l-propanesulfonic acid) catalyzed by pH-stable palm tree peroxidase. Biomacromolecules,2005,6(3): 1360-1366.
    [260]Liu, W., J. Kumar, S. Tripathy, K.J. Senecal, and L. Samuelson. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc.,1999,121(1):71-78.
    [261]Nagarajan, S., J. Kumar, F.F. Bruno, L.A. Samuelson, and R. Nagarajan. Biocatalytically synthesized poly (3,4-ethylenedioxythiophene).Macromolecules,2008,41(9):3049-3052.
    [262]Rumbau, V., J.A. Pomposo, A. Eleta, J. Rodriguez, H. Grande, D. Mecerreyes, and E. Ochoteco. First enzymatic synthesis of water-soluble conducting poly (3, 4-ethylenedioxythiophene). Biomacromolecules,2007,8(2):315-317.
    [263]Kausaite-Minkstimiene, A., V. Mazeiko, A. Ramanaviciene, and A. Ramanavicius. Enzymatically synthesized polyaniline layer for extension of linear detection region of amperometric glucose biosensor. Biosens. Bioelectron.,2010,26(2):790-797.
    [264]Cui, X., C.M. Li, J. Zang, Q. Zhou, Y. Gan, H. Bao, J. Guo, V.S. Lee, and S.M. Moochhala. Biocatalytic generation of ppy-enzyme-CNT nanocomposite:from network assembly to film growth. J. Phys. Chem. C,2007,111(5):2025-2031.
    [265]Taggart, D.K., Y. Yang, S.C. Kung, T.M. McIntire, and R.M. Penner. Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. Nano Lett.,2011,11(1):125-131.
    [266]Nicho, M., H. Hu, C. Lopez-Mata, and J. Escalante. Synthesis of derivatives of polythiophene and their application in an electrochromic device. Sol. Energy Mater. Sol. Cells,2004,82(1): 105-118.
    [267]Ocampo, C., E. Armelin, F. Liesa, C. Aleman, X. Ramis, and J.I. Iribarren. Application of a polythiophene derivative as anticorrosive additive for paints. Prog. Org. Coat.,2005,53(3): 217-224.
    [268]Kuwahara, T., T. Homma, M. Kondo, and M. Shimomura. Fabrication of enzyme electrodes with a polythiophene derivative and application of them to a glucose fuel cell. Synth. Met., 2009,159(17):1859-1864.
    [269]DiCarmine, P.M., A. Fokina, and D.S. Seferos. Solvent/electrolyte control of the wall thickness of template-synthesized nanostructures. Chem. Mater.,2011,23(16):3787-3794
    [270]Zhang, B., Q. Chen, H. Tang, Q. Xie, M. Ma, L. Tan, Y. Zhang, and S. Yao. Characterization of and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf., B,2010, 80(1):18-25.
    [271]Cao, X., J. Yu, Z. Zhang, and S. Liu. Bioactivity of horseradish peroxidase entrapped in silica nanospheres. Biosens. Bioelectron.,2012,35(1):101-107.
    [272]Li, X.G., J. Li, and M.R. Huang. Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles. Chem. Eur. J.,2009,15(26):6446-6455.
    [273]Zhang, X., W.J. Goux, and S.K. Manohar. Synthesis of polyaniline nanofibers by "nanofiber seeding". J. Am. Chem. Soc.,2004,126(14):4502-4503.
    [274]Chen, W., S. Cai, Q.-Q. Ren, W. Wen, and Y.-D. Zhao. Recent advances in electrochemical sensing for hydrogen peroxide:a review. Analyst,2012,137(1):49-58.
    [275]Li, W., R. Yuan, Y. Chai, L. Zhou, S. Chen, and N. Li. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor. J. Biochem. Biophys. Methods,2008,70(6):830-837.
    [276]Won, Y.-H., D. Aboagye, H.S. Jang, A. Jitianu, and L.A. Stanciu. Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. J. Mater. Chem.,2010, 20(24):5030-5034.
    [277]Chen, X., Z. Chen, J. Zhu, C. Xu, W. Yan, and C. Yao. A novel H2O2 amperometric biosensor based on gold nanoparticles/self-doped polyaniline nanofibers. Bioelectrochemistry,2011, 82(2):87-94.
    [278]Liu, X., H. Feng, J. Zhang, R. Zhao, X. Liu, and D.K.Y. Wong. Hydrogen peroxide detection at a horseradish peroxidase biosensor with a Au nanoparticle-dotted titanate nanotube|hydrophobic ionic liquid scaffold. Biosens. Bioelectron.,2012,32(1):188-194.
