基于随机共振和定向多壁纳米碳管气敏传感器阵列的SF_6气体检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六氟化硫(Sulfur Hexafluoride,SF_6)自法国化学家Moissan和Lebeau于1900年首次合成以来,以其独特的物理、化学性质在工农业生产生活中得到了广泛应用。与此同时,SF_6气体泄漏也给人们的生产、生活带来了不容忽视的危害。因此准确、安全、方便、快速的检测SF_6气体泄漏具有极大的理论和实际应用价值。
     SF_6属于惰性绝缘气体,是已知化学稳定性最好的物质之一,传统的基于吸附-脱附、氧化-还原原理的气敏传感器对SF_6气体检测无能为力。气相色谱/热导池检测器(GC/TCD)法可以检测SF_6气体,但这种检测方法已经基本被更高精度的色谱检测方法取代。SF_6是不可燃烧的无机气体,一些新发展的色谱分析技术(如气相色谱/氢火焰检测器(GC/FID)等)也无法达到检测的目的。气相色谱-质谱联用(GC-MS)设备能够检测微量SF_6气体,但和气相色谱设备一样存在着价格昂贵(单套设备通常在几十万到一百万人民币左右)、体积庞大、单次检测时间长、须在专门实验室检测、运行成本高等不利因素。目前进口SF_6气体便携式检测仪,如DNS200、GasCheck5000is型,检测范围基本在1~1000ppm,但是高达27000~60000人民币的高昂价格让人望而却步。此外,红外光谱吸收法检测SF_6气体可以达到较高的精度,但是检测设备复杂、成本高、加工难度较大。紫外光电离法和强电压电离法检测SF_6气体,在检测过程中破坏SF_6气体分子产生了硫化氢、二氧化硫等有毒物质,对检测人员的人身安全带来极大的威胁。因此,新型的SF_6气体检测技术的研究已经被许多科研机构和电力部门提上了议事日程。
     结合传感器理论和纳米材料技术,我们设计了基于随机共振理论和定向多壁纳米碳管电离型气敏传感器阵列的SF_6气体检测系统。使用阳极氧化铝(AnodicAluminum Oxide,AAO)模板作为基底,以化学气相沉积(Chemical VaporDeposition,CVD)法在模板上快速生长定向多壁纳米碳管作为一体化电极,与铝电极构成电离型气敏传感器。论述了气敏传感器的工作原理,实验研究了该传感器的放电特性和影响因素。出于优化电场效应、增强纳米碳管气敏传感器气敏性的需要,本文实验研究了纳米碳管直径、间距和高度的可控制备方法,最终传感器采用了符合电场效应优化条件的纳米碳管材料。
     为了解决单个纳米碳管气敏传感器存在着的“交叉敏感性”的问题,本文的SF_6气体检测系统采用了传感器阵列的设计方法,阵列中的传感器具有不同极性或不同极板间距。使用4传感器阵列结合主成分分析(PCA)的方法,实现了对纯氩气、SF_6、氮气、二氧化碳的定性检测。随机共振理论在微弱信号检测领域正在成为研究的热点。本文中SF_6气体检测系统对ppm级SF_6气体的检测输出信号处于微安级,如何准确、快速的处理实验数据给出结果十分关键。本文首先对双稳态系统的随机共振模型进行了仿真研究,旨在研究双稳态系统的参数对随机共振产生的影响,为随机共振在SF_6检测系统中的应用奠定理论基础。检测系统采用2个纳米碳管气敏传感器构成的传感器阵列结合双稳态随机共振方法,以信噪比极大值标定SF_6气体浓度,实现了轻度(500~1000ppm)、中度(1000~2000ppm)、重度污染(高于2000ppm)三级浓度的监测。
     实验观察到外加白噪声诱发碳管气敏传感器系统内部1.65MHz周期性分量产生多重随机共振现象,本文采用多稳动力学系统随机共振的数值仿真研究,得到与实验结果相一致的随机共振曲线,为实验所观察到的多重随机共振提出了一种解释。该数值仿真方法使用三势阱折线分段势函数,邻接两个双稳态随机共振以构建多稳态随机共振模型。如果在实验中观察到更多重随机共振现象,该方法也可以发展到更多重的情况,具有良好的扩展性。
     本文在SF_6气体检测系统的设计基础之上,制备AA0模板,并以其为基底定向生长多壁纳米碳管制作传感器电极,采用主成分分析结合4传感器阵列实现氩气、SF_6、氮气、二氧化碳的定性检测;以双稳态随机共振结合2传感器阵列标定SF_6气体浓度,在中国国家和行业SF_6防护标准的框架下,以系统实时检测实验数据计算信噪比极大值,根据信噪比极大值判断空气中的SF_6气体污染情况,实现轻度、中度、重度三级污染监测。采用了多重动力学模型数值仿真研究了气体放电中的多重随机共振现象。基于随机共振和定向多壁纳米碳管电离型传感器阵列的SF_6气体检测系统具有一定灵敏度、稳定性好、响应速度快、可重复检测、体积小、成本低、常温常压下即可进行检测等优点,具有较好的实际应用价值。
     本文对优化气敏传感器场效应的纳米碳管可控制备方法进行了论述和实验研究,以多稳态动力学模型数值仿真研究了气体放电中的多重随机共振现象,设计使用了纳米碳管气敏传感器阵列检测SF_6气体,以双稳态随机共振方法进行信号处理,实现SF_6气体的定量检测。
SF_6 (Sulfur Hexafluoride) has been widely used in industry, agriculture and daily life due to its unique physical and chemical characteristics since it was firstly prepared by French chemists Moissan and Lebeau in 1900. At the same time, the leakage of SF_6 does great harm to people's work condition and life security. Thus how to detect SF_6 with accuracy, convenience, and efficiency has been a serious subject from theoretical and practical aspects.
