基于碳纳米管修饰电极检测农药残留的酶生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期使用农药引起农产品农药残留超标,对生态环境和人类健康造成极大危害,加强农药残留检测迫在眉睫。生物传感分析技术与传统方法相比具有灵敏度高、分析速度快、成本低等优点,在环境监测、食品检验等方面得到高度重视和广泛研究。
     本文自行设计加工一次性丝网印刷电极,并通过超声清洗、电化学氧化等处理,使普通油墨批量生产的电极取得了良好电化学响应特性,为后续试验提供基础;同时以玻碳电极为信号转换器,将乙酰胆碱酯酶通过多壁碳纳米管-戊二醛交联固定在电极表面,构建了用于农药残留检测的电流型生物传感器。传感器对底物响应时间小于1分钟,对敌百虫和灭多威检测响应灵敏,线性关系良好,检测限分别为0.026μg/mL,1.5×10-3μg/mL;检测时间少于30分钟。通过组内偏差计算传感器的精确性、稳定性和重复性,变异系数均小于5%;在此基础上重点对一次性丝网印刷集成电极构建的电流型酶生物传感器进行研究。丝网印刷生物传感器制作时间短,测定电位比前者降低了100mV(vs.Ag/AgCl)。对马拉硫磷和呋喃丹的检测响应快,检测限分别可达0.01μg/mL和1.5×10-3μg/mL。通过组内偏差计算传感器的精确性、重复性和稳定性,除电极重复性外变异系数均小于5%;实际样品以黄瓜和苹果为例,将集成电极生物传感器用于农药残留检测。结果表明,实际样品基体效应对测定结果基本没有影响,有机磷和氨基甲酸酯回收率在90%~117%之间,传感器满足实际快速预警筛选需要。
     创新点:首先,自行设计了SPE电极、商业化批量加工后结合本文的预处理方法,使电极具有良好的化学响应,为SPE电极商业化生产提供了可能;其次,新型纳米材料MWNTs经过本文方法处理后能够均匀分散于乙醇中修饰SPE电极后,构建的这种无介体电流型酶传感器能够有效降低巯基胆碱的氧化电位(至+0.10V),不仅克服了DMF分散MWNTs有毒、挥发慢的缺点,而且氧化电压大大低于国内同期的报道;最后,研究了实际样品溶液基体效应对测定结果的影响,结果表明,在pH7.4的缓冲溶液做提取液的条件下,基体效应几乎没有影响,这于国内文献首次提出。
With the long-term use of pesticides in agricultural products, excessive pesticide residues has caused considerable hazard on ecological environment and human health. Now,People would pay growing awareness of food safety, since it’s extremely urgent to strengthen the detection of pesticide residues. Enzymatic biosensors (EBS) have emerged as an ultra sensitive, selective cost-effective and rapid technique for pesticides residue analysis in environmental monitoring, food and quality control. In recent years, it has been given serious attention and extensive research, becoming important trends for detection pesticide residues.
     In this paper, we will propose a simple and efficient method for detection trace pesticide residues based on immobilization of AChE on the multiwall carbon nanotube modified electrode, which called amperometric biosensor for screening of organophosphorus and carbamate pesticides. Using the traditional glass carbon electrode and self-design screen-printing electrode as signal converter, we investigated the influence factors and results of the biosensor that functionalized with acetylcholinesterase and modified with acid purified multi-wall carbon nanotubes. On that basis, exploit the screen-printed electrode enzyme biosensor (SPE) for measurement of real-sample that containing trace organophosphorus and carbamate pesticide residues. Work and conclusion as following:
     We design the thick film circle electrode, and subcontract by mass producing. With a pre-oxidation at +1.7V for 3min, the potential difference of the electrode has brought down from 0.52V to 0.15V and the current response doubled, which improved the electrode reversibility apparently. Under the mentioned pretreatment, the electrode has a good linear relationship between the reduction current and scan rate square, the related coefficient is 0.9973. Except for reduction peak potentials, the relative standard deviation of repeated measurements is less than 3%, which indicate the electrodes have good consistency and stability, provided a basis for following experiments.
     Using the traditional glassy carbon electrode as signal converter, an electrochemical method has been devised for investigation of pesticide. The multi-wall carbon nanotube (MWNTs) dispersed by N, N-Dimethylformamide (DMF) can promote the electron transfer effectively, and bring down the voltage for acetylcholine oxidation from +0.7V to +0.25V, reducing the interference of impurities solution. Meanwhile, optimize the experimental conditions: +0.25 V for working potential, pH7.4, 0.5% for the amount of cross-linking agent glutaraldehyde, and 1.5mmol/L for the substrate thio-acetylcholine chloride concentration. Under the optimal conditions, Pesticides of trichlorfon and methomyl are selected to discuss their inhibition efficiencies to acetylcholinesterase. Inhibition time of both pesticides is 10min. The GC/EBS for trichlorphon determination has a good linear relationship among the concentration range 0.005~100.0μg/mL, related coefficient 0.9973, and for the methomyl linear range is 0.01~100.0μg/mL, related coefficient 0.9934. The biosensor detection limit for trichlorfon and methomyl is 0.026μg/mL and 1.5×10-3μg/mL, respectively, with the whole detection time no longer than 60min. The investigation of group categories deviation is no more than 5%, demonstrated that biosensor has good precision, electrode to electrode reproducibility and stability.