    [279]nel, M., E. Cevik, and M.F. Abasiyanik. Amperometric hydrogen peroxide biosensor based on covalent immobilization of horseradish peroxidase on ferrocene containing polymeric mediator. Sens. Actuators B:Chem.,2010,145(1):444-450.
    [280]Palangsuntikul, R., M. Somasundrum, and W. Surareungchai. Kinetic and analytical comparison of horseradish peroxidase on bare- and redox-modified single-walled carbon nanotubes. Electrochim. Acta,2010,56(1):470-475.
    [281]Kafi, A.K.M., G. Wu, and A. Chen. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron.,2008,24(4):566-571.
    [282]Zhang, H.-L., G.-S. Lai, D.-Y. Han, and A.-M. Yu. An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal. Bioanal. Chem.,2007,390(3):971-977.
    [283]Camacho, C., B. Chico, R. Cao, J.C. Matias, J. Hernandez, I. Palchetti, B.K. Simpson, M. Mascini, and R. Villalonga. Novel enzyme biosensor for hydrogen peroxide via supramolecular associations. Biosens. Bioelectron.,2009,24(7):2028-2033.
    [284]Josephy, P.D., T. Eling, and R.P. Mason. The horseradish peroxidase-catalyzed oxidation of 3, 5,3',5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J. Biol. Chem.,1982,257(7):3669-3675.
    [285]Calvo, E.J., R. Etchenique, C. Danilowicz, and L. Diaz. Electrical communication between electrodes and enzymes mediated by redox hydrogels. Anal. Chem.,1996,68(23):4186-4193.
    [286]Matsumoto, R., M. Mochizuki, K. Kano, and T. Ikeda. Unusual response in mediated biosensors with an oxidase/peroxidase bienzyme system. Anal. Chem.,2002,74(14): 3297-3303.
    [287]Wang, W., F. Wang, Y. Yao, S. Hu, and K.-K. Shiu. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film. Electrochim. Acta,2010,55(23):7055-7060.
    [288]Wang, W., H.-Y. Li, D.-W. Zhang, J. Jiang, Y.-R. Cui, S. Qiu, Y.-L. Zhou, and X.-X. Zhang. Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis,2010,22(21):2543-2550.
    [289]Manesh, K.M., P. Santhosh, S. Uthayakumar, A.I. Gopalan, and K.P. Lee. One-pot construction of mediatorless bi-enzymatic glucose biosensor based on organic-inorganic hybrid. Biosens. Bioelectron.,2010,25(7):1579-1586.
    [290]Gu, M., J. Wang, Y. Tu, and J. Di. Fabrication of reagentless glucose biosensors:A comparison of mono-enzyme GOD and bienzyme GOD-HRP systems. Sens. Actuators B:Chem.,2010, 148(2):486-491.
    [291]Chen, H., F. Xi, X. Gao, Z. Chen, and X. Lin. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction. Anal. Biochem.,2010,403(1-2):36-42.
    [292]Sheng, Q. and J. Zheng. Bienzyme system for the biocatalyzed deposition of polyaniline templated by multiwalled carbon nanotubes:A biosensor design. Biosens. Bioelectron.,2009, 24(6):1621-1628.
    [293]Lin, J., C. He, Y. Zhao, and S.Zhang. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens. Actuators B:Chem., 2009,137(2):768-773.
    [294]Chen, X., J. Zhu, Z. Chen, C. Xu, Y. Wang, and C. Yao. A novel bienzyme glucose biosensor based on three-layer Au-Fe3O4@SiO2 magnetic nanocomposite. Sens. Actuators B:Chem., 2011,159(1):220-228.
    [295]Jeykumari, D. and S.S. Narayanan. Bienzyme based biosensing platform using functionalized carbon nanotubes. J. Nanosci. Nanotechnol.,2009,9(9):5411-5416.
    [296]Decher, G. Fuzzy nanoassemblies:toward layered polymeric multicomposites. Science,1997, 277(5330):1232-1237.
    [297]Wang, Y., A.S. Angelatos, and F. Caruso. Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater.,2008,20(3):848-858.
    [298]Becker, A.L., A.P.R. Johnston, and F. Caruso. Layer-by-layer assembled capsules and films for therapeutic delivery. Small,2010,6(17):1836-1852.
    [299]lost, R.M. and F.N. Crespilho. Layer-by-layer self-assembly and electrochemistry: Applications in biosensing and bioelectronics. Biosens. Bioelectron.,2012,31(1):1-10.
    [300]Li, H., S. Pang, S. Wu, X. Feng, K. Mullen, and C. Bubeck. Layer-by-layer assembly and UV photoreduction of graphene-polyoxometalate composite films for electronics. J. Am. Chem. Soc.,2011,133(24):9423-9429.