     SF_6 is an inactive insulated gas and it presents excellent chemical stability. Gas sensors in some mechanisms (such as adsorption-desorption, oxidation-deoxidation, etc), could not detect SF_6. GC/TCD method presents high accuracy in SF_6 detection, but this method has been almost replaced by other new method, such as GC/FID. GC-MS method also could detect microdosage SF_6 but its equipments have bulky architectures, expensive price and long detecting period, which limits the field usages of GC/MS equipments. Foreign portable SF_6 detectors, such as GasCheck5000is and DNS200, own 1~1000ppm detection range. But their prices (from 27000 to 60000 RMB) are also expensive. Other sensing methods, such as infra-red spectrum absorption method could analyze SF_6 gas in satisfying accuracy, but the detecting system is complicated, high-cost and hard to machine. UV-light ionization method and high voltage ionization method own SF_6 detecting capability, but some hazardous chemical compounds, such as H_2S and SO_2, which could do great harm to the people who are operating the equipments. So a novel SF_6 gas detecting method presents great value.
     Combines with modern sensing theory and developing nano-material techniques, we proposed a novel SF_6 detecting system based stochastic resonance theory and aligned multi-walled carbon nanotubes ionization gas sensor array. We utilized Anodic Aluminum Oxide (AAO) template as substrate, and Chemical Vapor Deposition (CVD) method to fast grow aligned multi-walled carbon nanotubes on substrate to fabricate substrate-carbon nanotubes integrated electrode. We used the carbon nanotubes electrode and Al electrode to assemble ionization gas sensor. Meanwhile, we explored discharge characteristics and influence factors (interelectrode distance, temperature, atmospheric pressure, relative humidity, etc) through experiments. To optimize the characteristics of ionization sensor, we studied the diameter, distance and height of carbon nanotubes when field effects of carbon nanotubes were in optimized conditions. Finally, we concluded the correlated treatments during the preparation procedure of carbon nanotubes.
     In order to solve the 'cross-sensitivity' problem lies in single carbon nanotubes gas sensor, we designed a carbon nanotubes gas sensor array in our SF_6 gas detecting system. Utilizing Principle Component Analysis (PCA) method and a four-sensor array, we could detect pure Ar, SF_6, N_2, and CO_2. Stochastic resonance theory has been widely studied in the last twenty years. When we detected SF_6 /Air mixtures in ppm level, the output signals were in microampere level. The key lied in how to determine SF_6 concentration according to output signals accurately and fast. Based on the research of bistable stochastic resonance, we proposed a two-sensor array combined with bistable stochastic resonance method to determine SF_6 concentration successfully. Furthermore, we set up a three-level SF_6 concentration alarm: low level (500-1000ppm), medium level (1000~2000ppm), and high level (over 2000ppm).
     The stochastic multi-resonance phenomenon was observed within the gas sensor system. A periodical signal (1.65MHz) presented stochastic multi-resonance induced by adding white noise to the sensor system. Here we adopted a multi-stable dynamic system to simulate the stochastic multi-resonance phenomenon observed in the sensor system. The simulation results agreed with experimental results well.
     Based on design of SF_6 gas detecting system, we prepared AAO template, and grew aligned multi-walled carbon nanotubes on the template to assemble ionization gas sensor. PCA and a four-sensor array were used to classify pure Ar, SF_6, N_2, and CO_2. Bistable stochastic resonance and a two-sensor array were utilized to detect microdosage SF_6 gas in low concentration. A multi-stable dynamic system was used to study the stochastic multi-resonance phenomenon of internal periodical signal within the sensor system. The SF_6 detecting system owns the characteristics of small size, high sensitivity, high stability, quick response, and low cost. It presents good theoretical and practical value.
引文
[1]郭程.GIS运行中的SF_6气体管理与泄漏处理[J].供用电.2006,2007,24(4):40-42,54.
    [2]林立生.SF_6断路器渗漏问题不容忽视[J].华通技术.1999,1:38-39,27.
    [3]金家豪.SF_6气体的检测与维护[J].华东电力.2000,5:43-44.
    [4]孙毓润.绝缘油和六氟化硫气体及其分解产物对人的影响[J].电力工业部六氟化硫气体监督监测技术研讨会论文集[C].1996:107-110.
    [5]黄继昌,徐巧鱼等编著.传感器工作原理及应用实例[M].北京:人民邮电出版社.1998.
    [6]单成祥编著.传感器的理论与设计基础及其应用[M].北京:国防工业出版社.1999.
