电化学DNA生物传感器的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA电化学生物传感器是一门全新的DNA(基因)检测技术,它具有快速、灵敏、操作方便、无污染等特点,并具有分子识别功能,在分子生物学和生物工程医学等领域有巨大的应用前景,在临床基因诊断、抗癌药物的筛选等方面也起着越来越重要的作用。
     本文利用自组装膜法,将人工合成的鼠疫单链DNA作为检测目标,将与其互补的单链DNA片段固定在金电极表面,制成分子探针,结合电化学活性物质醛基二茂铁构成夹心面包式DNA电化学传感器。在探针合成过程中,探讨了自组装膜的成膜条件,以及DNA固定和杂交机理,并考察了探针的电子传递性。利用合成的探针对溶液中互补DNA进行定性和定量分析。在对标准互补液的杂交检测过程中,探讨了杂交时间、杂交温度、信号DNA的合成条件等对DNA电化学传感器的影响。利用DNA电化学生物传感器检测标准DNA样品,测定传感器的检测范围、杂交特异性和寿命等基本性能。
     本课题所研制的以亚甲基兰(MB)为电化学活性指示剂的嵌入式DNA生物传感器。其中寡聚DNA探针通过-SH与Au的反应而连到金电极表面,用线性扫描伏安法检测电极表面DNA是否组装完成。用与探针DNA完全互补的ssDNA溶液与探针进行杂交反应。杂交后可看到MB的峰电流减小,当目标DNA的浓度在5.0×10~(-10)到1.8×10~(-9)mol/L时,MB的峰电流与目标DNA浓度呈线性关系。检出限是5.0×10~(-10)mol/L。
     纳米金自组装于金电极表面可以增强DNA在电极表面的固着量。用恒电位吸附的方式将探针DNA修饰到金电极上,并通过Co(phen)_3~(2+)表征修饰电极的电化学性能。比较了在纳米金修饰金电极上吸附的DNA电信号与在棵金电极上吸附DNA的电信号,前者有明显的增大,并考察了DNA修饰金电极的稳定性。探讨了ssDNA与dsDNA的吸附特性,同时,比较了DNA在不同电极基体上的吸附行为特性。
     未来生物传感器在医学领域中将有很大的发展潜力,随着计算机技术、微制造技术和生物材料学的不断发展,生物传感器技术在医学领域的应用将越来越广泛,它将取代医学上一些传统的检测、化验方法,成为广泛普及的常规分析检测仪器。
Electrochemical DNA biosensor is a novel electronic technique that combining biochemical, electrochemical, medical and electronic techniques with the advantages of being: simple, reliable, cheap, sensitive and selective for gene detection. And it can be compatible with DNA biochip. It has a broad prospect of application in the fields of clinic examination of inherited diseases and screening drug.The DNA electrochemical biosensor was prepared by self-assembling the designed ratbite fever DNA specific probe on the surface of Au electrode together with FCA(Ferrocenecarboxaldehyde) as electro-active indicator.In this paper, the condition of self-assembling、 immobility of DNA and hybridization mechanism were studied. The electron-transfer capacity of the DNA modified probe was also observed. The prepared DNA electrochemical sensor was used to determine the struture and quality of complementary DNA. While the hybridization of DNA probe with complementary DNA was detected, many affective factors such as: hybridization time、 hybridization temperature、 washing time and the synthetic condition of signal DNA were determined, and their affection to the final detection result was discussed. Some fundamental properties such as specificity、 life span、 detection scale were also tested.This supplied some reference for the pre-diagnose of diseases.A novel electrochemical DNA biosensor based on methylene blue (MB) as redox indicator for DNA hybridization detection was presented. Oligo nucleotide probes with -SH at the 5 ' of DNA end were attached onto the Au surface. Hybridization was induced by exposure of Au electrode to complementary ssDNA in solution. The decreases in the peak currents of MB, an electroactive label, were observed upon hybridization of probe with the target. The cathodic peak current (Δ Ip) of MB after hybridization with the target DNA was linearly related to the value of the target DNA concentration ranging from 2.25×10~(-10) to 2.25×10~(-9)mol/L. A detection limit of this method was 1.0×10~(-10) mol/L.Colloidal Au were used to enhance immobilization amount of DNA on a gold electrode. The DNA modified electrode were electrochemically characterirzed with Co(phen)_3~(2+), a electroactive DNA-binding complex, as an indicator.An increased absorb capacity for nucleic acid incurred on the electrode is due to self-assembly of
    colloidal Au onto L-cysteine modified on gold electrode. The stability of the DNA-modified electrode was investigated. The difference between several materials was also discussed.Tomorrow biosensor will have more potential in medicine. With the development of computer technology, microfabrication technology, and biological material, biosensor will be widely used in medicine. The application of biosensor will replace the traditional methods of detection and testing and became widespread device of routine analysis and measuring.