    [301]Bertrand, P., A. Jonas, A. Laschewsky, and R. Legras. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces:suitable materials, structure and properties. Macromol. Rapid Commun.,2000,21(7):319-348.
    [302]Zheng, L., X. Yao, and J. Li. Layer-by-layer assembly films and their applications in electroanalytical chemistry. Curr. Anal. Chem.,2006,2(3):279-296.
    [303]Ariga, K., T. Nakanishi, and T. Michinobu. Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, langmuir-bodgett films, and layer-by-layer assemblies) and their related functions. J. Nanosci. Nanotechnol.,2006,6(8):2278-2301.
    [304]Zhao, W., J.J. Xu, and H.Y. Chen. Electrochemical biosensors based on layer-by-layer assemblies. Eleciroanalysis,2006,18(18):1737-1748.
    [305]Sarauli, D., J. Tanne, C. Xu, B. Schulz, L. Trnkova, and F. Lisdat. Insights into the formation and operation of polyaniline sulfonate/cytochrome c multilayer electrodes:contributions of polyelectrolytes'properties. Phys. Chem. Chem. Phys.,2010,12(42):14271-14277.
    [306]Pinto, E., M. Barsan, and C. Brett. Mechanism of formation and construction of self-assembled myoglobin/hyaluronic acid multilayer films:an electrochemical QCM, impedance, and AFM study. J. Phys. Chem. B,2010,114(46):15354-15361.
    [307]Calvo, E.J., R. Etchenique, L. Pietrasanta, and A. Wolosiuk. Layer-by-layer self-assembly of glucose oxidase and Os(Bpy)2ClPyCH2NH-poly(allylamine) bioelectrode. Anal. Chem.,2001, 73(6):1161-1168.
    [308]Lvov, Y.M., Z. Lu, J.B. Schenkman, X. Zu, and J.F. Rusling. Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J. Am. Chem. Soc.,1998,120(17):4073-4080.
    [309]Zhao, W., J.J. Xu, C.G. Shi, and H.Y. Chen. Multilayer membranes via layer-by-layer deposition of organic polymer protected prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir,2005,21(21):9630-9634.
    [310]Zeng, G., Y. Xing, J. Gao, Z. Wang, and X. Zhang. Unconventional layer-by-layer assembly of graphene multilayer films for enzyme-based glucose and maltose biosensing. Langmuir,2010, 26(18):15022-15026.
    [311]Deng, L., Y. Liu, G. Yang, L. Shang, D. Wen, F. Wang, Z. Xu, and S. Dong. Molecular "wiring" glucose oxidase in supramolecular architecture. Biomacromolecules,2007,8(7): 2063-2071.
    [312]Cho, J. and F. Caruso. Investigation of the interactions between ligand-stabilized gold nanoparticles and polyelectrolyte multilayer films. Chem. Mater.,2005,17(17):4547-4553.
    [313]Zeng, Q., J. Cheng, L. Tang, X. Liu, Y. Liu, J. Li, and J. Jiang. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv. Funct. Mater.,2010,20(19):3366-3372.
    [314]Yao, H. and N. Hu. pH-switohable bioelectrocatalysis of hydrogen peroxide on layer-by-layer films assembled by concanavalin A and horseradish peroxidase with electroactive mediator in solution. J. Phys. Chem. B,2010,114(9):3380-3386.
    [315]Amigoni, S., E. Taffin de Givenchy, M. Dufay, and F. Guittard. Covalent layer-by-layer assembled superhydrophobic organic-inorganic hybrid films. Langmuir,2009,25(18): 11073-11077.
    [316]Seo, J., P. Schattling, T. Lang, F. Jochum, K. Nilles, P. Theato, and K. Char. Covalently bonded layer-by-layer assembly of multifunctional thin films based on activated esters. Langmuir,2009,26(3):1830-1836.
    [317]Manna, U., J. Dhar, R. Nayak, and S. Patil. Multilayer single-component thin films and microcapsules via covalent bonded layer-by-layer self-assembly. Chem. Commun.,2010, 46(13):2250-2252.
    [318]Lisunova, M.O., I. Drachuk, O.A. Shchepelina, K.D. Anderson, and V.V. Tsukruk. Direct probing of micromechanical properties of hydrogen-bonded layer-by-layer microcapsule shells with different chemical compositions. Langmuir,2011,27(17):11157-11165.
    [319]Such, G.K., A.P.R. Johnston, and F. Caruso. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem. Soc. Rev.,2011,40(1):19-29.
    [320]Li, M., S. Ishihara, M. Akada, M. Liao, L. Sang, J.P. Hill, V. Krishnan, Y. Ma, and K. Ariga. Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. J. Am. Chem. Soc.,2011, 133(19):7348-7351.