     Based on above research efforts, we develop screen-printed electrode enzymatic biosensors (SPE/EBS) as a novel device for trace organophosphorus and carbamate pesticides measurement. The MWNTs dispersed by ethanol is used to modify the working electrode surface, which promotes the electron transfer high efficiently. Compared with GC/EBS, the SPE/EBS has a shorter response time and low detection potential (150mVvs.Ag/AgCl), 100mV lower than the GC/EBS, without any use of mediating redox species, further enhancing electrode selectivity and sensitivity. we also optimize the experimental conditions: +0.15V for working potential, pH7.4, 0.5% for the amount of cross-linking agent glutaraldehyde, and 1.4mmol/L for the substrate thio-acetylcholine chloride concentration. Under the optimal conditions, Pesticides of malathion and carbofuran are selected to discuss their inhibition efficiencies to acetylcholinesterase. Inhibition time of both pesticides is 8min. The SPE/EBS for malathion determination has a good linear relationship among the concentration range 0.005~10.0μg/mL, related coefficient 0.9926, and for the methomyl linear range is 0.001~0.1μg/mL, related coefficient 0.9874. The biosensor detection limit for malathion and carbofuran is as low as 0.01μg/mL and 1.5×10-3μg/mL, respectively. Investigation of group categories deviation to determinate the biosensor accuracy, and stability, both the characters are no more than 5%. To measure the repeatability, we use AChE/MWNTs/SPE to hydrolyze the substrate acetylcholine chloride for indirect determination. Prepare 6 identical SPE/EBS under the same conditions, and record their current responses in 1.4mmol/L acetylcholine chloride solution. The relative standard deviation (R.S.D) of 6 electrodes is 5.9%, which not satisfied and need to increase. As a result of the printing materials and technique influence, SPE electrode repeatability is always poorer than GC. However, it is disposal, inexpensive and simple operation, which allows the R.S.D less than 7% for practical application.
     Using the SPE/EBS to analyze the real cucumber and apple samples, SPE/EBS avoids the interference from matrix effects effectively, by phosphate buffer solution (pH 7.4) as the extracting solution. Take AChE inhibited by malathion in apple and cucumber samples for example, the accuracy, repeatability and stability of biosensors are evaluated. Conclusion is that all the relative standard deviations are less than 5%. In addition investigated the coefficient of recovery by spike recovery, which among 90%~117%, demonstrating the feasibility of the application of the sensor for rapid, sensitive, extremely inexpensive, and yet highly reproducible monitoring of pesticide residue. As a result, it could be achieved through further improvement in miniaturization of electrochemical system for toxic substances control in food and environment.
     Innovations: firstly, we designed the screen-printed electrode and subcontracted by mass producing, combining with the mentioned pretreatment in 2nd chapter, we got good consistency and stability for the electrodes, which would provide a basis for following experiments, also a potential possibility for future commercial application. Then the newly materials, MWNTs, could disperse in ethanol homogeneously after treated by the referred method in the paper. The SPE modified with that material has lower detection potential than GC electrodes, to be +0.1V, without any use of mediating redox species, enhancing electrode selectivity and sensitivity in further, not only overcome the shortcomings that the toxicity caused by MWNTs dispersed in DMF and time-consumed to volatilize, but also the oxidation voltage is much lower than the same period in the domestic. Finally, measurement of real sample solution was carried out to evaluate the matrix effect on the impact of the results. Conclusions is that using pH7.4 buffer solution to extract trace pesticides in samples, there is almost no effect for the final determination, which is introduced in the domestic literature for the first time.
引文
[1]EC Alocilja,SM Radke. Market analysis of biosensors for food safety[J]. Biosensors and Bioelectronics, 2003, 18(5-6):841-846.
    [2]H Schulze , S Vorlová, F Villatte , et al . Design of acetylcholinesterases for biosensor applications[J]. Biosensors and Bioelectronics, 2003, 18(2-3 ):201-209.
    [3]王运浩,江用文,成浩,等.食品农药残留与分析控制技术展望[J].现代科学仪器, 2003(1):8-12.
    [4]FN Kok,V Hasirci. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor[J]. Biosensors and Bioelectronics, 2004, 19(7):661-665.
    [5]LA Terry,SF White,LJ Tigwell. The application of biosensors to fresh produce and the wider food industry[J]. Journal of Agriculture Food Chemistry, 2005, 53(5):1309-1316.
    [6]邹明强,杨蕊,金钦汉.化学农药与农药污染[J].大学化学, 2004(19):18-34.
    [7]G Palleschi,M Bernabei,C Cremisini, et al. Determination of organophosphorus insecticides with a choline electrochemical biosensor[J]. Sensors and Actuators B, 1992, 7(1-3):513-517.