    [7]刘国华,杜忻锐.半导体气敏传感器的原理及应用[J].煤炭技术.2001,9:13-14.
    [8]王致真.半导体气敏传感器在防治公害中的应用[J].杭州电子工业学院学报.1994,3:19-23.
    [9]黄克勤,刘庆国.固态电化学气体传感器的最新发展[J].化学通报.1993,4:32-35.
    [10]周仲柏,冯良东等.脉冲电势调制型电化学气体传感器[J].电化学.2000,3:345-349.
    [11]俞宏,崔学晨等.石英晶体传感器系统在检测领域的应用[J].现代科学仪器.2007,1:43-45.
    [12]关鲁雄.石英晶体微天平研究进展与展望[J].传感器世界.2000,6(3):1-9.
    [13]宋晓辉,海中天.接触燃烧式气敏传感器的研制[J].计量技术.2007,8:76-78.
    [14]韩中枢.接触燃烧式可燃气体检测报警仪的特性[J].化工劳动保护.1997,3:45-46
    [15]琚雪梅,张巍等.红外吸收型CO2气体传感器的设计[J].传感器技术.2005,24(8):62-64.
    [16]刘瑾,杨海马.光谱吸收型光纤多气体传感器系统[J].仪表技术与传感器.2006,2:29-32.
    [17]M.Grassi,P.Malcovati,et al.Integrated interface circuit with multiplexed input and digital output for a 5X5 SNO2 thick film gas-sensor matrix[J].Sensors and Actuators B.2008,in press.
    [18]Ⅱ Jin Kim,Sang Do Han,et al.Development of micro hydrogen gas sensor with SnO_2-Ag_2O-PtO_x composite using MEMS process[J].Sensors and Actuators B,2007,127(2):441-446.
    [19]Yu-Ju Shen,Ming-Shi Wang.Broadcast scheduling in wireless sensor networks using fuzzy Hopfield neural network.Expert System with Application.2008,34(2):900-907.
    [20]杨建华,侯宏等.基于集成 气体传感器阵列的电子鼻系统动态响应特征分析[J].西北工业大学学报.2003,21(4):435-438.
    [21]Roberto F.Machado,Daniel Laskowski,et al.Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath[J].American Journal of Respiratory and Critical Care Medicine.2005,171:1286-1291.
    [22]张利德,牟季美编著.纳米材料和纳米结构[M].北京:科学出版社.2001.
    [23]T S Ahmadi,Z L Wang,et al.Shape-controlled synthesis of colloidal platinum nanoparticles[J].Science.1996,272:1924.
    [24]X Fu,Y Wang,et al.Shape-Selective Preparation and Properties of Oxalate-Stabilized Pt Colloid[J].Langmuir.2002,18:4916.
    [25]A Kawabata,R Kubo,et al.Electronic properties of fine metallic particles Ⅱ.plasma resonance absorption[J].1966,21:1765-1772.
    [26]Chunguang Li,Ping Zheng,et al.Quantum ttmneling effects in YBa_2Cu_3O_x super-thin films[J].Physica B:Condensed Matter.2000,284-288:577-578.
    [27]S.Borini,L.Boarino,et al.Coulomb blockade sensors based on nanostructured mesoporous silicon[J].Physica E:Low-dimensional Systems and Nanostructures. 2007,38(1-2):197-199.
    [28]T.Ishihara,X.Hong,et al.Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures[J].Surface Science.1992,267(1-3):323-326.
    [29]夏晓东,刘艳丽等.由白钨酸制备WO_3纳米颗粒薄膜NO_2传感器[J].传感技术学报.2005,18(1):28-31.
    [30]黄善兴,秦宏伟等.Nd_(1-x)Zn_xFeO_3纳米材料的甲烷气体气敏性研究[J].山东大学学报.2007,42(3):36-39,43.
    [31]邵纯红,姜安玺等.纳米ZnO室温选择氧化H2S特性的研究[J].燃料化学学报.2005,33(4):470-473.
    [32]胡贵权,管文军等.纳米碳管葡萄糖生物传感器的研究[J].浙江大学学报.2005,39(5):668-671.
    [33]潘小青,刘庆成.气体传感器及其发展[J].东华理工学院学报.2004,27(1):89-93.
    [34]杨小明.六氟化硫气体红外传感器[P].中国:G01N21/35,2007年3月21日.
    [35]王晓丽,张重.基于外光电效应的智能型检漏仪的研究[J].长春理工大学学报.2005,28(2):36-39.
    [36]张永义,闫江雨等.复杂地形条件下大气扩散六氟化硫示踪实验研究[J].辐射防护通讯.2000,20(3):7-14.
    [37]R L蒂姆科等.SF6在矿山通风分析中的新应用[J].煤矿安全.1986,7:52,32..
    [38]冯允平.高压电技术中气体的放电及其应用[M].北京:北京水利电力出版社.1989.
    [39]柴常春,杨银堂等.不同添加气体对SiC材料SF_6干法刻蚀的影响[J].微电子学.2001,31(1):43-45.
    [40]周宏,赖建军等.SF6/O2/CHF3混合气体对硅材料的反应离子刻蚀研究[J].半导体技术.2005,30(6):28-31.
