新型流动注射化学发光生物传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要是将流动注射化学发光分析技术(FI-CL)与纳米材料相结合构筑生物传感器,提高传感器的灵敏度、选择性、分析速度和自动化程度,对不同的目标分析物进行了测定,为疾病的临床早期诊断提供了新的检测检验方法。本文着重进行了以下几方面的研究:
     1.研制了一种新型的化学发光双酶传感器,采用流动注射分析方法快速检测样品中胆固醇的含量。该传感器首先将金纳米粒子(GNPs)包覆在介孔SBA-15上制备金/SBA-15复合材料,然后用硅烷化试剂将金/SBA-15固定在预处理的玻璃微珠上,用于吸附固定胆固醇氧化酶(COD)和辣根过氧化物酶(HRP),构建基于介孔通道的双酶生物传感器,用于胆固醇的测定。胆固醇在COD的催化下生成H2O2,H2O2在HRP的催化作用下与鲁米诺发生反应,并产生化学发光信号。以介孔材料作为酶的固定载体,将介孔双酶催化反应通道引入流动注射化学发光反应中,增加了化学发光反应的接触面积,从而使发光效率大大提高。另外,介孔SBA-15与金纳米粒子的结合也使酶的固定效率大大提高,双酶传感器检测胆固醇的线性范围是1×10-6 ~ 1×10-3mol/L,检测限为5×10-7 mol/L(3σ)。将该方法用于人体血清样品中胆固醇的测定,结果准确可靠。
     2.研制了一种用于葡萄糖快速检测的流动注射化学发光双酶传感器。该传感器将掺杂金纳米粒子的壳聚糖膜包覆在硅烷化试剂预处理的玻璃微珠上,用于吸附固定葡萄糖氧化酶(GOD)和辣根过氧化物酶。葡萄糖在GOD的催化下发生氧化反应生成H2O2,生成的H2O2在HRP的催化作用下与鲁米诺发生反应,并产生化学发光信号。实验表明,壳聚糖中掺杂的GNPs不仅能够有效的吸附酶分子并保持其生物活性,还对Luminol-H2O2-HRP化学发光体系具有增敏作用。通过化学发光光谱和紫外光谱表征,详细研究了固定化GNPs增强Luminol-H2O2-HRP体系的化学发光机理。在优化的实验条件下,该传感器对葡萄糖检测的线性范围为0.01~6.0mmol/L,检测限为5.0μmol/L(3σ)。将该方法用于临床血清样品中葡萄糖含量的测定,获得了满意的结果。
     3.结合流动注射化学发光分析技术,发展了一种新型的同时检测两组分肿瘤标志物的免疫分析方法。该法以分别包被了甲胎蛋白单克隆抗体(AFP)和癌胚抗原单克隆抗体(CEA)的微孔板作为免疫反应器,基于夹心式的免疫反应方式,结合流动注射化学发光分析技术,设计了一种简便的、可实现两组分甚至多组分免疫分析物同时检测的新型可移动式免疫流通检测池。该免疫反应体系中以HRP作为酶标二抗的标记物,结合Luminol-H2O2-HRP化学发光体系实现对酶标记物的检测,通过控制移动式免疫流通检测池在检测窗口的位置来实现对两组分肿瘤标志物的同时免疫检测。在最佳检测条件下,得到AFP的线性范围为1.25~50ng/mL,检测限为1.06ng/mL(3σ);CEA的线性范围为1.25~40ng/mL,检测限为1.00ng/mL(3σ)。该免疫分析法已实现了两组分免疫分析物的同时检测,通过进一步优化实验方案,有望实现多组分免疫分析体系的自动化检测,使对肿瘤标志物的检测更加快速、简便。
     4.在酸性介质中,高锰酸钾能氧化穿心莲内酯发生化学发光反应,而甲醛的存在可使发光强度增强,在体系中加入表面活性剂十六烷基三甲基溴化铵可以进一步增强该体系的化学发光强度。据此建立了一种流动注射化学发光测定穿心莲内酯的新方法。在优化的实验条件下,该方法对穿心莲内酯的检测线性范围为5.0×10-6~2.5×10-4g/mL,检出限为1.0×10-6g/mL,相对标准偏差为0.9%(n=12,c=1.0×10-5g/mL)。样品测量通量为150/小时。该法用于药物中穿心莲内酯含量的测定,结果令人满意。同时,结合荧光光谱和化学发光光谱表征技术,对高锰酸钾-甲醛-穿心莲内酯体系化学发光反应机理进行了进一步探讨。该方法的建立为穿心莲内酯的快速测定提供了一种简便、快速、高效的分析方法。
The main idea of the research was to develop the sensitive biosensors based onthe combination of flow injection chemiluminescence (FI-CL) and some novelnanoparticles. It provided the alternate ways for the clinical diagnoses of manydiseasesatearlystage.Theexperimentalprotocolscouldbesummarized asfollows:
     1.Anovelflowinjectionchemiluminescence bienzyme-channelingbiosensorwasdeveloped for the determination of cholesterol. The biosensor was constructed byentrappingcholesterol oxidase (COD) and horseradish peroxidase (HRP) in thehybridmaterialswhich was synthesized bygold nanoparticles andmesopores silica structuresSBA-15 (GNPs/SBA-15). In the presence of cholesterol, the enzymatic reaction ofCOD-cholesterol-dissolved oxygen system generated hydrogen peroxide in thebienzyme-entrapped mesopores, which was immediately catalyzed by the sameentrapped HRP to lead to a sensitive and fast CL response of Luminol-H2O2-HRP.With well-ordered hexagonal mesoporous silica structures, SBA-15 mesoporousmaterials could not only adsorb COD and HRP firmly, but also enlarge CL reactioninterface because of the large specific surface area. The doped gold nanoparticles inSBA-15increasedtheabsorptionefficiencyofenzymemoleculeslargelyandhelpedtokeep bioactivity of enzyme molecules. Under the optimized experimental conditions,the detection limit of cholesterol was down to 5×10?7 mol/L (3σ) with a very widelinear range from 1.0×10?6 to 1×10?3 mol/L. The method has been satisfactorilyappliedtothedeterminationofthe cholesterollevel inserum samples.Theconstructedbienzyme channeling biosensor provided a strategy for CL detection of oxidasesubstratesbyusingthemesoporous materials.