    [8]M Trojanowicz,ML Hitchman. Determination of pesticides using electrochemical biosensors[J]. Trends in analytical chemistry, 1996, 15(1):38-45.
    [9]王丽红,张林,陈欢林.有机磷农药酶生物传感器研究进展[J].化学进展, 2006, 18(4):440-446.
    [10]AH Mansee,W Chen,A Mulchandani. Biodetoxification of coumaphos insecticide using immobilized Escherichia coli expressing organophosphorus hydrolase enzyme on cell surface [J]. Biotechnology and Bioprocess Engineering, 2000, 5(6):436-440.
    [11]PRBdO Marques , GS Nunes , TCRd Santos , et al . Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster Application in amperometric biosensors for methamidophos pesticide detection[J] . Biosensors and Bioelectronics, 2004, 20(4):825-832.
    [12]D Martorell,F Céspedes,E Martínez-Fàbregas, et al. Determination of organophosphorus and carbamate pesticides using a biosensor based on a polishable,7,7,8,8-tetracyanoquino-dimethane-modified,graphite-epoxy biocomposite[J]. Analytica Chimica Acta, 1997, 337(3):305-313.
    [13]L Poganik,M Franko. Optimisation of FIA system for detection of organophosphorus and carbamate pesticides based on cholinesterase inhibition[J]. Talanta, 2001, 54(4):631-641.
    [14]S Chen,R Yuan,Y Chai, et al. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles [J]. Biosensors and Bioelectronics, 2007, 22(7):1268-1274 .
    [15]I Bontidean,C Berggren,G Johansson, et al. Detection of Heavy Metal Ions at Femtomolar Levels Using Protein-Based Biosensors[J]. Analytical chemistry, 1998, 70(19): 4162–4169.
    [16]S Cherian,RK Gupta,BC Mullin, et al. Detection of heavy metal ions using protein-functionalized microcantilever sensors [J]. Biosensors and Bioelectronics, 2003, 19(5):411-416 .
    [17]J Gayet,A Haouz,A Geloso-Meyer, et al. Detection of heavy metal salts with biosensors built with an oxygen electrode coupled to various immobilized oxidases and dehydrogenases[J] . Biosensors & bioelectronics, 1993, 8(3-4):177-183.
    [18]K Maehashi,T Katsura,K Kerman, et al. Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors[J]. Analytical chemistry, 2007, 79(2):782-787.
    [19]D Ogończyk,? Tymecki,I Wy?kiewicz, et al. Screen-printed disposable urease-based biosensors forinhibitive detection of heavy metal ions [J]. Sensors and Actuators B, 2005, 106(1):450-454.
    [20]若筠.欧盟支持生物传感器检测农药残留[J].中国果业信息, 2007(1):56.
    [21]GB/T 5009.199-2003.蔬菜中有机磷和氨基甲酸酯类农药残留量快速检测.
    [22]RA Simonaitis,JM Zehner. Elimination of false integration counts in automated pesticide residue analysis[J]. Analytical chemistry, 1982, 54(7):1244-1245.
    [23]M Parveen,S Kumar. Acetylcholinesterase or Butyrylcholinesterase Amperometric biosensors for detection of organophosphorus/carbamate pesticide in environmental area[M]. Romania: IOS Press, 2005:125-135
    [24]DG Kang,JYH Kim,HJ Cha. Enhanced detoxification of organophosphates using recombinant Escherichia coli with co-expression of organophosphorus hydrolase and bacterial hemoglobin [J]. Biotechnology Letters, 2002, 24(11).
    [25]S Kumaran,M Morita. Application of a cholinesterase biosensor to screen for organophosphorus pesticides extracted from soil[J]. Talanta, 1995, 42(4):649-655.
    [26]P Mulchandani,A Mulchandani,I Kaneva, et al. Biosensor for direct determination of organophosphate nerve agents.1.Potentiometric enzyme electrode[J]. Biosensors & bioelectronics, 1999, 14(1):77-85.
    [27]S Suwansa-ard,P Kanatharana,P Asawatreratanakul, et al. Semi disposable reactor biosensors for detecting carbamate pesticides in water[J]. Biosensors and Bioelectronics, 2005, 21(3):445-454.
    [28]W Limbut,P Thavarungkul,P Kanatharana, et al. Comparative study of controlled pore glass, silica gel and Poraver?for the immobilization of urease to determine urea in a flow injection conductimetric biosensor system[J]. Biosensors and Bioelectronics, 2004, 19(8):813-821.
    [29]朱小山,盂范平,朱琳,等.基于固定化AChE的流动注射型酶传感器研究[J].环境科学, 2006, 27(9):1829-1834.
    [30]T Imato,N Ishibashi. Potentiometric butyrylcholine sensor for organophosphate pesticides[J], 1995, 10(5):435-441.
    [31]S Filer,F Ahmad.工业用离子敏感场效应晶体管(ISFET)pH传感器:技术概述及应用. www.honeywell-imc.com.cn/app/nav/down/saveasdialog.asp?nm=ch-sf-iwc0049_isfet.doc,2005-09-12.