    [41]李延斌.超声诊断技术的进展和临床应用[J].世界最新医学信息文摘.2004,3(3):1125-1129.
    [42]国家技术监督局.GB/T8905-1996六氟化硫电气设备中气体管理和检测导则[M].北京:中国标准出版社.1996.
    [43]中华人民共和国电力部.DL408-91电业安全工作规程(发电厂和变电所电气部分)[M].北京:中国电力出版社.2002.
    [44]王景儒.六氟化硫中有毒杂质生成机理[J].低温与特气.1995,3:54-57.
    [45]马虹斌,邱毓昌.SF_6及其混合气体的放电毒性污染物分析[J].环境工程.1996,14(4):46-48.
    [46]卢立秋,郭军科等.放电故障的SF6设备分解产物总量分析[J].华北电力技术.2007,增刊1:150-152.
    [47]侯慧娥.六氟化硫气体及其电弧分解物的毒性试验[J].高压电器.1982,6:23-25.
    [48]吴彬,舒立春等.SF6气体绝缘与地球温室效应问题[J].高压电器.2000,(2):23-26.
    [49]宋新魁,关世忠.气相色谱法测定空气中的六氟化硫[J].中国卫生检验杂志.2001,11(3):331-332.
    [50]金素文,敖运安.气相色谱法分析微量示踪剂六氟化硫[J].甘肃环境研究与监测.19831:13-19.
    [51]唐开伟,冯军华.浅议SF_6色谱分析[J].宁夏电力.2007,3:47-51.
    [52]韦桂欢,张洪彬等.色谱-质谱联用法测定三氟化氮中痕量六氟化硫[J].质谱学报.2003,24(2):359-362.
    [53]王继宗,岳辅鹏等.气相色谱-质谱联用技术在六氟化硫气体痕量杂质分析中的应用[J].质谱学报.1981,2:24-27.
    [54]陈庆国,张乔根等.SF_6气体中放电特征参数及机理[J].高电压技术.2000,26(6):7-9,45
    [55]H.Raether.The development of electron avalanche in a spark channel(from ovservations in a cloud chamber)[J].Zeitschrift fur Physik.1939,112:464.
    [56]杨冬.SF_6、N_2及其混合物气体绝缘特性实验研究[D].哈尔滨:哈尔滨理工大学,2006.
    [57]Kong J,et al.Nanotube molecular wires as chemical sensors[J].Science.2000,287:622-625.
    [58]Modi A,et al.Miniaturized Gas Ionization Sensors Using Carbon Nanotubes[J].Nature.2003,424:171-174.
    [59]H.A.Kramers.Brownian motion in a field of force and the diffusion model of chemical reactions[J].Physica.1940,7:284.
    [60]Benzi R,Suters A et al.The Mechanism of Stochastic Resonance[J].Journal of Physics A.1981,A14:L453.
    [61]Benzi,R,et al.Stochastic resonance in climatic change[J].Tellus.1982,34:10.
    [62]Benzi,R,et al.A Theory of Stochastic Resonance in Climatic Change[J].Journal of Applied Mathematics.1983,43:565.
    [63]Luca Gammaitoni.Stochastic resonance[J].Reviews of Modern Physics.1998,70(1):223-287.
    [64]N G Stocks,et al.Stochastic resonance in monostable systems[J].Journal of Physics A,1993,26:L385-L390.
    [65]Thomas Wellens,et al.Stochastic resonance[J].Reports on progress in physics.2004,(67):45-105.
    [66]Longtin A.Autonomous stochastic resonance in bursting neurons[J].Physical Review E.1997,55:868-877.
    [67]B.Lindner,L.Schimansky-Geier.Transmission of noise coded versus additive signal through a neuronal ensemble[J].Physical Review Letter.2001,86(4):2934-2937.
    [68]B.McNamara,et al.Observation of stochastic resonance in a ring laser[J].Physical Review Letter.1988,1(4):3-4.
    [69]K.Wiesenfeld,et al.Stochastic resonance and the benefits of noise:from ice ages to crayfish and SQUIDs[J].Nature.1995,373:33-36.
    [70]S.Fauve,et al.Stochastic resonance in a bistable system[J].Physical Letters. 1983,97A(1-2):5-7.
    [71]M.H.Choi,et al.Quantifying stochastic resonance in bistable systems:response vs residence-time distribution functions[J].Physical Review E.1998,57(6):6335-6344.
    [72]T.Zhou,et al.Analog simulations of stochastic resonance.Physical Review E.1990,41(8):4255-4264.
    [73]K.Wiesenfeld,et al.Minireview of stochastic resonance[J].Chaos.1998,8(3):539-548.
    [74]M.Stemmler.A single spike suffices:the simplest form of stochastic resonance in model neurons[J].Network:Computation in Neural System.1996,7:687-716.
    [75]D.Petracchi,et al.Stochastic resonance in biological systems[J].Chaos,Solitons and Fractals.2000,11(12):1819-1822.
    [76]C.Heneghan,et al.Information measures quantifying aperiodic stochastic resonance[J].Physical Review E.1996,54(3):R2228-R2231.