     2. Bienzymatic biosensor for the determination of glucose by flow injectionchemiluminescence detection was proposed. Hybrids of Gold nanoparticles (GNPs) and chitosan were chosen as the immobilization matrix of glucose oxidase (GOD) andhorseradish peroxidase to fabricate the biosensors with silane-pretreated glassmicrobeads. After the enzyme catalyzing oxidation of glucose in GOD biosensor, theproduced H2O2 flowed into HRP biosensor to react with luminol. The doped GNPs inchitosan were found to enhance the classical CL reaction of Luminol-H2O2-HRP. TheCLenhancement was investigated indetail byCLandUV-visiblespectrum.Undertheoptimizedexperimental conditions, glucosecouldbe determinedinalinear rangefrom0.01 to 6.0 mmol/L with a detection limit of 5.0μmol/L at 3σ. The accuracy of theproposed method was examined by detecting the glucose level in four clinical serumsamples from the hospital. The proposed method provides a new alternative todetermineglucose.
     3. A novel flow-through chemiluminescent immunosensor was designed for thesimultaneous detection ofα-fetoprotein (AFP) and carcinoembryonic antigen (CEA).Two transparent microtubes immobilized with monoclonal antibodies were set in amobile flow cell to fabricate the multi-analyte immunoassay channels. Based on asandwich immunoassay format, two mixtures of the sample antigens andcorresponding horseradish peroxidase labeled antibodies were introduced into thechannels for on-line incubation. Upon injection of luminol and H2O2, the different CLsignals from the two channels were sequentially detected by moving the handle of themobile flow cell. Under the optimal experimental conditions, AFP and CEA could bedetected inthelinear ranges of1.25 ~50 and 1.25~40ng/mLwithdetectionlimits of1.06 and 1.0 ng/mL, respectively. The accuracy of the proposed system was assessedby human serum samples. The novel multi-analyte strategy provided an automated,simple,andlow-costapproachwithoutusingofexpensivearraydetector.
     4. Asimple flow injection chemiluminescence procedure for the determination ofandrographolide (AD) was proposed. The method was based on the CL emittingreaction between andrographolide and potassium permanganate in acidic medium withformaldehyde as the CL enhancer. The surfactant of cetyl-trimethyl ammoniumbromide (CTAB) could further enhance the signal of the above CLsystem. Under theoptimized experimental conditions, andrographolide could be determined in a linearrange from 5.0×10-6 to 2.5×10-4 g/mLwith a correlation coefficient of 0.999 (n = 7)and a detection limit of 1.0×10-6 g/mL. The relative standard deviation of theproposed method was calculated as 0.9% from 12 repetitive injections of 1.0×10-5g/mL andrographolide. The sample throughput was 150/h. The method has been satisfactorily applied to the determination of andrographolide in pharmaceuticalformulations. The result was shown that there was no obvious interference from thecommon medicaments. In addition, the CL reaction mechanism of KMnO4-HCHO-ADsystem was also explored by the fluorescence and CL spectrum. The proposed methodprovided an alternative strategy for the rapid determination of andrographolide.
引文
[1]严凤霞,王筱敏著,现代光学仪器分析选论, 1992年第一版.
    [2]方禹之著,分析科学与分析及技术, 2002年第一版.
    [3]林金明,化学发光基础理论与应用, 2004, 1-32.
    [4] Revin R., Paul J.W., Analytical applications of liquid-phase chemiluminescence, Anal. Chim.Acta, 1992, 266(2): 147-173.
    [5] White E.H., Bursey M.M., Chemiluminescence of luminol and related hydrazides: the lightemission Step, J. Am. Chem. Soc, 1964, 86: 941-942.
    [6] Rauhut M.M., Semsel A.M., Roberts B.G., Reaction rates, quantum yields, and partialmechanism for the chemiluminescent reaction of 3-aminophthalhydrazide with aqueousalkaline hydrogen peroxide and persulfate1, J. Org. Chem, 1966, 31: 2431-2436.
    [7] Schroeder H.R., Yeager F.M., Chemiluminescence yields and detection limits of someisoLuminol derivatives in various oxidation systems, Anal. Chem., 1978, 50: 1114-1120.
    [8] Deftereos N.T., Grekas N., Calokerinos A.C., Flow injection chemiluminometricdetermination of albumin, Anal. Chim. Acta, 2000, 40: 3137-143.
    [9] Pasekova H., Polasek M., Determination of procaine, benzocaine and tetracaine by sequentialinjection analysis with permanganate-induced chemiluminescence detection, Talanta, 2000, 52:67-76.
    [10]夏之宁,光分析化学, 2004年第一版.
    [11] Chandross E.A., A new chemiluminescence system, Tetrahedron Lett., 1963, 12: 761-765.
    [12] Arnold L.J.J., Hammond P.W., Wiese W.A., Assay formats involving acridinium-ester-labeledDNA probes, Clin. Chem., 1989, 35: 1588-1602.
    [13] Ruzicka J., Hansen E.H., Flow injection analysis (Sencond edition) [M], New York: JohnWiley Sons, 1998, 191-192.
    [14] Ruzicka J., Hansen E.H., Flow injection analysis, a new concept of fast continuous flowanalysis, Anal. Chim. Acta, 1975, 78: 145-157.
    [15]莫小曼,黄春保,刘巧玲等,反相流动注射化学发光法测定牛血清蛋白的研究及应用,分析科学学报, 2004, 20(5): 528-530.
    [16]朱霞萍,汪敬武,傅敏恭,流动注射化学发光测定人体血清中的DNA,分析实验室, 2004,23(5): 50-54.
    [17] Tsukagoshi K., Nakamura T., Nakajima R., Batch-type chemiluminescence detection cell forsensitization and Simplification of capillary electrophoresis, Anal. Chem., 2002, 74:4109-4116.
    [18] Costin J.W., Francis P.S., Lewis S.W., Selective determination of amino acids using flowinjection analysis coupled with chemiluminescence detection, Anal. Chim. Acta, 2003, 480:67-77.
    [19] Adcock J.L., Barnett N.W., Gerardi R.D., et. al, Determination of glyphosatemono-isopropylamine salt in process samples using flow injection analysis with tris(2,2-bipyridyl) ruthenium (II) chemiluminescence detection, Talanta, 2004, 64: 534-537.
    [20]司士辉,生物传感器,北京:化学工业出版社, 2003, 1-2.
    [21]章竹君,秦伟,光纤化学发光和生物发光传感器,分析科学学报, 1997, 13(1): 72-77.
    [22] Sasamoto H., Maeda M., Tsuji A., Chemiluminescent enzymatic assay for cholesterol inserum using lucigenin, Anal. Chim. Acta, 1995, 310: 347-353.
    [23] Li B.X., Zhang Z.J., Jin Y., Plant tissue-based chemiluminescence flow biosensor for glycolicacid, Anal. Chem., 2001, 73, 1203-1206.