    [32]K Wan,JM Chovelon,N Jaffrezic-Renault, et al. Sensitive detection of pesticide using ENFET with enzymes immobilized by cross-linking and entrapment method[J]. Sensors and Actuators B, 1999, 58(1-3):399-408.
    [33]N Jaffrezic-Renault,A Senillou,C Martelet, et al. ISFET microsensors for the detection of pollutants in liquid media[J]. Sensors and Actuators B, 1999, 59(2-3):154-164.
    [34]刘鹂,安裕敏,SV Dzyadevych, et al.丁酰胆碱脂酶电势型生物传感器测定敌敌畏农药残留的抑制性研究[J].贵州环保科技, 2006, 12(2):32-35.
    [35]SV Dzyadevych,AP Soldatkin,VN Arkhypova, et al. Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition[J]. Sensors and Actuators B, 2005, 105(1):81-87.
    [36]M Snejdarkova,L Svobodova,DP Nikolelis, et al. Acetylcholine Biosensor Based on Dendrimer Layers for Pesticides Detection[J]. Electroanalysis, 2003, 15(14): 1185 -1191.
    [37]M Bernabei,S Chiavarini,C Cremisini, et al. Anticholinesterase activity measurement by a choline biosensor: application in water analysis[J]. Biosens Bioelectron, 1993, 8(5):265-271.
    [38]V Tripathi,V Kandimalla,H Ju. Preparation of ormosil and its applications in the immobilizing biomolecules[J]. Sensors & Actuators: B. Chemical, 2006, 114(2):1071-1082.
    [39]M Cano,JLávila,M Mayén, et al. A new, third generation, PVC/TTF–TCNQ composite amperometric biosensor for glucose determination[J]. Journal of Electroanalytical Chemistry, 2008, 615(1):69-74.
    [40]JF Kennedy,MdCB Pimentel,EH Melo, et al. Sucrose biosensor as an alternative tool for sugarcane field samples [J]. Journal of the Science of Food and Agriculture, 2007, 87(12):2266-2271(2276).
    [41]RF Dutra,KA Moreira,MIP Oliveira, et al. An Inexpensive Biosensor for Uric Acid Determination in Human Serum by Flow-Injection Analysis [J]. Electroanalysis, 2004, 17(8):701-705.
    [42]T Bachmann,B Leca,F Vilatte, et al. Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks Biosensors and Bioelectronics[J]. Biosensors and Bioelectronics, 2000, 15(3-4):193-201.
    [43]TT Bachmann,RD Schmid. A disposable multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution[J]. Analytica Chimica Acta, 1999, 401(1-2):95-103.
    [44]A Hart,W Collier,D Janssen. The response of screen-printed enzyme electrodes containing cholinesterases to organo-phosphates in solution and from commercial formulations[J]. Biosensors and Bioelectronics, 1997, 12(7):645-654.
    [45]张君,王月伶,袁倬斌.可检测有机磷农药残留的丝网印刷酶电极[J].化学学报, 2006, 64(5):428-434.
    [46]A Ivanov,G Evtugyn,H Budnikov, et al. Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides[J]. Analytical and bioanalytical chemistry, 2003, 377(4):624-631.
    [47]B Bucur,D Fournier,A Danet, et al. Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection[J]. Analytica Chimica Acta, 2006, 562(1):115-121.
    [48]M Sch?ning,R Krause,K Block, et al. A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides[J]. Sensors & Actuators: B. Chemical, 2003, 95(1-3):291-296.
    [49]张先恩.生物传感器[M].北京:化学工业出版社, 2006:190-191
    [50]蒋雪松,应义斌,王剑平.生物传感器在农药残留检测中的应用[J].农业工程学报, 2005, 21(4):118-112.
    [51]M Xavier,B Vallejo,M Marazuela, et al. Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red[J]. Biosensors and Bioelectronics, 2000, 14(12):895-905.
    [52]R Andres,R Narayanaswamy. Fibre-optic pesticide biosensor based on covalently immobilized acetylcholinesterase and thymol blue[J]. Talanta, 1997, 44(8):1335-1352.
    [53]栾崇林,金兴良,马文石,等.植物酯酶光纤传感器检测有机磷农药[J].安徽农业科学, 2007, 35(28):8794-8796.
    [54]V Andreou,Y Clonis. A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol–gel entrapped bromcresol purple for in-field use[J]. Biosensors and Bioelectronics, 2002, 17(1-2):61-69.
    [55]J Kumar,S Jha,S D'Souza. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbedon glass fiber filters as disposable biocomponent[J]. Biosensors and Bioelectronics, 2006, 21(11):2100-2105.
    [56]A Mulchandani,S Pan,W Chen. Fiber-Optic Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents[J]. Biotechnology progress, 1999, 15(1):130-134.
    [57]O Wolfbeis. Fiber-optic chemical sensors and biosensors[J]. Analytical chemistry, 2004 (76):3269-3284.