    [321]Shimazaki, Y., M Mitsuishi, S. Ito, and M. Yamamoto. Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction. Langmuir,1997,13(6): 1385-1387.
    [322]Kim, D.C., J.I. Sohn, D. Zhou, T.A.J. Duke, and D.J. Kang. Controlled assembly for well-defined 3D bioarchitecture using two active enzymes. ACS Nano,2010,4(3):1580-1586.
    [323]Anzai, J.-i., H. Takeshita, Y. Kobayashi, T. Osa, and T. Hoshi. Layer-by-layer construction of enzyme multilayers on an electrode for the preparation of glucose and lactate sensors: elimination of ascorbate interference by means of an ascorbate oxidase multilayer. Anal. Chem.,1998,70(4):811-817.
    [324]Anzai, J.-i. and Y. Kobayashi. Construction of multilayer thin films of enzymes by means of sugar-lectin interactions. Langmuir,2000,16(6):2851-2856.
    [325]Villalonga, R., P. Diez, M. Gamella, A.J. Reviejo, S. Romano, and J.M. Pingarron. Layer-by-layer supramolecular architecture of cyclodextrin-modified PAMAM dendrimers and adamantane-modified peroxidase on gold surface for electrochemical biosensing. Electrochim. Acta,2012,76:249-255.
    [326]Yao, H., F. Chang, and N. Hu. pH-switchable bioelectrocatalysis based on layer-by-layer films assembled through specific boronic acid-diol recognition. Electrochim. Acta,2010,55(28): 9185-9192.
    [327]Ma, Y., L. Qian, H. Huang, and X. Yang. Buildup of gold nanoparticle multilayer thin films based on the covalent-bonding interaction between boronic acids and polyols. J. Colloid Interface Sci.,2006,295(2):583-588.
    [328]Ding, Z., Y. Guan, Y. Zhang, and X.X. Zhu. Layer-by-layer multilayer films linked with reversible boronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter,2009,5(11):2302-2309.
    [329]Levy, T., C. Dejugnat, and G.B. Sukhorukov. Polymer microcapsules with carbohydrate-sensitive properties. Adv. Funct. Mater.,2008,18(10):1586-1594.
    [330]Recksiedler, C.L., B.A. Deore, and M.S. Freund. A novel layer-by-layer approach for the fabrication of conducting polymer/RNA multilayer films for controlled release. Langmuir, 2006,22(6):2811-2815.
    [331]Qiao, Y., C.M. Li, S.J. Bao, and Q.L. Bao. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources,2007,170(1):79-84.
    [332]Lin, N., L. Gao, Z. Chen, and J.H. Zhu. Elevating enzyme activity through the immobilization of horseradish peroxidase onto periodic mesoporous organosilicas. New J. Chem.,2011,35(9): 1867-1875.
    [333]Joshi, P.P., S.A. Merchant, Y. Wang, and D.W. Schmidtke. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal. Chem.,2005,77(10):3183-3188.
    [334]Liu, Z., J. Wang, D. Xie, and G. Chen. Polyaniline-coated Fe3O4 nanoparticle-carbon nanotube composite and its application in electrochemical biosensing. Small,2008,4(4):462-466.
    [335]Tsai, T.-W., G. Heckert, L.s.F. Neves, Y. Tan, D.-Y. Kao, R.G. Harrison, D.E. Resasco, and D.W. Schmidtke. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal. Chem.,2009,81(19):7917-7925.
    [336]Wang, J., G. Liu, and Y. Lin, Layer-by-layer assembly of enzymes on carbon nanotubes, in Biomolecular Catalysis.2008, American Chemical Society, p.117-128.
    [337]Li, G. and Z. Zhang. Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules,2004,37(8):2683-2685.
    [338]Li, Y., G. Li, H. Peng, and K. Chen. Synthesis and electrochemical properties of self-doped poly(aniline-co-3-aminobenzeneboronic acid) hollow micro/nanostructures. Mater. Lett.,2011, 65(8):1218-1221.
    [339]Deore, B.A. and M.S. Freund. Self-doped polyaniline nanoparticle dispersions based on boronic acid- phosphate complexation. Macromolecules,2009,42(1):164-168.
    [340]Xie, Q., Z. Li, C. Deng, M. Liu, Y. Zhang, M. Ma, S. Xia, X. Xiao, D. Yin, and S. Yao. Electrochemical quartz crystal microbalance monitoring of the cyclic voltammetric deposition of polyaniline. a laboratory experiment for undergraduates. J. Chem. Educ.,2007,84(4):681.
    [341]Fragoso, A., B. Sanroma, M. Ortiz, and C.K. O'Sullivan. Layer-by-layer self-assembly of peroxidase on gold electrodes based on complementary cyclodextrin-adamantane supramolecular interactions. Soft Matter,.2009,5(2):400-406.