    [24] Xiao D., Choi M.M.F., Aspartame optical biosensor with bienzyme-immobilized eggshellmembrane and oxygen-sensitive optode membrane, Anal. Chem., 2002, 74, 863-870.
    [25] Kiba N., Miwa T., Tachibana M., et. al, Chemiluminometric sensor for simultaneousdetermination of L-glutamate and L-lysine with immobilized oxidases in a flow injectionsystem, Anal. Chem., 2002, 74, 1269-1274.
    [26] Panoutsou P., Economou A., Rapid enzymatic chemiluminescent assay of glucose by meansof a hybrid flow-injection/sequential-injection method, Talanta, 2005, 67: 603-609.
    [27] Li B.X., Lan D., Zhang Z.J., Chemiluminescence flow-through biosensor for glucose witheggshell membrane as enzyme immobilization platform, Anal. Biochem, 2008, 374: 64-70.
    [28] Lin J.H., Ju H.X., Electrochemical and chemiluminescent immunosensors for tumor markers,Biosens. Bioelectron., 2005, 20, 1461-1470.
    [29] Fu Z.F., Hao C., Ju H.X., et. al, Flow-injection chemiluminescent immunoassay forα-fetoprotein based on epoxysilane modified glass microbeads, J. Immunol. Methods, 2006,312, 61-67.
    [30] Zhou Y., Zhang Y.H., Lu J.Z. et. al, Sequential determination of two proteins bytemperature-triggered homogeneous chemiluminescent immunoassay, Anal. Chem. 2006, 78,5920-5924.
    [31] Magliulo M., Simoni P., Roda A., et. al, A rapid multiplexed chemiluminescent immunoassayfor the detection of escherichia coli O157:H7, yersinia enterocolitica, salmonella typhimurium,and listeria monocytogenes pathogen bacteria, J. Agric. Food Chem., 2007, 55, 4933-4939.
    [32] Jie G.F., Zhang J.J., Zhu J.J., et. al, Electrochemiluminescence immunosensor based on CdSenanocomposites, Anal. Chem. 2008, 80, 4033-4039.
    [33] Wang Z.P., Li J., Li J.H., et. al, Chemiluminescence of CdTe nanocrystals induced by directchemical oxidation and its size-dependent and surfactant-sensitized effect, J. Phys. Chem. B,2005, 109, 23304-23311.
    [34] Cao Z.J., Li Z.X., Lu J.Z., et. al, Magnetic bead-based chemiluminescence detection ofsequence-specific DNA by using catalytic nucleic acid labels, Anal. Chim. Acta, 2006, 557:152–158.
    [35] Ding C.F., Zhong H., Zhang S.S., Ultrasensitive flow injection chemiluminescence detectionof DNA hybridization using nanoCuS tags, Biosens. Bioelectron., 2008, 23: 1314-1318.
    [36] Zhang S.S., Zhong H., Ding C.F., Ultrasensitive flow injection chemiluminescence detectionof DNAhybridization using signal DNAprobe modified with Au and CuS nanoparticles, Anal.Chem., 2008, 80(19): 7206-7212.
    [37]李瑛琇,朱连德,朱果逸,化学发光生物传感器的研究进展,分析测试学报, 2002, 21(3):89-93.
    [38]章竹君,马望北,光导纤维胆固醇生物传感器的研究,高等学校化学学报, 1993, 14(10):1366-1369.
    [39]章竹君,马望北,杨敏丽,基于化学发光的光纤尿酸生物传感器,分析化学, 1992, 20(9):1048-1051.
    [40]章竹君,马望北,光导纤维化学发光乳酸生物传感器研究,科学通报, 1993, 38(3):230-232.
    [41] Freemant M., Seitz W.R., Chemiluminescence fiber optic probe for hydrogen peroxide basedon the luminol reaction, Anal. Chem., 1978, 50(9): 1242-1246.
    [42] Chen W.W., Li B.X., Xu C.L., et. al, Chemiluminescence flow biosensor for hydrogenperoxide using DNAzyme immobilized on eggshell membrane as a thermally stablebiocatalyst, Biosens. Bioelectron., 2009, 24(8): 2534-2540.
    [43] Sekigu Y., Nishikawa A., Kiba N., et. al, Mutsumoto K. Flow-through chemiluminescencesensor using immobilized histamine oxidase from arthrobacter crystallopoietes KAIT-B-007and peroxidase for selective determination of histamine, Anal. Sci., 2001, 17(10): 1161-1164.
    [44] Kiba N., Ito S., Tachibana M., et. al, Flow-through chemiluminescence sensor usingimmobilized oxidases for the selective determination of L-glutamate in a flow-injectionsystem, Ana. Sci., 2001, 17(8): 929-934.
    [45] Hu Y.F., Zhang J.Z., Determination of free cholesterol based on a novel flow-injectionchemiluminescence method by immobilizing enzyme, Luminescence, 2008, 23(5): 338-343.
    [46] Lv Y., Zhang Z.J., Chen F.N., Chemiluminescence biosensor chip based on a microreactorusing carrier air flow for determination of uric acid in human serum, Analyst, 2002, 127(9):1176-1179.
    [47] Nakamura H., Murakami Y., Yokoyama K., et. al, A compactly integrated flow cell with achemiluminescent FIA system for determining lactate concentration in serum, Anal. Chem.,2001, 73(2): 373-378.
    [48] Kiba N., Tokizawa T., Kato S., et. al, Flow-through micro sensor using immobilizedperoxidase with chemiluminometric FIA system for determining hydrogen peroxide, Anal.Sci., 2003, 19(6): 823-828.
    [49] Manera M., MiróM., Estela J.M., et. al, A multisyringe flow injection system withimmobilized glucose oxidase based on homogeneous chemiluminescence detection, Anal.Chim. Acta, 2004, 508: 23-30.
    [50] Hung Y., Zhang C., Zhang Z., Chemiluminescence flow biosensor system for cholesterol withimmobilized reagents, Anal. Sci., 1999, 15 (9): 867-870.
    [51] Pires C.K., Reis B.F., Galhardo C.X., et. al, A multicommuted flow procedure for thedetermination of cholesterol in animal blood serum by chemiluminescence, Anal. Lett., 2003,36: 3011-3024.
    [52] Gautier S.M., Fibre-optic biosensor based on luminescence and immobilized enzymes:micro-determination of sorbitol [glucitol], ethanol and oxalacetate. J. Biolumin. Chemilumin.,1990, 5(1): 57-63.
    [53]李保新,章竹君,化学发光传感器研究进展,世界科技研究与发展, 2004, 26(4): 80-88.