    [58]A Kumar . Biosensors Based on Piezoelectric Crystal Detectors:Theory andApplication. http://www.tms.org/pubs/journals/JOM/0010/Kumar/Kumar-0010.html,2000.
    [59]E Scheide , G Guilbault . Piezoelectric Detectors for Organophosphorus Compounds and Pesticides[J]. Analytical chemistry, 1972, 44(11):1764.
    [60]J Abad,F Pariente,L Hernandez, et al. Determination of Organophosphorus and Carbamate Pesticides Using a Piezoelectric Biosensor[J]. Analytical chemistry, 1998, 70(14):2848-2855.
    [61]N Kim,I Park,D Kim. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor[J]. Biosensors and Bioelectronics, 2007, 22(8):1593-1599.
    [62]S Wring,J Hart. Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds[J]. Analyst, 1992, 117(8):1215-1229.
    [63]A Hart,W Collier. Stability and function of screen printed electrodes based on cholinesterase stabilised by a co-polymer/ sugar alcohol mixture [J]. Sensors & Actuators: B. Chemical, 1998 , 53(1-2):111-115 .
    [64]Y Li,Y Zhou,J Feng, et al. Immobilization of enzyme on screen-printed electrode by exposure to glutaraldehyde vapour for the construction of amperometric acetylcholinesterase electrodes[J]. Analytica Chimica Acta, 1999, 382(3):277-282.
    [65]E Gogol,G Evtugyn,J Marty, et al. Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors[J]. Talanta, 2000, 53(2):379-389.
    [66]A Mulchandani,P Mulchandani,W Chen, et al. Amperometric Thick-Film Strip Electrodes for Monitoring Organophosphate Nerve Agents Based on Immobilized Organophosphorus Hydrolase[J]. Analytical chemistry, 1999, 71(11):2246-2249.
    [67]S Jin,Z Xu,J Chen, et al. Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe[J]. Analytica Chimica Acta, 2004, 523(1,4):117-123.
    [68]R Whyatt,D Barr. Measurement of Organophosphate Metabolites in Postpartum Meconium as a Potential Biomarker of Prenatal Exposure: A Validation Study[J]. Environmental Health Perspectives, 2001, 109(4):417-420.
    [69]G Nunes,D Barcelo,B Grabaric, et al. Evaluation of a highly sensitive amperometric biosensor with low cholinesterase charge immobilized on a chemically modified carbon paste electrode for trace determination of carbamates in fruit, vegetable and water samples[J]. Analytica Chimica Acta, 1999, 399(1-2):37-49.
    [70]S Andreescu,T Noguer,V Magearu, et al. Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents[J]. Talanta, 2002, 57(1):169-176.
    [71]S Andreescu,L Barthelmebs,J Marty. Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides[J]. Analytica Chimica Acta, 2002, 464(2):171-180.
    [72]GS Nunes,G Jeanty,J Marty. Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides Comparative study[J]. Analytica Chimica Acta, 2004, 523(1):107-115.
    [73]F Arduini,F Ricci,C Tuta, et al. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode[J]. Analytica Chimica Acta, 2006, 580(2):155-162.
    [74]E Suprun,G Evtugyn,H Budnikov, et al. Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue[J]. Analytical and bioanalytical chemistry, 2005, 383(4):597-604.
    [75]K Joshi,J Tang,R Haddon, et al. A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode[J]. Electroanalysis, 2005, 17(1):54-58.
    [76]S Rodriguez-Mozaz,S Reder,MLd Alda, et al. Simultaneous multi-analyte determination of estrone,isoproturon and atrazine in natural waters by the river analyser (RIANA), an optical immunosensor [J]. Biosensors and Bioelectronics, 2004, 19(7): 633-640 .
    [77]J Wang,V Nascimento,S Kane, et al. Screen-printed tyrosinase-containing electrodes for the biosensing of enzyme inhibitors[J]. Talanta, 1996, 43(11):1903-1907.
    [78]杨笑鹤,杨强,杨昊,等.功能碳黑修饰的丝网印刷碳糊电极葡萄糖生物传感器的特性与机理[J].分析化学, 2007, 35(12):1751-1755.
    [79]陈向强,何苗,蔡强,等.锇聚合物修饰丝网印刷电极的辣根过氧化物酶传感器[J].清华大学学报:自然科学版, 2007, 47(9):1473-1476.
    [80]李元光,蒋中华.丝网印刷胆酯酶电极测定神经性毒剂沙林,梭曼[J].分析化学, 2000, 28(1):95-98.
    [81]李清文,罗国安,舒友琴,等.丝网印刷纳米金属氧化物型固态pH电极的研制[J].高等学校化学学报, 2000, 21(9):1380-1382.
    [82]宋昭,黄加栋,胡敏,等.快速检测敌百虫浓度传感器酶电极的研究[J].传感器技术, 2005, 24(7):16-19.
    [83]陈向强,何苗,蔡强.检测水中有机磷农药的酶传感器[J].环境科学, 2006, 27(8):1627-1630.