    [77]N.Neiman,et al.Dynamic entropies applied to stochastic resonance[J].Physical Review Letters.1996,76(23):4299-4302.
    [78]J.J.Collins,et al.Aperiod stochastic resonance in excitable systems[J].Physical Review E.1995,52(4):5575-5584.
    [79]J.J.Collins,et al.Noise-enhanced tactile sensation[J].Nature.1996,383:770.
    [80]P.O.Amblard,et al.Cyclostationary and stochastic resonance in threshold devices [J].Physical Review E.1999,59(5):5009-5020.
    [81]宋爱国 等.基于随机共振的机器人二值化触觉传感器降噪方法[J].传感技术学报.2001,4:312-317.
    [82]黄咏梅 等.硅谐振微传感器中微弱信号频率的外差式随机共振检测[J].传感技术学报.2006,19(5):0542-1544.
    [83]李楠等.基于随机共振理论的异步电动机转子断条检测新方法[J].电工技术学报.2006,21(5):99-103.
    [84]Ritaban Dutta,et al.Stochastic resonance-based electronic nose:A novel way to classify bacteria[J].Sensors and Actuators B.2006,15(1):17-27.
    [85]Barney E.Klamecki.Use of stochastic resonance for enhancement of low-level vibration signal components[J]. Mechanical systmes and signal processing, 2005, (19):223-237.
    
    [86] Fabing Duan, Derek Abbott. Signal detection for frequency-shift keying via short-time stochastic resonance[J]. Physics letters A, 2005, (344): 401-410.
    
    [87] David Rousseau, Francois Chapeau-Blondeau. Stochastic resonance and improvement by noise in optimal detection strategies [J]. Digital signal processing, 2005,(15): 19-32.
    
    [88] John K. Douglass, Lon Wilkens, et al. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance [J]. Nature, 1993, 365: 337-340.
    
    [89] Braun H A, Wissing H. Oscillation and noise determine signal transduction in shark multimodel sensory cells [J]. Nature, 1994, 367(2): 337-340.
    
    [90] Kasianowicz, J J, Bezrukov SM. Protonation dynamics of the a-toxin ion channel from spectral analysis of pH-dependent current fluctuations [J]. Biophysical Journal. 1995,69(1): 94-105.
    
    [91] Levin JE, Miller JP. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance [J]. Nature. 1996,380:165-168.
    
    [92] Russell, D., L. Wilkin, F. Moss. Use of behaviourial stochastic resonance by paddlefish for feeding [J]. Nature. 1999,402: 291-293.
    
    [93] Perc M, Marhl M. Noise enhances robustness of intracellular Ca2+ oscillations [J]. Physics Letters A. 2003, 316(5): 304-310.
    
    [94] Joseph P. Zbilut, Thomas Scheibel, et al. Spatial stochastic resonance in protein hydrophobicity [J]. Physics Letters A. 2005, (346): 33-41.
    
    [95] Zhang Jiqian, Hou Zhonghuai, Xin Houwen. Stochastic bi-resonance induced by the noise of the liver cellular environment [J]. Science in China Ser. B Chemistry. 2005, 35(1): 22-26.
    
    [96] Matsuoka AJ, Abbas PJ, et al. The neuronal response to electrical constant-amplitude pulse train stimulation: evoked compound action potential recordings [J]. Hearing Research. 2000, 149(1-2): 115-128.
    
    [97] Ward LM, Desai S, et al. Noise can help as well as hinder seeing and hearing [C]. Bull Am phys Soc. 2001,46.
    [98]A A Priplata,J J Collins,et al.Vibrating insoles and balance control in elderly people[J].The Lancet.2003,362(9390):1123-1124.
    [99]S.Iijima.Helical microtubules of graphitic carbon[J].Nature.1991,354:56.
    [100]S.Iijima,et al.Single-shell carbon nanotubes of 1-nm diameter[J].Nature.1993,363:603.
    [101]D.S.Bethune,et al.Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls[J].Nature.1993,363:605.
    [102]成会明等.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社.2002.
    [103]M.S.Dresselhaus,et al.Physics of carbon nanotubes[J].Carbon.1995,33:883.
    [104]Dresselhaus MS,et al.Science of Fullerenew & Carbon Nanotubes[M].San Diego:Academic Press.1996.
    [105]Zhou O,et al.Defects in carbon nanostructures[J].Science.1994,263:1744.
    [106]W.Kratschmer,et al.Solid C60:a new form of carbon[J].Nature.1990,347:354.
    [107]C.H.Kiang,et al.Size effects in carbon nanotubes[J].Physical Review Letters.1998,81:1869.
    [108]M.Liu,et al.Structures of carbon nanotubes studied by HRTEM and nanodiffraction[J].Ultramicroscopy.1994,53:333.
    [109]M.S.Dresselhaus,et al.Carbon Nanotubes[J].Physics World.1998,11:33-38.
    [110]Collins,PG,et al.Nanotubes for Electronics[J].Scientific American,Dec.2000,pp.62-68.
    [111]J.W.Mintmire,et al.Are fullerene tubules metallic[J].Physical Review Letters.1992,68:631.