    [54] Heyries K.A., Loughran M.G., Marquette C.A., et. al, Microfluidic biochip forchemiluminescent detection of allergen-specific antibodies, Biosens. Bioelectron., 2008,23(12): 1812-1818.
    [55] Cho I.H., Paek E.H., Paek S.H., et. al, Chemiluminometric enzyme-linked immunosorbentassays (ELISA)-on-a-chip biosensor based on cross-flow chromatography, Anal. Chim. Acta,2009, 632(2): 247-255.
    [56] Lindner P., Molz R., Wolf H., et. al, Rapid chemiluminescence biosensing of microcystin-LR,Anal. Chim. Acta, 2009, 636(2): 218-223.
    [57] Yang Z.J., Fu Z.F., Ju H.X., et. al, A chemiluminescent immunosensor based on antibodyimmobilized carboxylic resin beads coupled with micro-bubble accelerated immunoreactionfor fast flow-injection immunoassay, Biosens. Bioelectron., 2008, 24(1): 35-40.
    [58] Weissenstein U., Schneider M.J., Pawlak M., et. al, Protein chip based miniaturized assay forthe simultaneous quantitative monitoring of cancer biomarkers in tissue extracts, Proteomics,2006, 6, 1427-1436.
    [59] Song S.P., Li B., Hu J., et. al, Simultaneous multianalysis for tumor markers by antibodyfragments microarray system, Anal. Chim. Acta, 2004, 510, 147-152.
    [60] Carpelan-Holmstrom M., Louhimo J., Stenman U.H., et. al, CEA, CA 19-9 and CA 72-4improve the diagnostic accurary in gastrointestinal cancers, Anticancer Res., 2002, 22,2311-2316.
    [61] Louhimo J., Finne P., Alfthan H., et. al, Combination of HCGβ, CA 19-9 and CEA withlogistic regression improves accuracy in gastrointestinal malignancies, Anticancer Res., 2002,22, 1759-1764.
    [62] Fu Z.F., Yang Z.J., Ju H.X., et. al, Channel and substrate zone two-dimensional resolution forchemiluminescent multiplex immunoassay, Anal. Chem., 2007, 79, 7376-7382.
    [63] Fu Z.F., Liu H., Ju H.X., et. al, Recent developments in multianalyte immunoassay, CurrentTrends in Biotech. Pharmacy, 2007, 1, 1-17.
    [64] Wu J., Fu Z.F., Ju H.X., et. al, Biomedical and clinical applications of immunoassays andimmunosensors for tumor markers, Trends in Anal. Chem., 2007, 26, 679-688.
    [65] Fu Z.F., Liu H., Ju H.X., Flow-through multianalyte chemiluminescent immunosensingsystem with designed substrate zone-resolved technique for sequential detection of tumormarkers, Anal. Chem., 2006, 78, 6999-7005.
    [66] Fu Z.F., Yan F., Ju H.X., et. al, Channel-resolved multianalyte immunosensing system forflow-through chemiluminescent detection ofα-fetoprotein and carcinoembryonic antigen,Biosens. Bioelectron., 2008, 23, 1063-1069.
    [67] Liu H., Fu Z.F., Ju H.X., et. al, Sampling-resolution strategy for one-way multiplexedimmunoassay with sequential chemiluminescent detection, Anal. Chem., 2008, 80:5654-5659.
    [68] Fu Z.F., Yan F., Ju H.X., et. al, A channel-resolved approach coupled with magnet-capturedtechnique for multianalyte chemiluminescent immunoassay, Biosens. Bioelectron., 2008,23(10): 1422-1428.
    [69] Fan A., Lau C., Lu J.Z., Magnetic bead-based chemiluminescence metal immunoassay with acolloidal gold label,Anal. Chem., 2005, 77, 3238-3242.
    [70] Yang X.Y., Guo Y.S., Zhang S.S., et. al, Ultrasensitive enhanced chemiluminescence enzymeimmunoassay for the determination ofα-fetoprotein amplified by double-codified goldnanoparticles labels, Biosens. Bioelectron., 2009, 24(8): 2707-2711.
    [71] Taton T.A., Mirkin C.A., Letsinger R.L., Scanometric DNA array detection with nanoparticleprobes, Science, 2000, 289: 1757-1760.
    [72] Park S.J., Taton T.A., Mirkin C.A., Array-based electrical detection of DNA with nanoparticleprobes, Science, 2002, 295: 1503-1506.
    [73] Wu F.Q., Huang Y.M., Hang C.Z., Chemiluminescence biosensor system for lactic acid usingnatural animal tissue as recognition element, Biosens. Bioelectron., 2005, 21(3): 518-522.
    [74] Chen H., Zheng Y., Jiang J.H., et. al, An ultrasensitive chemiluminescence biosensor forcholera toxin based on ganglioside-functionalized supported lipid membrane and liposome,Biosens. Bioelectron., 2008, 24(4): 684-689.
    [75] Dimitra N.S.C., Guy D.G., Tuan V.D., et. al, Intensified biochip system usingchemiluminescence for the detection of Bacillus globigii spores, Anal. Bioanal. Chem., 2008,391: 1618-2642.
    [76] Fang Y.J., Yan S.L., Ning B.A., et. al, Flow injection chemiluminescence sensor usingmolecularly imprinted polymers as recognition element for determination of maleic hydrazide,Biosens. Bioelectron., 2009, 24(8): 2323-2327.
    [77] He D.Y., Zhang Z.J., Huang Y., et. al, Chemiluminescence microflow injection analysissystem on a chip for the determination of nitrite in food, Food chem., 2007, 102(2): 667-672.
    [78] Qu P., Yan S.C., Lu Z.H., et. al, Flow-injection chemiluminescence determinations for humanblood lead using controlled reagent release technology,Microchimica Acta, 2008, 1436-5073.
    [1] Libby P., Atherosclerosis: the new view, Sci. Am., 2002, 286 (5): 46-55.
    [2] Libby P., Ridker P.M., Maseri A., Inflammation and atherosclerosis, Circulation, 2002, 105(9): 1135-1143.
    [3] Bragagnolo N., Rodriguez-Amaya D.B., Simultaneous determination of total lipid, cholesteroland fatty acids in meat and backfat of suckling and adult pigs, Food Chem., 2002, 79 (2):255-260.
    [4] Hwang B.S., Wang J.T., Choong Y.M., A simplified method for the quantification of totalcholesterol in lipids using gas chromatography, J. Food Composit. Anal., 2003, 16 (2):169-178.