    [84]C Bonnet,S Andreescu,J Marty. Adsorption: an easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes[J]. Analytica Chimica Acta, 2003, 481(2,3):209-211.
    [85]Y Lin,F Lu,J Wang. Disposable carbon nanotube modified screenprinted biosensor for amperometric detection of organophosphorus pesticides and nerve agents[J]. Electroanalysis, 2004, 16(1-2):145-149.
    [86]刘润,郝玉翠,康天放.基于碳纳米管修饰电极检测有机磷农药的生物传感器[J].分析试验室, 2007, 26(9):9-12.
    [87]R Solna,S Sapelnikova,P Skladal, et al. Multienzyme electrochemical array sensor for determination of phenols and pesticides[J]. Talanta, 2005, 65(2):349-357.
    [88]CL Rosa,F Pariente,L Hernandez, et al. Determination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate[J]. Analytica Chimica Acta, 1994, 295(3):273-282.
    [89]H Lee,YA Kim,YA Cho, et al. Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor[J]. Chemosphere, 2002, 46(4):571-576.
    [90]B Dzantiev,A Zherdev,M Yulaev, et al. Electrochemical immunosensors for determination of the pesticides 2,4-dichlorophenoxyacetic and 2,4,5-tricholorophenoxyacetic acids[J] . Biosensors and Bioelectronics, 1996, 11(1-2):179-185.
    [91]H Schulze,E Scherbaum,M Anastassiades, et al. Development, validation, and application of an acetylcholinesterasebiosensor test for the direct detection of insecticide residues in infant food[J]. Biosensors and Bioelectronics, 2002, 17(11-12):1095-1105.
    [92]D Du,X Huang,J Cai, et al. Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor[J]. Biosensors and Bioelectronics, 2007, 23(5):285-289.
    [93]S Laschi,D Ogończyk,I Palchetti, et al. Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors[J]. Enzyme and Microbial Technology, 2007, 40(3):485-489.
    [94]R Kindervater,W Künnecke,R Schmid. Exchangeable immobilized enzyme reactor for enzyme inhibition tests in flow-injection analysis using a magnetic device. Determination of pesticides in drinking water[J]. Analytica Chimica Acta, 1990, 234(1):113-117.
    [95]A Vakurov,C Simpson,C Daly, et al. Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection I.Modification of carbon surface for immobilization ofacetylcholinesterase[J]. Biosensors and Bioelectronics, 2004, 20(6):1118-1125.
    [96]A Vakurov,C Simpson,C Daly, et al. Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection II: Immobilization and stabilization of acetylecholinesterase[J]. Biosensors and Bioelectronics, 2005, 20(11):2324-2329.
    [97]孟范平,何东海,朱小山.固定化鲅鱼乙酰胆碱酯酶的制备及部分性质测定[J].中国海洋大学学报, 2005, 35(6):1067-1071.
    [98]J Wang,C Timchalk,Y Lin. Carbon Nanotube-Based Electrochemical Sensor for Assay of Salivary Cholinesterase Enzyme Activity: An Exposure Biomarker of Organophosphate Pesticides and Nerve Agents[J]. Environmental Science and Technology, 2008, 42(7):2688-2693.
    [99]G Wang,J Xu,H Chen, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix[J]. Biosensors and Bioelectronics, 2003, 18(4):335-343.
    [100]A Pierre. The sol-gel encapsulation of enzymes[J]. Biocatalysis and Biotransformation, 2004, 22(3):145-170.
    [101]高慧丽,康天放,王小庆,等.溶胶-凝胶法固定乙酰胆碱酯酶生物传感器测定有机磷农药[J].环境化学, 2005, 24(6):707-710.
    [102]S Sotiropoulou,N Chaniotakis. Tuning the sol–gel microenvironment for acetylcholinesterase encapsulation[J]. Biomaterials, 2005, 26(33):6771-6779.
    [103]A Díaz,M Peinado. Sol-gel cholinesterase biosensor for organophosphorus pesticide fluorimetric analysis[J]. Sensors and Actuators B:Chemical, 1997, 39(1-3):426-431.
    [104]黄永春,刘红梅,傅学起,等. PVA-SbQ法固定乙酰胆碱酯酶检测农药残留[J].环境化学, 2006, 25(5):598-601.
    [105]S Cosnier. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review[J]. Biosensors and Bioelectronics, 1999, 14(5):443-456.
    [106]S Andreescu,D Fournier,J-L Marty. Development of highly sensitive sensor based on bio-engineered acetylcholinesterase immobilized by affinity method[J]. Analytical Letters, 2003, 39:1865-1885.
    [107]B Bucur,M Dondoi,A Danet, et al. Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases[J]. Analytica Chimica Acta, 2005, 5399(1-2):195-201.
    [108]B Bucur,AF Danet,J-L Marty. Cholinesterase immobilisation on the surface of screen-printed electrodes based on concanavalin A affinity[J]. Analytica Chimica Acta, 2005, 530(1,7):1-6.