    [112]R.A.Jiahi,et al.Electronic structure of short and long carbon nanotubes form first principles[J].Physical Review Letters.1999,59:9862.
    [113]Thess A,et al.Crystalline Ropes of Metallic Carbon Nanotubes[J].Science.1996,273:483.
    [114]W.Liang,et al.Fabry-Perot interference in a nanotube electron waveguide[J].Nature.2001,411:665.
    [115]A.Y.Kasumov,et al.Supercurrents through single-walled carbon[J].Science.1999,284:1508.
    [116]Saito Y,Hamaguchi K,et al.Field emission from carbon nanotubes and its application to cathode ray tube lighting elements[J].Applied Surface Science.1999,146:305-311.
    [117]胡红梅.纳米氧化锌的制备和场发射特性[D].上海:华东师范大学.2006:31-33.
    [118]茅东升,赵俊等.金刚石薄膜电子场发射研究进展[J].材料导报.1998,12(6):27-31.
    [119]芦玲.纳米碳管的制备及场发射性质研究[D].兰州:兰州理工大学.2007:35-38.
    [120]富笑男.硅纳米孔柱阵列及其金/铜复合体系的制备、结构与场发射特性[D].郑州:郑州大学.2006:97-71.
    [121]Kwo J.L,et al.Characteristics of flat panel display using carbon nanotubes array and randomly oriented carbon nanotubes layer[J].Diamond and Related Materials.2000,9(3-6):1270-1274.
    [122]Yan Chen,et al.Hydrogen storage in aligned carbon nanotubes[J].Applied Physics Letters.2001,78:2128-2130.
    [123]Anyuan Cao,et al.Hydrogen storage of dense-aligned carbon nanotubes.[J].Chemical Physics Letters.2001,342:510-514.
    [124]C.Liu,et al.Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge[J].Carbon.1999,37:1865.
    [125]F.Keller,et al.Structural features of oxide coatings on Aluminium[J].Journal of Electrochemical Society.1953,100(9):411-419.
    [126]A.R.Despic.A note on the effect of the electrolyte on the type of growth of anodic oxide on aluminium[J].Journal of Electroanalytical Chemistry.1985,191:417-423.
    [127]G.E.Thompson,et al.Porous anodic film formation on aluminium[J].Nature.1981,290:230-232.
    [128]J.Li,et al.Highly-ordered carbon nanotube arrays for electronics applications [J].Applied Physics Letters.1999,75(3):367-340.
    [129]Rodriguez N.M.A review of catalytically grown carbon nanofibers[J].Journal of Materials Research.1993,8:3233-3242.
    [130]Ivanov V,et al.The study of carbon nanotubes produced by catalytic method[J].Chemical Physics Letters.1994,223:329-335.
    [131]Amelinekx S,et al.A formation mechanism for catalytically grown helix-shaped graphite nanotubes[J].Science.1994,265:635-639.
    [132]W.A.de Heer,et al.Electron field emitters based on carbon nanotubes films[J].Advanced Materials.1997,9:87-89.
    [133]Dai H.J,et al.Carbon nanotubes:opportunities and challenges[J].Surface Science.2002,500:218-241.
    [134]Whitney T M,et al.Fabrication and magnetic properties of arrays of metallic nanowires[J].Science,1993,261:1316-1319.
    [135]L.Piraux,et al.Anisotropic transport and magnetic properties of arrays of sub-micron wires[J].Journal of Magnetism and Magnetic Materials.1997,165(1-3):352-355.
    [136]Sun L,et al.Electrochemical deposition of nickel nanowire arrays in single-crystal mica films[J].Applied Physics Letters.1999,74(19):2803-2805.
    [137]M Lederman,et al.Experimental Study of Individual Ferromagnetic Sub-micron Cylinders[J].IEEE TRANSACTIONS ON MAGNETICS.1995,81:793.
    [138]Z.L.Xiao,et al.Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes[J].Nano Letters.2002,2:1293.
    [139]Z.H.Yuan,et al.Regular alumina nanopillar arrays[J].Advanced Materials.2002,14:303.
    [140]张璐 等.氧化铝纳米线的制备及其形成机理[J].物理化学学报.2005,21(11):1254-1258.
    [141]Yuan X Y,et al.Self-assembly synthesis and magnetic studies of Co-P alloy nanowire arrays[J].Nanotechnology.2004,15:59-61.
    [142]Qin D H,et al.The effects of annealing on the structure and magnetic properties of CoNi patterned nanowires arrays[J].Applied Physics A.2002,74:761-765.
    [143]Wang C Z,et al.Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores anodic alumina membrane[J].Journal of Physics D:Applied Physics.2002,35:738-741.
    [144]Ashishi Modi,et al.Miniaturized gas ionization sensors using carbon nanotubes [J].Nature,2003,424(6945):171-174.
    [145]Zhang Yong,et al.Study of improving identification accuracy of carbon nanotube film cathode gas sensor[J].Sensors and Actuators A.2005,125(1):15-24.
    [146]Hui Guohua,et al.Carbon Nanotube Gas Sensor Based on Corona Discharge[J].Chinese Journal of Analytical Chemistry.2006,34(12):1813-1816.