    [5] Zak B., Simple rapid microtechnique for serum total cholesterol, Am. J. Clin. Pathol., 1957,27: 583-588.
    [6] Amundson D.M., Zhou M., Fluorometric method for the enzymatic determination ofcholesterol, J. Biochem. Biophys. Methods, 1999, 38 (1): 43-52.
    [7] Raghavan V., Ramanathan K., Sundaram P.V., et. al, An enzyme thermistor-based assay fortotal and free cholesterol, Clin. Chim. Acta, 1999, 289 (1-2): 145-158.
    [8] Bongiovanni C., Ferri T., Poscia A., et. al, An electrochemical multienzymatic biosensor fordetermination of cholesterol, Bioelectrochemistry, 2001, 54 (1): 17-22.
    [9] Umar A., Rahman M.M., Hahn Y.B., et. al, Ultra-sensitive cholesterol biosensor based onlow-temperature grown ZnO nanoparticles, Electrochem. Commun., 2008, 11: 118-121.
    [10] Tsai Y.C., Chen S.Y., Lee C.A., Amperometric cholesterol biosensors based on carbonnanotube–chitosan–platinum–cholesterol oxidase nanobiocomposite, Sens. Actuators B, 2008,135: 96-101.
    [11] Shih W.C., Yang M.C., Lin M.S., Development of disposable lipid biosensor for thedetermination of total cholesterol, Biosens. Bioelectron., 2008, xxx–xxx.
    [12] Sasamoto H., Maeda M., Tsuji A., Chemiluminescent enzymatic assay for cholesterol inserum using lucigenin, Anal. Chim. Acta, 1995, 310: 347-353.
    [13] Hung Y., Zhang C., Zhang Z., Chemiluminescence flow biosensor system for cholesterol withimmobilized reagents, Anal. Sci., 1999, 15 (9): 867-870.
    [14] Pires C.K., Reis B.F., Galhardo C.X., et. al, A multicommuted flow procedure for thedetermination of cholesterol in animal blood serum by chemiluminescence, Analytical Letters,2003, 36: 3011-3024.
    [15] Marquette C.A., Ravaud S., Blum L.J., Luminol electrochemiluminescence-based biosensorfor total cholesterol determination in natural samples, Anal. Lett., 2000, 33: 1779-1796.
    [16] Mascini M., Iannello M., Palleschi G., Enzyme electrodes with improved mechanical andanalytical characteristics obtained by binding enzymes on nylon nets, Anal. Chim. Acta, 1983,146, 135-148.
    [17] Moody G.J., Sanghera G.S., Thomas J.D., Factors concerning the design and calibration of anamperometric enzyme electrode system for the flow injection analysis of cholesterol, Analyst,1988, 113 (9): 1419-1422.
    [18] Gilmartin M.A.T., Hart J.P., Fabrication and characterization of a screen-printed, disposable,amperometric cholesterol biosensor, Analyst, 1994, 119 (11): 2331-2336.
    [19] Pena N., Ruiz G., Reviejo A.J., et. al, Graphite?teflon composite bienzyme electrodes for thedetermination of cholesterol in reversed micelles. application to food samples, Anal. Chem.,2001, 73 (6): 1190-1195.
    [20] Singh S., Solanki P.R., Pandey M.K., et. al, Cholesterol biosensor based on cholesterolesterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films,Sens. Actuator B, 2006, 115 (1): 534-541.
    [21] Matharu Z., Sumana G., Arya S.K., et. al, Polyaniline langmuir?blodgett film basedcholesterol biosensor, Langmuir, 2007, 23: 13188-13192.
    [22] Li J., Peng T., Peng Y., A cholesterol biosensor based on entrapment of cholesterol oxidase ina silicic sol-gel matrix at a prussian blue modified electrode, Electroanalysis, 2003, 15 (12):1031-1037.
    [23] Tan X., Li M., Zou X., et. Al, An amperometric cholesterol biosensor based on multiwalledcarbon nanotubes and organically modified sol-gel/chitosan hybrid composite film, Anal.Biochem., 2005, 337 (1): 111–120.
    [24] Cavallaro G., Pierro P., Palumbo F.S., et. al, Chemistry-medicine continuum: New drug leadsand delivery systems, Drug Deliv, 2004, 11: 41-46.
    [25] Davis M.E., Ordered porous materials for emerging applicatiaons, Nature, 2002, 417:813-821.
    [26] Mal N.K., Fujiwara M., Tanaka Y., Photocontrolled reversible release of guest molecules fromcoumarin-modified mesoporous silica, Nature , 2003, 421: 350-353.
    [27] Stein A., Advances in microporous and mesoporous solids highlights of recent progress [M],Adv. Mater., 2003, 15: 763-775.
    [28] Ying J.Y., Mehnert C.P., Wong M.S., Synthesis and applications of periodic ofsupramolecular-temlated mesoporous materials, Angew. Chem. Int. Ed., 1999, 38: 56-77.
    [29] Yu C.Z., Tian B.Z., Zhao D.Y., et. al, Recent advances in the synthesis of non-siliceousmesoporous materials, Solid State Mat. Sci., 2003, 7: 191-197.
    [30]陈德宏,赵东元,介孔材料结构和孔道的可控合成及其在电化学和生物分离中的应用,复旦大学博士论文[D],第一章, 20.
    [31] Xu X., Tian B.Z., Kong J.L., et. al, Ordered mesoporous niobium oxide film: A novel matrixfor assembling functional proteins for bioelectrochemical applications [M], Adv. Mater., 2003,15: 1932-1936.
    [32] Xiao W.X., Xiao D., Aminopyrene functionalized mesoporous silica for the selectivedetermination of resorcinol, Talanta, 2007, 72: 1288-1292.
    [33] Zhao D.Y., Feng J.L., Huo Q.S., et. al, Triblock copolymer syntheses of mesoporous silicawith periodic 50 to 300 angstrom pores, Science, 1998, 279(23): 548-552.
    [34] Lin J.H., Qu W., Zhang S.S., Disposable biosensor based on enzyme immobilized onAu-chitosan modified ITO electrode with flow injection amperometric analysis, Anal.Biochem., 2007, 307: 288-293.
    [35] Hartmann, Ordered mesoporous materials for bioadsorption and biocatalysis, Chem. Mater.,2005, 17: 4577-4593.
    [36] Vinu A., Murugesan V., Tangermaann O., et. al, Adsorption of cytochromec on mesoporousmolecular sieves: influence of pH, pore diameter, and aluminum incorporation, Chem. Mater.,2004, 16: 3056-3065.