    [342]Zhang, Y., L. Liu, F. Xi, T. Wu, and X. Lin. A smple layer-by-layer assembly strategy for a reagentless biosensor based on a nanocomposite of methylene blue-multiwalled carbon nanotubes. Electroanalysis,2010,22(3):277-285.
    [343]Gu, B., C. Xu, G. Zhu, S. Liu, L. Chen, M. Wang, and J. Zhu. Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing. J. Phys. Chem. B,2009, 113(18):6553-6557.
    [344]Liu, L., F. Zhang, F. Xi, Z. Chen, and X. Lin. Uniform bionanomultilayer constructed with soluble multiwall carbon nanotubes and its application as biosensor. J. Electroanal. Chem., 2008,623(2):135-141.
    [345]Li, W., Z. Wang, C. Sun, M. Xian, and M. Zhao. Fabrication of multilayer films containing horseradish peroxidase and polycation-bearing Os complex by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor. Anal. Chim. Acta, 2000,418(2):225-232.
    [346]Li, Y., Z. Chen, X. Jiang, and X. Lin. Layer-by-layer assembly of low molecular weight dye/enzyme composite thin films for biosensor appilcation. Chem. Lett.,2004,33(5):564-565.
    [347]Shoji, E. and M.S. Freund. Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid). J. Am. Chem. Soc.,2002,124(42):12486-12493.
    [348]Jin, S., M. Li, C. Zhu, V. Tran, and B. Wang. Computer-based de novo design, synthesis, and evaluation of boronic acid-based artificial receptors for selective recognition of dopamine. ChemBioChem,2008,9(9):1431-1438.
    [349]Piletsky, S. and A. Turner. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis,2002,14(5):317-323.
    [350]Haupt, K. and K. Mosbach. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev.,2000,100(7):2495-2504.
    [351]Bossi, A., S.A. Piletsky, E.V. Piletska, P.G. Righetti, and A.P.F. Turner. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem.,2001,73(21): 5281-5286.
    [352]Takeuchi, T. and T. Hishiya. Molecular imprinting of proteins emerging as a tool for protein recognition. Org. Biomol. Chem.,2008,6:2459-2467.
    [353]Ou, J., X. Li, S. Feng, J. Dong, X. Dong, L. Kong, M. Ye, and H. Zou. Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography. Anal. Chem.,2006, 79(2):639-646.
    [354]Zhang, H., L. Ye, and K. Mosbach. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J. Mol. Recognit.,2006,19(4):248-259.
    [355]Alvarez-Lorenzo, C. and A. Concheiro. Molecularly imprinted polymers for drug delivery. J. Chromatogr. B,2004,804(1):231-245.
    [356]Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev.,2002,102(1): 1-28.
    [357]Xie, C., H. Li, S. Li, J. Wu, and Z. Zhang. Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly (p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal. Chem.,2010,82(1): 241-249.
    [358]Riskin, M., R. Tel-Vered, T. Bourenko, E. Granot, and I. Willner. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an-electtrochemmical TNT sensor based on π-donor-acceptor interactions. J. Am. Chem. Soc.,2008,130(30):9726-9733.
    [359]Hart, B. and K. Shea. Synthetic peptide receptors:molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions. J. Am. Chem. Soc.,2001,123(9): 2072-2073.
    [360]Qin, L., X.-W. He, W. Zhang, W.-Y. Li, and Y.-K. Zhang. Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction. Anal. Chem., 2009,81(17):7206-7216.
    [361]Friggeri, A., H. Kobayashi, S. Shinkai, and D.N. Reinhoudt. From solutions to surfaces:a novel molecular imprinting method based on the conformational changes of boronic-acid-appended poly(L-lysine). Angew. Chem. Int. Ed.,2001,40(24):4729-4731.
    [362]Granot, E., R. Tel-Vered, O. Lioubashevski, and I. Willner. Stereoselective and enantioselective electrochemical sensing of monosaccharides using imprinted boronic acid-functionalized polyphenol films. Adv. Funct. Mater.,2008,18(3):478-484.
    [363]Deore, B. and M.S. Freund. Saccharide imprinting of poly(aniline boronic acid) in the presence of fluoride. Analyst,2003,128(6):803-806.
    [364]Piletsky, S., E. Piletska, B. Chen, K. Karim, D. Weston, G. Barrett, P. Lowe, and A. Turner. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. application of artificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal. Chem.,2000,72(18):4381-4385.
    [365]Sallacan, N., M. Zayats, T. Bourenko, A.B. Kharitonov, and I. Willner. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers. Anal. Chem.,2002,74(3): 702-712.