    [147]徐学基,诸定昌编著.气体放电物理[M].上海:复旦大学出版社,1996.
    [148]J.S.Townsend.The conductivity of produced in Gases by the motion of negatively charged ions[J].Philosophical Magazine.1901,1:198-227.
    [149]江剑平,等编著.阴极电子学与气体放电原理[M].北京:国防工业出版社,1980.
    [150]Shakir,M.I,Nadeem,M,et al.TOPICAL REVIEW:Carbon nanotube electric field emitters and applications[J].Nanotechnology.2006,17(6):R14-R56.
    [151]周建刚,等.汤生放电理论的简介[J].大连大学学报.2003,24(6):16-18.
    [152]叶凡,等.InN纳米线的低压化学气相沉积及其场发射特性研究[J].物理学报.2007,56(4):2342-2346.
    [153]Y Chen,et al.Physical origin of non-linearity in Fowler-Nordheim plots of aligned large area multi-walled nitrogen-containing carbon nanotubes[J].Materials Science and Engineering A.2002,327:16-19.
    [154]徐军明.定向纳米碳管及其复合膜的制备与表征[D].杭州:浙江大学,2004:41-43.
    [155]Soo-Hwan Jeong,et al.Preparation of Aligned Carbon Nanotubes with Prescribed Dimensions:Template Synthesis and Sonication Cutting Approach[J].Chemistry of Materials.2002,14:1859-1862.
    [156]Guohua Hui,et al.A novel gas-ionization sensor based on aligned multi-walled carbon nanotubes[J].Measurement Science and Technology.2006,17:2799-2805.
    [157]侯清润,等.气体放电实验与帕邢定律[J].物理实验.200424(1):3,4, 8.
    [158]胡志强,等.气体电子学[M].北京:电子工业出版社.1985.
    [159]B G Salamov,R Kasap.Analysis of prebreakdown current in a gas discharge system with a semiconducting cathode[J].J.Phys.D:Appl.Phys,2006,39:301-306.
    [160]D Mariotti,J A McLaughlin,P Maguire.Experimental study of breakdown voltage and effective secondary electron emission coefficient for a micro-plasma device[J].Plasma sources and technology,2004,13:207-212.
    [161]Toshiyuke Sugimoto,et al.Corona and spark discharges occurring between a grounded sphere and an array of charged multiple electrodes[C].IEEE Industry Applications Conference,2004.39th IAS Annual Meeting.2004,3:1559-1564.
    [162]John K.Douglass,Lon Wilkens,et al.Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance[J].Nature,1993,365:337-340.
    [163]Bruce McNamara,Kurt Wiesenfeld,et al.Observation of Stochastic Resonance in a Ring Laser[J].Physical Review Letters,1988,60(25):2626-2629.
    [164]A.R.Bulsara,G.Schmera.Stochastic resonance in globally coupled nonlinear oscillators[J].Physical Review E,1993,47(5):3734-3737.
    [165]Francois Chapeau-Blondeau,Xavier Godivier.Theory of stochastic resonance in signal transmission by static nonlinear systems[J].Physical Review E,1997,55(2):1478-1495.
    [166]Hu Gang,Gong De-chun,et al.Stochastic resonance in a nonlinear system driven by an aperiodic force[J].Physical Review A,1992,46(6):3250-3254.
    [167]惠国华,吴莉莉,潘敏等.纳米碳管气体放电气敏传感器中随机共振现象的研究[J].传感器技术学报,2006,19(5):2119-2121,2125.
    [168]董丽芳.气体放电等离子体动力学[M].河北:河北大学出版社.1998.
    [169]菅井秀郎.等离子体电子工程学[M].北京:科学出版社.2002.
    [170]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社.1995.
    [171]Lin I,Liu J.Experimental Observation of Stochastic Resonancelike Behavior of Autonomous Motion in Weakly Ionized rf Magnetoplasmas[J].Physical Review Letters.1995,74(16):3161-3164.
    [172]杨洪波,刘万东等.非磁化等离子体Hopf分岔处随机共振实验[J].物理学报.2000,49(3):508-512.
    [173]G.Krupinska,P.Gawronski,et al.Stochastic resonance in bistable magnetic wires[J].Physica A,2003,325:110-115.
    [174]Xue-Juan Zhang,Guan-Xiang Wang.Limits cycles for extended bistable stochastic resonance system[J].Physica A,2004,331:467-476.
    [175]Yong-gang Leng,Tai-yong Wang,et al.Engineering signal processing based on bistable stochastic resonance[J].Mechanical Systems and Signal Processing,2007,21(1):138-150.
    [176]Hui-long He,Tai-yong,Wang,et al.Study on non-linear filter characteristic and engineering application of cascaded bistable stochastic resonance system[J].Mechanical Systems and Signal Processing,2007,21(7):2740-2749.
    [177]Rajarshi Ray,Supratim Sengupta.Stochastic resonance in underdamped bistable systems[J].Physics Letters A,2006,353(5):364-371.
    [178]Z.Gingl,R.Vajtai,L.B.Kiss.Signal-to-noise ratio gain by stochastic resonance in a bistable system[J].Chaos,Solitons & Fractals,2000,11(12):1929-1932.