    [1] De Benedetto G.E., Palmisano F., Zambonin P.G., One-step fabrication of a bienzyme glucosesensor based on glucose oxidase and peroxidase immobilized onto a poly(pyrrole) modifiedglassy carbon electrode, Biosens. Bioelectron., 1996, 11: 1001-1008.
    [2]唐芳琼,孟宪伟,陈东等,纳米颗粒增强的葡萄糖生物传感器[J],中国科学, B辑, 2000, 30:119-124.
    [3] Delvaux M., Walcarius A., Demoustier C.S., Bienzyme HRP-GOx-modified gold nanoelectrodesfor the sensitive amperometric detection of glucose at low overpotentials, Biosens. Bioelectron.,2005, 20: 1587-1594.
    [4] Zhu L.D, Yang R.L., Zhai J.L., et. al, Bienzymatic glucose biosensor based on co-immobilizationof peroxidase and glucose oxidase on a carbon nanotubes electrode, Biosens. Bioelectron., 2007,23: 528-535.
    [5]蔡称心,陈静,陆天虹,碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移[J],中国科学,B辑, 2003, 33: 511-518.
    [6] Ferri T., Maida S., Poscia A., et. al, A glucose biosensor based on electro-enzyme catalyzedoxidation of glucose using a HRP-GOD layered assembly, Electroanalysis, 2001,13: 1198-1202.
    [7] Marquette C.A., Blum L.J., Luminol electrochemiluminescenc-based fiber optical biosensors forflow injection analysis of glucose and lactate in natural samples, Anal. Chim. Acta, 1999, 381:1-10.
    [8] Wu Z.S., Zhou G.Z., Jiang J.H., et. al, Gold colloid-bienzyme conjugates for glucose detectionutilizing surface-enhanced Raman scattering, Talanta, 2006, 70: 533-539.
    [9] Zhu M., Huang X.M., Shen H.X., Microbial enzymatic assay of glucose in serum, Anal. Chim.Acta, 1997, 349: 165-170.
    [10] Panoutsou P., Economou A., Rapid enzymatic chemiluminescent assay of glucose by means of ahybrid flow-injection/sequential-injection method, Talanta, 2005, 67: 603-609.
    [11] Manera M., MiróM., Estela J.M., et. al, A multisyringe flow injection system with immobilizedglucose oxidase based on homogeneous chemiluminescence detection, Anal. Chim. Acta, 2004,508: 23-30.
    [12] Nicolau P., Manuel M., JoséM.E., et. al, Automated enzymatic assays in a renewable fashionusing the multisyringe flow injection scheme with soluble enzymes, Anal. Chem., 2004, 76:773-780.
    [13] Li B., Zhang Z., Jin Y., Plant tissue-based chemiluminescence flow biosensor for glycolic acid,Anal. Chem., 2001, 73: 1203-1206.
    [14] Zhang X.R., Baeyenes W.R.G., Garcia C.A.M., et. al, Recent developments inchemiluminescence sensors, Trends Anal. Chem., 1999, 18: 384-391.
    [15] Li B.X., Lan D., Zhang Z.J., Chemiluminescence flow-through biosensor for glucose witheggshell membrane as enzyme immobilization platform, Anal. Biochem, 2008, 374: 64-70.
    [16] Li B., Zhang Z., Chemiluminescence flow biosensor for determination of total D-amino acid inserum with immobilized reagents, Sensor Actuat. B, 2000, 69: 70-74.
    [17] Aboul-Enein H.Y., Stefan R.I., van Staden J.F., et. al, FA non-potentiometric sensing method forthe determination of sulfite, Crit. Review Anal. Chem., 2000, 30: 271-289.
    [18] Kiba N., Miwa T., Tachibana M., et. al, Chemiluminometric sensor for simultaneousdetermination of L-Glutamate and L-Lysine with immobilized oxidases in a flow injectionsystem, Anal. Chem., 2002, 74: 1269-1274.
    [19] Kricka L.J., Voyta J.C., Bronstein I., Chemiluminescent methods for detecting and quantitatingenzyme activity, Methods Enzymol., 2000, 305: 370-390.
    [20] Niazov T., Pavlov V., Xiao Y., et. al, DNAzyme-functionalized Au nanoparticles for theamplified detection of DNA or telomerase activity, Nano. Lett., 2004, 4: 1683-1687.
    [21] Wang Z.P., Hu J.Q., Jin Y., et. al, In situ amplified chemiluminescent detection of DNA andimmunoassay of IgG using special-shaped gold nanoparticles as label, Clin. Chem., 2006, 10:1958-1961.
    [22] Corgier B.P., Li F., Blum L.J., et. al, On-chip chemiluminescent signal enhancement usingnanostructured gold-modified carbon microarrays, Langmuir, 2007, 23 (16): 8619-8623.
    [23] Li Y.X., Yang P., Wang P., et. al, Development of a novel Luminol chemiluminescent methodcatalyzed by gold nanoparticles for determination of estrogens, Anal. Bioanal. Chem., 2007,387(2): 585-592.
    [24] Wang L., Yang P., Li Y.X., et. al, A flow injection chemiluminescence method for thedetermination of fluoroquinolone derivative using the reaction of Luminol and hydrogenperoxide catalyzed by gold nanoparticles, Talanta, 2007, 72(3): 1066-1072.
    [25] Zhang Z.F., Cui H., Lai C.Z., et. al, Gold nanoparticle-catalyzed Luminol chemiluminescenceand its analytical applications, Anal. Chem., 2005, 77: 3324-3329.
    [26] Lin J.H., Yan F., Ju H.X., Noncompetitive enzyme immunoassay for carcinoembryonic antigenby flow injection chemiluminescence, Clin. Chim. Acta, 2004, 341: 109-115.
    [27] Lin J.H., Yan F., Ju H.X., et. al, Chemiluminescent immunosensor for CA19-9 based on antigenimmobilization on cross-linked chitosan membrane, J Immunol. Methods, 2004, 291: 165-174.
    [28] Hao C., Ding L., Ju H.X., et. al, Biocompatible conductive architecture of carbonnanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing, Anal.Chem., 2007, 79: 4442-4447.
    [29] Huang H.Z., Yang X.R., Chitosan mediated assembly of gold nanoparticles multiplayer, ColloidsSurf A: Physicochem Eng Aspects, 2003, 226: 77-86.
    [30] Lin J.H., Qu W., Zhang S.S., Disposable biosensor based on enzyme immobilized on Au-chitosanmodified ITO electrode with flow injection amperometric analysis, Anal. Biochem., 2007, 307:288-293.