    [366]Malitesta, C., I. Losito, and P.G. Zambonin. Molecularly imprinted electrosynthesized polymers:new materials for biomimetic sensors. Anal. Chem.,1999,71(7):1366-1370.
    [367]Jiang, L., Q. Xie, L. Yang, X. Yang, and S. Yao. Simultaneous EQCM and diffuse reflectance UV-visible spectroelectrochemical measurements:poly (aniline-co-o-anthranilic acid) growth and property characterization. J. Colloid Interface Sci.,2004,274(1):150-158.
    [368]Murrey, H.E. and L.C. Hsieh-Wilson. The chemical neurobiology of carbohydrates. Chem. Rev.,2008,108(5):1708-1731.
    [369]Varki, A. Sialic acids in human health and disease. Trends Mol. Med.,2008,14(8):351-360.
    [370]Dall'Olio, F. and M. Chiricolo. Sialyltransferases in cancer. Glycoconjugate J.,2001,18(11): 841-850.
    [371]Crook, M. The determination of plasma or serum sialic acid. Clin. Biochem.,1993,26(1): 31-38.
    [372]Lacomba, R., J. Salcedo, A. Alegira, M. Jesus Lagarda, R. Barbera, and E. Matencio. Determination of sialic acid and gangliosides in biological samples and dairy products:A review. J. Pharm. Biomed. Anal.,2010,51(2):346-357.
    [373]Galuska, S.P., H. Geyer, B. Weinhold, M Kontou, R.C. Rohrich, U. Bernard, R. Gerardy-Schahn, W. Reutter, A. Munster-Kiihnel, and R. Geyer. Quantification of nucleotide-activated sialic acids by a combination of reduction and fluorescent labeling. Anal. Chem.,2010,82(11):4591-4598.
    [374]van der Ham, M., B. Prinsen, J. Huijmans, N. Abeling, B. Dorland, R. Berger, T. de Koning, and M. de Sain-van der Velden. Quantification of free and total sialic acid excretion by LC-MS/MS. J. Chromatogr. B,2007,848(2):251-257.
    [375]Marzouk, S.A.M., S.S. Ashraf, and K.A.A. Tayyari. Prototype amperometric biosensor for sialic acid determination. Anal. Chem.,2007,79(4):1668-1674.
    [376]Matsumoto, A., H. Cabral, N. Sato, K. Kataoka, and Y. Miyahara. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression Angew. Chem. Int. Ed.,2010,49(32):5494-5497.
    [377]Kugimiya, A., J. Matsui, T.Takeuchi, K. Yano, H. Muguruma, A. Elgersma, and I. Karube. Recognition of sialic acid using molecularly imprinted polymer. Anal. Lett.,1995,28(13): 2317-2323.
    [378]Kugimiya, A., T. Takeuchi, J. Matsuib, K. Ikebukuro, K. Yano, and I. Karube. Recognition in novel molecularly imprinted polymer sialic acid receptors in aqueous media Anal. Lett.,1996, 29(7):1099-1107.
    [379]. Piletsky, S., E. Piletskaya, K. Yano, A. Kugimiya, A. Elgersma, R. Levi, U. Kahlow, T. Takeuchi,I. Karube, and T. Panasyuk. A biomimetic receptor system for sialic acid based on molecular imprinting. Anal. Lett.,1996,29(2):157-170.
    [380]Kugimiya, A., H. Yoneyama, and T. Takeuchi. Sialic acid imprinted polymer-coated quartz crystal microbalance. Electroanalysis,2000,12(16):1322-1326.
    [381]Kugimiya, A. and T. Takeuchi. Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid. Biosens. Bioelectron.,2001,16(9-12):1059-1062.
    [382]Schauer, R. Achievements and challenges of sialic acid research. Glycoconjugate J.,2000,17: 485-499.
    [383]Djanashvili, K., L. Frullano, and J.A. Peters. Molecular recognition of sialic acid end groups by phenylboronates. Chem. Eur. J.,2005,11(13):4010-4018.
    [384]Nicolas, M., B. Fabre, G. Marchand, and J. Simonet. New boronic-acid-and boronate-substituted aromatic compounds as precursors of fluoride-responsive conjugated polymer films. Eur. J. Org. Chem.,2000,2000(9):1703-1710.
    [385]Su, Z., J. Huang, Q. Xie, Z. Fang, C. Zhou, Q. Zhou, and S. Yao. Electrochemical quartz crystal microbalance study of covalent tethering of carboxylated thiol to polyaniline for electrocatalyzed oxidation of ascorbic acid in neutral aqueous solution. Phys. Chem. Chem. Phys.,2009,11(40):9050-9061.