    [109]B Bucur,S Andreescu,J-L Marty. Affinity Methods to Immobilize Acetylcholinesterases for Manufacturing Biosensors Authors[J]. Analytical Letters, 2004, 37(8):1571-1588.
    [110]J Guisan. Immobilization of enzymes and cells[M]. Berlin: Springer , 2006:15-17
    [111]S Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58.
    [112]J Wang,M Pedrero,H Sakslund, et al. Electrochemica activation of screen-printed carbon strips[J]. Analyst, 1996, 121(3):345-350.
    [113]F Ricci,A Amine,G Pallesch, et al. Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability[J]. Biosensors and Bioelectronics, 2003, 18(2-3):165-174 .
    [114]M Rahman,P Kumar,D Park, et al. Electrochemical Sensors Based on Organic Conjugated Polymers[J]. sensors, 2008, 8:118-141.
    [115]D Moscone,D Ottavi,D Compagnone, et al. Construction and Analytical Characterization of Prussian Blue-Based Carbon Paste Electrodes and Their Assembly as Oxidase Enzyme sensors[J]. Analytical chemistry, 2001, 73:2529-2535.
    [116]D Jeykumari,S Narayanan. Functionalized carbon nanotube-bienzyme biocomposite for amperometricsensing[J]. Carbon, 2009, 47 (4):Pages 957-966.
    [117]S Wen,S-i Mho,I-H Yeo. Improved electrochemical capacitive characteristics of the carbon nanotubes grown on the alumina templates with high pore density [J]. Journal of Power Sources, 2006, 163(1, 7 ):304-308 .
    [118]M-C Tsai,T-K Yeh,C-H Tsai. An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation [J]. Electrochemistry Communications, 2006, 8(9):1445-1452 .
    [119]JA Kim,DG Seong,TJ Kang, et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites [J]. Carbon, 2006, 44(10):1898-1905.
    [120]XH Chen,CS Chen,HN Xiao, et al. Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits [J]. Tribology International, 2006, 39(1):22-28 .
    [121]K Yu,YS Zhang,F Xu, et al. Significant improvement of field emission by depositing zinc oxide nanostructures on screen-printed carbon nanotube films[J]. Applied Physics letters, 2006, 88(15):153-160.
    [122]T Tangkuaram,C Ponchio,T Kangkasomboon, et al. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan [J]. Biosensors and Bioelectronics, 2007, 22(9-10):2071-2078.
    [123]M Shi,J Xu,S Zhang, et al. A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system[J]. Talanta, 2006, 68 (4):1089-1095.
    [124]于杨春,王晓浩,周兆英,等.酶电极法血糖仪的研制[J].仪器仪表学报, 2003, 24(1):45-48.
    [125]胡军.手持式血糖仪控制器的开发[J].传感器世界, 2007, 13(6):134-136.
    [126]E Crouch,DC Cowell,S Hoskins, et al. A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink[J]. Biosensors and Bioelectronics, 2005, 21(5):712-718 .
    [127]E Crouch,DC Cowell,S Hoskins, et al. Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase [J]. Analytical Biochemistry, 2005, 347 (1):17-23.
    [128]G Li,Y Wang,H Xu. A Hydrogen Peroxide Sensor Prepared by Electropolymerization of Pyrrole Based on Screen-Printed Carbon Paste Electrodes[J]. sensors, 2007 , 7:239-250.
    [129]RM Pemberton,R Pittson,N Biddle, et al. Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis[J] . Biosensors and Bioelectronics, 2009, 24(5):1246-1252.
    [130]A Bard,L Faulkner.电化学方法原理和应用[M].北京:化学工业出版社, 2005:127-139
    [131]Y Yan,M Zhang,K Gong, et al. Adsorption of Methylene Blue Dye onto Carbon Nanotubes: A Route to an Electrochemically Functional Nanostructure and Its Layer-by-Layer Assembled Nanocomposite[J]. Chemistry of Materials, 2005, 17 (13):3457-3463.
    [132]C Velasco-Santos,AL Martínez-Hernández,M Lozada-Cassou, et al. Chemical functionalization of carbon nanotubes through an organosilane[J]. Nanotechnology, 2002, 311(13):495-498.
    [133]L Qu,L Dai. Polymer-masking for controlled functionalization of carbon nanotubes[J]. Chemical Communications, 2007 :3859-3861.
    [134]王艳洁,周传光,马新东,等.海水中14种有机磷农药的气相色谱测定方法[J].分析试验室, 2008, 27(s1):436-440.
    [135]王建华,焦奎.蔬菜中有机氯农药残留的超临界流体提取和气相色谱法测定[J].色谱, 1998, 16(6):506-507.
    [136]金戈辉,郝陶光,焦阳.微波萃取-气相色谱法同时测定水果、蔬菜中7种有机磷农药残留[J].化学分析计量, 2008, 17(3):27-29.
    [137]王京文,徐文,周航.蔬菜中有机磷农药残留现状调查[J].浙江农业科学, 2006, 35(5):574-576.
    [138]付晓陆,陈余平.对农药残留速测卡适用和有效性的评价[J].现代农业科技, 2008, 2(8):69-70.