    [31] Wallace W.T., Whetten R.L., Coadsorption of CO and O2 on Selected Gold Clusters: Evidencefor Efficient Room-Temperature CO2 Generation, J Am. Chem. Soc, 2002, 124: 7499-7505.
    [32] Dodeigne C., Thunus L., Lejeune R., Chemiluminescence as diagnostic tool, Talanta, 2000, 51:415-439.
    [1] Maruvada P., Wang W., Wagner P.D., et. al, Biomarkers in molecular medicine: cancerdetection and diagnosis, Biotechniques, 2005, 11, 9-15.
    [2] Faraggi D., Kramar A., Some methodological issues associated with tumour markerdevelopment: biostatistical aspects, Urol. Oncol., 2000, 5, 211-213.
    [3] Wu J., Fu Z.F., Ju H.X., et. al, Biomedical and clinical applications of immunoassays andimmunosensors for tumor markers, Trends in Anal. Chem., 2007, 26, 679-688.
    [4] Wang J., Electrochemical biosensors: Towards point-of-care cancer diagnostics, Biosens.Bioelectron., 2006, 21, 1887-1892.
    [5] Soper S.A., Brown K., Ellington A., et. al, Point-of-care biosensor systems for cancerdiagnostics/prognostics, Biosens. Bioelectron., 2006, 21, 1932-1942.
    [6] Rasooly A., Jacobson J., Development of biosensors for cancer clinical testing, Biosens.Bioelectron., 2006, 21, 1851-1858.
    [7] Haab B.B., Antibody arrays in cancer research, Mol. Cell. Proteomics, 2005, 4, 377-383.
    [8] Lin J.H., Ju H.X., Electrochemical and chemiluminescent immunosensors for tumor markers,Biosens. Bioelectron., 2005, 20, 1461-1470.
    [9] Hayakawa T., Naruse S., Kitagawa M., et. al, A prospective multicenter trial evaluatingdiagnostic validity of multivariate analysis and individual serum marker in differentialdiagnosis of pancreatic cancer from benign pancreatic diseases, Int. J. Pancreatol., 1999, 25,23-29.
    [10] Tsao K.C., Wu T.L., Chang P.Y., et. al, Detection of carcinomas in an asymptomatic Chinesepopulation: advantage of screening with multiple tumor markers, J. Clin. Lab. Anal., 2006, 20,42-46.
    [11] Weissenstein U., Schneider M.J., Pawlak M., et. al, Protein chip based miniaturized assay forthe simultaneous quantitative monitoring of cancer biomarkers in tissue extracts, Proteomics,2006, 6, 1427-1436.
    [12] Song S.P., Li B., Hu J., et. al, Simultaneous multianalysis for tumor markers by antibodyfragments microarray system, Anal. Chim. Acta, 2004, 510, 147-152.
    [13] Carpelan-Holmstrom M., Louhimo J., Stenman U.H., et. al, CEA, CA 19-9 and CA 72-4improve the diagnostic accurary in gastrointestinal cancers, Anticancer Res. 2002, 22,2311-2316.
    [14] Louhimo J., Finne P., Alfthan H., et. al, Combination of HCGβ, CA 19-9 and CEA withlogistic regression improves accuracy in gastrointestinal malignancies, Anticancer Res., 2002,22, 1759-1764.
    [15] Fu Z.F., Yang Z.J., Ju H.X., et. al, Channel and substrate zone two-dimensional resolution forchemiluminescent multiplex immunoassay, Anal. Chem., 2007, 79, 7376-7382.
    [16] Fu Z.F., Liu H., Ju H.X., et. al, Recent developments in multianalyte immunoassay, CurrentTrends in Biotech. Pharmacy, 2007, 1, 1-17.
    [17] Hayes F.J., Halsall H.B., Heineman W.R., Simultaneous immunoassay using electrochemicaldetection of metal ion labels, Anal. Chem., 1994, 66, 1860-1865.
    [18] Liu G., Wang J., Kim J., et. al, Electrochemical coding for multiplexed immunoassays ofproteins, Anal. Chem., 2004, 76, 7126-7130.
    [19] Kricka L.J., Multianalyte testing, Clin. Chem., 1992, 38, 327-328.
    [20] Ko J.S., Yoon H.C., Yang H.,et. al, A polymer-based microfluidic device for immunosensingbiochips, Lab Chip, 2003, 3, 106-113.
    [21] Dill K., Montgomery D.D., Ghindilis A.L., et. al, Immunoassays based on electrochemicaldetection using microelectrode arrays, Biosens. Bioelectron., 2004, 20, 736-742.
    [22] Zheng G., Patolsky F., Cui Y., et. al, Multiplexed electrical detection of cancer markers withnanowire sensor arrays, Nat. Biotechnol., 2005, 10, 1294-1301.
    [23] Meyerhoff M.E., Duan C., Meusel M., Novel nonseparation sandwich-type electrochemicalenzyme immunoassay system for detecting marker proteins in undiluted blood, Clin. Chem.,1995, 41, 1378-1384.
    [24] Kojima K., Hiratsuka A., Suzuki H., et. al, Electrochemical protein chip with arrayedimmunosensors with antibodies immobilized in a plasma-polymerized film, Anal. Chem.,2003, 75, 1116-1122.
    [25] Wilson M.S., Electrochemical immunosensors for the simultaneous detection of two tumormarkers, Anal. Chem., 2005, 77, 1496-1502.
    [26] Wilson M.S., Nie W.Y., Electrochemical multianalyte immunoassays using an array-basedsensor, Anal. Chem., 2006, 78, 2507-2513.
    [27] Wilson M.S., Nie W.Y., Multiplex measurement of seven tumor markers using anelectrochemical protein chip, Anal. Chem., 2006, 78, 6476-6483.
    [28] Wu J., Tang J.H., Ju H.X., et. al, A disposable multianalyte electrochemical immunosensorarray for automated simultaneous determination of Tumor Markers, Clin. Chem., 2007, 53,1495-1502.
    [29] Wu J., Yan Y.T., Ju H.X., et. al, Electric field-driven strategy for multiplexed detection ofprotein biomarkers using a disposable reagentless electrochemical immunosensor array, Anal.Chem., 2008, 80, 6072-6077.
    [30] Knecht B.G., Strasser A., Dietrich R., et. al, Automated microarray system for thesimultaneous detection of antibiotics in milk, Anal. Chem., 2004, 76, 646-654.
    [31] Barry R., Soloviev M., Quantitative protein profiling using antibody arrays, Proteomics, 2004,4, 3717-3726.
    [32] Stoeva S.I., Lee J.S., Smith J.E., et. al, Multiplexed detection of protein cancer markers withbiobarcoded nanoparticle probes, J. Am. Chem. Soc., 2006, 128, 8378-8379.