    [386]Wei, X., Y. Wang, S. Long, C. Bobeczko, and A. Epstein. Synthesis and physical properties of highly sulfonated polyaniline. J. Am. Chem. Soc.,1996,118(11):2545-2555.
    [387]Bartlett, P. and E. Simon. Poly(aniline)-poly(acrylate) composite films as modified electrodes for the oxidation of NADH. Phys. Chem. Chem. Phys.,2000,2(11):2599-2606.
    [388]Deore, B.A., S. Hachey, and M.S. Freund. Electroactivity of electrochemically synthesized poly(aniline boronic acid) as a function of pH:role of self-doping. Chem. Mater.,2004,16(8): 1427-1432.
    [389]Andreescu, S. and O.A. Sadik. Correlation of analyte structures with biosensor responses using the detection of phenolic estrogens as a model. Anal. Chem.,2004,76(3):552-560.
    [390]Briganti, S., E. Camera, and M. Picardo. Chemical and instrumental approaches to treat hyperpigmentation. Pigm. Cell Res.,2003,16(2):101-110.
    [391]Angeletti, C., V. Khomitch, R. Halaban; and D.L. Rimm. Novel tyramide-based tyrosinase assay for the detection of melanoma cells in cytological preparations. Diagn. Cytopathol., 2004,31(1):33-37.
    [392]Seo, S.-Y., V.K. Sharma, and N. Sharma. Mushroom tyrosinase:recent prospects. J. Agric. Food Chem.,2003,51(10):2837-2853.
    [393]Touchet, S., F. Carreaux, B. Carboni, A. Bouillon, and J.-L. Boucher. Aminoboronic acids and esters:from synthetic challenges to the discovery of unique classes of enzyme inhibitors. Chem. Soc. Rev.,2011,40(7):3895-3914.
    [394]Feng, X., F. Feng, M. Yu, F. He, Q. Xu, H. Tang, S. Wang, Y. Li, and D. Zhu. Synthesis of a new water-soluble oligo(phenylenevinylene) containing a tyrosine moiety for tyrosinase activity detection. Org. Lett.,2008,10(23):5369-5372.
    [395]Li, X., W. Shi, S. Chen, J. Jia, H. Ma, and O.S. Wolfbeis. A near-infrared fluorescent probe for monitoring tyrosinase activity. Chem. Commun.,2010,46(15):2560-2562.
    [396]Kim, T.-I., J. Park, S. Park, Y. Choi, and Y. Kim. Visualization of tyrosinase activity in melanoma cells by a BODIPY-based fluorescent probe. Chem. Commun.,2011,47(47): 12640-12642.
    [397]Xu, Q. and J. Yoon. Visual detection of dopamine and monitoring tyrosinase activity using a pyrocatechol violet-Sn4+ complex. Chem. Commun.,2011,47(46):12497-12499.
    [398]Baron, R., M. Zayats, and I. Willner. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles:assays for the detection of neurotransmitters and of tyrosinase activity. Anal. Chem.,2005,77(6):1566-1571.
    [399]Kong, F., H. Liu, J. Dong, and W. Qian. Growth-sensitive gold nanoshells precursor nanocomposites for the detection of 1-DOPA and tyrosinase activity. Biosens. Bioelectron, 2011,26(5):1902-1907.
    [400]Rao, Y., Q. Chen, F. Kong, J. Dong, and W. Qian.3D ordered gold nanoshell composite array as sensitive SERS nanosensor for detecting 1-DOPA and tyrosinase activity. Anal. Methods, 2011,3(9):1969-1974.
    [401]Gill, R., R. Freeman, J.P. Xu, I. Willner, S. Winograd, I. Shweky, and U. Banin. Probing biocatalytic transformations with CdSe-ZnS QDs. J. Am. Chem. Soc.,2006,128(48): 15376-15377.
    [402]Yildiz, H.B., R. Freeman, R. Gill, and I. Willner. Electrochemical, photoelectrochemical, and piezoelectric analysis of tyrosinase activity by functionalized nanoparticles. Anal. Chem., 2008,80(8):2811-2816.
    [403]Freeman, R., J. Elbaz, R. Gill, M. Zayats, and I. Willner. Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. Chem. Eur. J.,2007,13(26): 7288-7293.
    [404]Adam, B., R. Elnathan, and I. Willner. Monitoring the activity of tyrosinase on a tyramine/dopamine-functionalized surface by force microscopy. Nano Lett.,2007,7(7): 2030-2036.
    [405]Daniel, M.-C. and D. Astruc. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2003,104(1):293-346.
    [406]Wang, Z. and L. Ma. Gold nanoparticle probes. Coord. Chem. Rev.,2009,253(11-12): 1607-1618.