    [179]S.Fauve,F.Heslot.Stochastic resonance in a bistable system[J].Physics Letters A,1983,97(1-2):5-7.
    [180]M.Misono,T.Kohmoto,et al.Stochastic resonance in an optical bistable system driven by colored noise[J].1998,152(4-6):255-258.
    [181]胡岗.随机力与非线性系统[M].上海:上海科技教育出版社,1994.
    [182]杨祥龙.随机共振理论在弱信号检测中的应用研究[D].杭州:浙江大学,2003.
    [183]冷永刚.大信号变尺度随机共振的机理分析及其工程应用研究[D].天津:天津大学,2004.
    [184]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].长沙:国防科学技术大学,2004.
    [185]M.Locher,M.E.Inchiosa.Theory of controlling stochastic resonance[J].Physics Review E,2000,62(1):317-327.
    [186]Yang Dingxin,Hu Niaoqing.Numerical simulation of stochastic resonance in bistable System for detecting weak signal[J].Journal of national university of defense technology,2003,25(6):85-92.
    [187]Michele Barbi,Angelo Di Garbo,et al.Stochastic resonance in two simple compare-and-fire models[J].Biosystems,2007,89(1-3):58-62.
    [188]Dan Wu,Shiqun Zhu.Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise[J].Physics Letters A,2007,363(3):202-212.
    [189]B.Ljesevic,Z.Martinovic,et al.Quantitative EEG analysis in patients suffering mechanic brain injury with and without posttraumatic epilepsy[J].Clinical Neurophysiology,2008,119(3):e69-e70.
    [190]Alberto Morales-Villagran,Laura Medina-Ceja,et al.Simultaneous glutamate and EEG activity measurements during seizures in rat hippocampal region with the use of an electrochemical biosensor[J].Journal of Neuroscience Methods,2008,168(1):48-53.
    [191]Jerry P.Pian,Jose R.Criado,et al.Differential effects of acute alcohol on EEG and sedative responses in adolescent and adult Wistar rats[J].Brain Research,2008,1194:28-36.
    [192]张雪娟.双稳态系统,单稳态系统,耦合振子系统和混沌系统的随机共振现象[D].北京:北京大学,2002.
    [193]Luca Gammaitoni,Peter Jung,et al.Stochastic resonance[J].Reviews of Modern Physics,1998,70(1):223-287.
    [194]Thomas Wellens,Vyacheslav Shatokhin,et al.Stochastic resonance[J].Reports on progress in Physics,2004,67:45-105.
    [195]冷永刚,王太勇等.二次采样随机共振的工程应用研究[J].中国机械工程,2004,15(20):1847-1852.
    [196]Leng Yong gang,Wang Tai Yong,et al.Study of the property of the parameters of bistable stochastic resonance[J].Acta Physica Sinica,2007,56(1):30-35.
    [197]Xin H W.Theoretical study on stochastic resonance in chemical systems[J].Chinese journal of chemical physics,2000,13,(4):388-405.
    [198]K.Persaud,G.Dodd.Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J].Nature,1982,299:352-355.
    [199]S.Zaromb and J.R.Stetter.Theoretical basis for identification and measurement of air contaminants using an array of sensors having partly overlapping selectivities[J].Sensors and Actuators,1984,6(4):225-243.
    [200]M.Gall,et al.Investigation of gas mixtures with different MOS gas sensors with regard to pattern recognition[J].Sensors and Actuators,1989,17(3-4):583-586.
    [201]G.Horner and Chr.Hierold.Gas analysis by partial model building[J].Sensors and Actuators B,1990,2(3):173-184.
    [202]廖毅.一种嗅觉模拟装置及其模式识别方法[D].上海:华东理工大学:2003.
    [203]Ortega A,et al.New pattern recognition systems designed for electronic nose[J].Sensors and Actuators B,2000,69:302-307.
    [204]于鹏,陈裕泉等.一种基于全程动态扫描的白酒鉴别智能人工嗅觉系统[J].传感技术学报,2003,3:313-317.
    [205]L.Carmel,et al.An eNose algorithm for identifying chemicals and determining their concentration[J].Sensors and Actuators B.2003,93(1-3):77-83.
    [206]J.W.Gardner.Detection of vapours and odours from a multi-sensor array using pattern recognition[J].Sensors and Actuators B.1991,4:108-116.
    [207]M.Holmberg,et al.Identification of paper quality using a hybrid electronic nose [J].Sensors and Actuators B.1995,26-27:246-249.
    [208]E.L.Kalman,et al.A new pollen detection method based on an electronic nose [J].Atmospheric Environment.1997,31(11):1715-1719.
    [209]Qinyi Zhang,et al.Characterization of Chinese vinegars by electronic nose[J].Sensors and Actuators B.2006,119(2):538-546.
    [210]Joseph N.Barisci,et al.Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose[J].Sensors and Actuators B.2002,84(2-3):252-257.
    [211]Van Brunt,R.J.Physics and chemistry of partial discharge and corona.Recentadvances and future challenges[J].IEEE Transactions on Dielectrics and Electrical Insulation.1994,1(5):761-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700