    [33] Haab B.B., Methods and applications of antibody microarrays in cancer research. Proteomics,2003, 3, 2116-2122.
    [34] Wiesner A., Detection of tumor markers with proteinchip technology, Curr. Pharm.Biotechnol., 2004, 5, 45-67.
    [35] Cho E.J., Tao Z., Tehan E.C., et. al, Multianalyte pin-printed biosensor arrays based onprotein-doped xerogels, Anal. Chem., 2002, 74, 6177-6184.
    [36] Fall B.I., Eberlein-Konig B., Behrendt H., et. al, Microarrays for the screening ofallergen-specific IgE in human serum, Anal. Chem., 2003, 75, 556-562.
    [37] Fu Z.F., Yan F., Ju H.X., et. al, Channel-resolved multianalyte immunosensing system forflow-through chemiluminescent detection ofα-fetoprotein and carcinoembryonic antigen,Biosens. Bioelectron., 2008, 23, 1063-1069.
    [38] Yacoub-George E., Meixner L., Scheithauer W., et. al, Chemiluminescence multichannelimmunosensor for biodetection, Anal. Chim. Acta, 2002, 457, 3-12.
    [39] Fu Z.F., Yan F., Ju H.X., et. al, A channel-resolved approach coupled with magnet-capturedtechnique for multianalyte chemiluminescent immunoassay, Biosens. Bioelectron., 2008, 23,1422-1428.
    [40] Sun Z., Fu X., Zhang L., et. al, A protein chip system for parallel analysis of multi-tumormarkers and its application in cancer detection, Anticancer Res., 2004, 24, 1159-1165.
    [41] Fu Z.F., Liu H., Ju H.X., Flow-through multianalyte chemiluminescent immunosensingsystem with designed substrate zone-resolved technique for sequential detection of tumormarkers, Anal. Chem., 2006, 78, 6999-7005.
    [1] Neogy S., Das S., Mahapatra S.K., et. al, Amelioratory effect of Andrographis paniculata Neeson liver, kidney, heart, lung and spleen during nicotine induced oxidative stress [J], Environ.Toxicol. Phar., 2007, 25(3): 321-328.
    [2] Chen L.G., Yu A.M., Zhuang X.D., et. al, Determination of andrographolide anddehydroandrographolide in rabbit plasma by on-line solid phase extraction ofhigh-performance liquid chromatography [J], Talanta, 2007, 74(1): 146-152.
    [3] Saxena S., Jain D.C., Gupta M.M., et. al, High-performance thin-layer chromatographicanalysis of hepatoprotective diterpenoids from Andrographis paniculata [J], Phytochem. Anal.,2000, 11(1): 34-36.
    [4] Srivastava A., Misra H., Verma R.K., et. al, Chemical fingerprinting of Andrographispaniculata using HPLC, HPTLC and densitometry [J], Phytochem. Anal., 2004, 15(5):280-285.
    [5] Jain D.C., Gupta M.M., Saxena S., et. al, LC analysis of hepatoprotective diterpenoids fromAndrographis paniculata [J], Pharm. Biomed. Anal., 2000, 22(4): 705-709.
    [6] Pholphana N., Rangkadilok N., Thongnest S., et. al, Determination and variation of threeactive diterpenoids in Andrographis paniculata (Burm.f.) Nees [J], Phytochem. Anal., 2004,15(6): 365-371.
    [7]李琦,胡广林,徐晓琴,等,胶束电动毛细管色谱法测定穿心莲中穿心莲内酯和脱水穿心莲内酯[J],分析化学, 2003, 31(4): 451-454.
    [8] Du Q., Jerz G., Winterhalter P., Separation of andrographolide and neoandrographolide fromthe leaves of Andrographis paniculata using high-speed counter-current chromatography [J], J.Chromatogr. A, 2003, 984(1): 147-151.
    [9] Wirat R., Kunnatee A., Chantana A., Flow injection spectrophotometric determination ofandrographolide fromAndrographis paniculata [J], Talanta, 2006, 69(4): 900-905.
    [10]庞志功,汪宝琪,尹鸿,鲁米诺化学发光测定穿心莲中穿心莲内酯的含量[J],分析实验室, 1994, 13(5): 28-29.
    [11]汪宝琪,庞志功,汪丛荣,用化学发光法研究家兔穿心莲内酯的药物动力学参数,沈阳药科大学学报, 1995, 12(1): 5-9.
    [12] Aboul-Enein H.Y., Stefan R.I., van Staden J.F., et. al, Recent developments and applicationsof chemiluminescence sensors [J], Crit. Revi. Anal. Chem., 2000, 30(4): 271-289.
    [13] Kiba N., Miwa T., Tachibana M., et. al, Chemiluminometric sensor for simultaneousdetermination of L-glutamate and L-lysine with immobilized oxidases in a flow injectionsystem [J], Anal. Chem., 2002, 74(6): 1269-1274.
    [14]石杰,赵开楼,龚雪云,等,高锰酸钾-甲醛-阿莫西林体系化学发光的研究及应用[J],分析科学学报, 2006, 22(1): 43-45.
    [15]石杰,赵开楼,龚雪云,等,高锰酸钾-甲醛-扑尔敏体系化学发光的研究[J],分析实验室,2004, 23, 46-48.
    [16]刘波,王金中,满勇,头孢曲松钠的流动注射化学发光抑制法测定[J],分析测试学报,2003, 22, 45-47.
    [17]陈朝晖,蔡富春,黄玉明,等,胶束增敏流动注射化学发光法测定头孢哌酮钠[J],西南师范大学学报, 2002, 27, 806-810.
    [18]严凤霞,王筱敏,现代光学仪器分析选论, 1992年第一版.
    [19] Liao S.L., Wu X.P., Xie Z.H., Determination of some estrogens by flow injection analysiswith acidic potassium permanganate–formaldehyde chemiluminescence detection [J], Anal.Chim. Acta, 2005, 537(1-2): 189-195.
    [20]何云华,吕九如,高锰酸钾-甲醛-无机还原剂化学发光体系,分析化学研究简报, 2002,30(5): 598-600.
    [21]夏之宁,光分析化学, 2004年第一版.
    [22] Slawinska D., Slawinski J., Chemiluminescent flow method for determination offormaldehyde, Anal. Chem., 1975, 47: 2101-2109.
    [23] Sun H.W., Li L.Q., Flow injection enhanced chemiluminescence method for the determinationof four anticancer drugs, J. Anal. Chem., 2008, 63(5): 485-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700