    [139]E Katz,I Willner. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors[J]. Electroanalysis, 2003, 15(11):913 - 947.
    [140]EMaD Barceló,CBaG Gauglitz,R Abuknesha. Immunosensors for pesticide determination in natural waters [J]. Trends in analytical chemistry, 2001, 20(3):124-132 .
    [141]A Ciucu,C Negulescu,R Baldwin. Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system[J]. Biosensors and Bioelectronics, 2003, 18(2-3):303-310.
    [142]P Skladal . Determination of organophosphate and carbamate pesticides using a cobalt phthalocyanine-modified carbon paste electrode and a cholinesterase enzyme membrane[J]. Analytica Chimica Acta, 1991, 252(1-2):11-15.
    [143]康天放,刘润,鲁理平,等.再生丝素固定乙酰胆碱酯酶生物传感器[J].应用化学, 2006, 23(10):1099-1103.
    [144]J Kulys,E D'costa. Printed amperometric sensor based on TCNQ and cholinesterase[J]. Biosensors and Bioelectronics, 1991, 6(2):109-115.
    [145]R Francesco,A Fabiana,A Aziz, et al. Characterisation of Prussian blue modified screen-printed electrodes for thiol detection[J]. Journal of Electroanal Chemistry, 2004, 56:229-237.
    [146]B Wang,S Dong. Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film[J]. Talanta, 2000, 51(3):565-572.
    [147]Y Li,H Cao,C Liu, et al. Electrochemical reduction of nitrobenzene at carbon nanotube electrode[J]. Journal of Hazardous Materials, 2007, 148(1-2):158-163.
    [148]H Hu,Y Ni,V Montana, et al. Chemically Functionalized Carbon Nanotubes[J]. Nano letters, 2006, 1(2):180-192.
    [149]K Gong,Y Yan,M Zhang, et al. Electrochemistry and Electroanalytical Applications of Carbon Nanotubes: A Review[J]. Analytical Sciences, 2005, 21(12):1383.
    [150]D Du,M Wang,J Cai, et al. Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing[J]. Analyst, 2008, 133:1790-1795.
    [151]R Deo,J Wang,I Block, et al. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor[J]. Analytica Chimica Acta, 2005, 530(2):185-189.
    [152]Y Tsai,C Chiu. Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds[J]. Sensors and Actuators B: Chemical, 2007, 125(1):10-16.
    [153]D Du,X Huang,J Cai, et al. Rapid determination of triazophos using acetylcholinesterase biosensor based on sol-gel interface assembling multiwall carbon nanotubes[J]. Journal of Applied Electrochemistry, 2007, 37(8):893-898.
    [154]SP Zhang,LG Shan,ZR Tian, et al. Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue[J]. Chinese Chemical Letters, 2008, 19(5):592-594.
    [155]黄金桃,杨昌柱,濮文虹.纳米铂修饰玻碳电极对乙二醇的电催化氧化研究[J].化学与生物工程,2007, 24(1):23-25.
    [156]W Schuhmann. Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures[J]. Reviews in Molecular Biotechnology, 2002, 82(4):425-441 .
    [157]S Sole,A Merkoci,S Alegret. Determination of Toxic Substances Based on Enzyme Inhibition. Part I. Electrochemical Biosensors for the Determination of Pesticides Using Batch Procedures [J]. Critical Reviews in Analytical Chemistry, 2003, 33(2):89-126.
    [158]J Lin,W Qu,S Zhang. Disposable biosensor based on enzyme immobilized on Au–chitosan-modified indium tin oxide electrode with flow injection amperometric analysis [J]. Analytical Biochemistry, 2007, 360( 2):288-293.
    [159]M Tudorache,C Bala. Biosensors based on screen-printing technology, and their applications in environmental and food analysis [J]. Analytical and bioanalytical chemistry, 2007, 388(3):565-578.
    [160]J Shen,C-C Liu. Development of a screen-printed cholesterol biosensor: Comparing the performance of gold and platinum as the working electrode material and fabrication using a self-assembly approach [J]. Sensors and Actuators B: Chemical, 2007, 120( 2):417-425 .
    [161]N Sato,H Okuma. Development of single-wall carbon nanotubes modified screen-printed electrode using a ferrocene-modified cationic surfactant for amperometric glucose biosensor applications[J]. Sensors and Actuators B: Chemical, 2008, 129(1):188-194 .
    [162]J Cai,D Du. A disposable sensor based on immobilization of acetylcholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryl [J] . Journal of Applied Electrochemistry, 2008, 38(9):1217-1222.
    [163]蔡强,孟凡国,周海梦,等.丝网印刷电极及制备工艺和传感器及检测方法:中国, CN101021503[P]. 2007-08-22
    [164]陈强,宋昭,黄加栋,等.用于残留农药检测的酶电极:中国, CN2723998[P]. 2005-09-07
    [165]段然,王刚,孙岩,等.农业清洁生产现状及对策研究[J].中国农学通报, 2007, 23(3):494-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700