    [407]Zhou, Y., S. Wang, K. Zhang, and X. Jiang. Visual detection of copper(Ⅱ) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed.,2008, 47(39):7454-7456.
    [408]Xue, X., F. Wang, and X. Liu. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc.,2008,130(11):3244-3245.
    [409]Liu, C.-Y. and W.-L. Tseng. Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chem. Commun.,2011,47(9):2550-2552.
    [410]Sun, J., J. Ge, W. Liu, Z. Fan, H. Zhang, and P. Wang. Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nanoparticles supramolecular assembly. Chem:Commun.,2011,47(35):9888-9890.
    [411]Li, T., S. Dong, and E. Wang. Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA. Chem. Commun.,2007(41):4209-4211.
    [412]Wang, Y., D. Li, W. Ren, Z. Liu, S. Dong, and E. Wang. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem. Commun., 2008(22):2520-2522.
    [413]Medley, C.D., J.E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, and W. Tan. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem., 2008,80(4):1067-1072.
    [414]Nath, S., C. Kaittanis, A. Tinkham, and J.M. Perez. Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal. Chem.,2008,80(4):1033-1038.
    [415]Nath, N. and A. Chilkoti. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem.,2002,74(3):504-509.
    [416]Laromaine, A., L. Koh, M. Murugesan, R.V. Ulijn, and M.M. Stevens. Protease-triggered dispersion of nanoparticle assemblies. J. Am. Chem. Soc.,2007,129(14):4156-4157.
    [417]Liu, R., R. Liew, J. Zhou, and B. Xing. A simple and specific assay for real-time colorimetric visualization of β-lactamase activity by using gold nanoparticles. Angew. Chem. Int. Ed.,2007, 46(46):8799-8803.
    [418]Cao, R., B. Li, Y. Zhang, and Z. Zhang. Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun.,2011, 47(45):12301-12303.
    [419]Wang, Z., R. Levy, D.G. Fernig, and M. Brust. Kinase-catalyzed modification of gold nanoparticles:a new approach to colorimetric kinase activity screening. J. Am. Chem. Soc., 2006,128(7):2214-2215.
    [420]Choi, Y., N.-H. Ho, and C.-H. Tung. Sensing phosphatase activity by using gold nanoparticles. Angew. Chem. Int. Ed.,2007,46(5):707-709.
    [421]Zhao, W., W. Chiuman, J.C.F. Lam, M.A. Brook, and Y. Li. Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem. Commun., 2007(36):3729-3731.
    [422]Zhao, W., M.A. Brook, and Y. Li. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem,2008,9(15):2363-2371.
    [423]Song, Y., W. Wei, and X. Qu. Colorimetric biosensing using smart materials. Adv. Mater.,2011, 23(37):4215-4236.
    [424]Hone, D.C., A.H. Haines, and D.A. Russell. Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir,2003,19(17):7141-7144.
    [425]Thanh, N.T.K. and Z. Rosenzweig. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal. Chem.,2002,74(7):1624-1628.
    [426]Gole,A. and C.J. Murphy. Biotin-streptaviding-induced aggregation of gold nanorods:tuning rod-rod orientation. Langmuir,2005,21(23):10756-10762.
    [427]Sato, K., K. Hosokawa, and M. Maeda. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc.,2003,125(27):8102-8103.
    [428]Liu, J. and Y. Lu. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed.,2006,45(1): 90-94.
    [429]Basnar, B., J. Xu, a. Di Li, and I. Willner. Encoded and enzyme-activated nanolithography of gold and magnetic nanoparticles on silicon. Langmuir,2007,23(5):2293-2296.
    [430]Li, D., R. Gill, R. Freeman, and I. Willner. Probing of enzyme reactions by the biocatalyst-induced association or dissociation of redox labels linked to monolayer-functionalized electrodes. Chem. Commun.,2006(48):5027-5029.
    [431]Liu, S., Z. Du, P. Li, and F. Li. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding. Biosens. Bioelectron.,2012,35(1):443-446.
    [432]Li, S., L. Mao, Y. Tian, J. Wang, and N. Zhou. Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles. Analyst,2012,137(4): 823-825.
    [433]Guazzaroni, M., C. Crestini, and R. Saladino. Layer-by-layer coated tyrosinase:an efficient and selective synthesis of catechols. Bioorg. Med. Chem.,2012,20(1):157-166.
    [434]Aslan, K. and V.H. Perez-Luna. Surface modification of colloidal gold by chemisorption of alkanethiols in the presence of a nonionic surfactant. Langmuir,2002,18(16):6059-6065.
    [435]Elghanian, R., J.J. Storhoff, R.C. Mucic, R.L. Letsinger, and C.A. Mirkin. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277(5329):1078-1081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700