引文
[1] Ningning Zhu, Zhu Chang, Pingang He et al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Analytica Chimica Acta. 2005, 545: 21-26
    [2] Joshua T Jones, Jason W Myers, James E Ferrell, Jr et al. Probing the precision of the mitotic clock with a live-cell fluorescent biosensor. Nature biotechnology. 2004, 22(3): 306-312
    [3] S. Rauf. J. J, Gooding, K. Akhtar et al. Electrochemical approach of anticancer drugs-DNA interaction. Journal of Pharmaceutical and Biomedical Analysis. 2005, 37: 205-217
    [4] Xi-Liang Luo, Jing-Juan Xu, Qing Zhang et al. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold self-assembly. Biosensors and Bioelectronics. 2005, 21: 190-196
    [5] Kagan Kerman, Masaaki Kobayashi, Eiichi Tamiya. Recent trends in electrochemical DNA biosensor technology. Measurement science and technology. 2004, 15: R1-R11
    [6] Junhoe Cha, Jung Im Han, Young Choi et al. DNA hybridization electrochemical sensor using conducting polymer. Biosensors and Bioelectronics. 2003, 18: 1241-1247
    [7] Ana-Maria Chiorcea, Ana Maria Oliveira Brett. Atomic force microscopy characterization of an electrochemicalDNA-biosensor. Bioelectrochemistry. 2004, 63: 229-232
    [8] J. J. PANCRAZIO, J. P. WHELAN, D. A. BORKHOLDER. Development and Application of Cell-Based Biosensors. Annals of Biomedical Engineering, 1999, 27: 697-711
    [9] Wenonah Vercoutere, Mark Akeson. Biosensors for DNA sequence detection. Current Opinion in Chemical Biology. 2002, 6: 816-822
    [10] Fernando Patolsky, Amir Lichtenstein, Itamar Willner. Detection of single-base DNA mutations by enzyme-amplified electronic transduction, nature biotechnology. 2001, 19: 253-258
    [11] Ana Maria Oliveira Brett, Luis Anto^nio da Silva, Hideki Fujii et al. Detection of the damage caused to DNA by a thiophene-S- oxide using an electrochemical DNA-biosensor. Journal of Electroanalytical Chemistry . 2003,549: 91-99
    [12] F. C. Abreu, M. 0. F. Goulart, A.M. Oliveira Brett. Detection of the damage caused to DNA by niclosamide using an electrochemical DNA-biosensor. Biosensors and Bioelectronics. 2002,17:913-919
    [13]Hafsa Korri-Youssoufi , Bouchra Makrouf. Electrochemical biosensing of DNA hybridization by ferrocenyl groups functionalized polypyrrole. Analytica Chimica Acta. 2002, 469:85-92
    [14] Hong Cai, Yanqing Wang, Pingang He et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta .2002,469:165-172
    [15] Ningning Zhu, Aiping Zhang, Qingjiang Wang. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Analytica Chimica Acta . 2004, 510 :163 - 168
    [16] Pinar Kara, Burcu Meric, Aysin Zeytinoglu. Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples. Analytica Chimica Acta. 2004, 518: 69-76
    [17]T Gregory Drummond, Michael G Hill, Jacqueline K Barton. Electrochemical DNAsensors. Nature biotechnology. 2003, 21(10):1192-1200
    [18] Joseph Wang. Electrochemical nucleic acid biosensors. Analytica Chimica Acta .2002,469: 63-71
    [19]H. Korri-Youssoufi, B. Makrouf. Electrochemical biosensing of DNA hybridization by electroactive ferrocene functionalized polypyrrole. Synthetic Metals. 2001,119:265-266
    [20] Burcu Meric, Kagan Kerman, Dilsat Ozkan et al. Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta .2002,56: 837-846
    [21] F. Azek, C. Grossiord, M. Joannes et al. Hybridization Assay at a Disposable Electrochemical Biosensor for the Attomole Detection of Amplified Human Cytomegalovirus DNA. Analytical Biochemistry. 2000, 284: 107-113
    [22] Miroslav Fojta, Ludek Havran, Rene Kizek et al. Multiply osmiumlabeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats. Biosensors and Bioelectronics. 2004, 20: 985-994
    [23] Arzum Erdem, Kagan Kerman, Burcu Meric et al. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Analytica Chimica Acta. 2000. 422: 139-149
    [25] Andreas hartl, Evelyn schmich, Josea. Garrido et al. Proteinmodified nanocrystalline diamond thin films for biosensor applications. Nature nature materials. 2004, 3: 736-742
    [26] Stefan Howorka, Stephen Cheley, and Hagan Bayley. Sequence-specific detection of individual DNA strands using engineered nanopores. nature biotechnology. 2001, 19: 636-640
    [27] 邹小勇,陈汇勇,李荫.电化学D NA传感器的研制及其医学应用.分析测试学报.2005,24(1):123-128
    [28] 马丽,白燕,刘仲明.电化学DNA传感器研究进展.传感器技术.2002,21(3): 58-61
    [29] 蔡新霞,李华清,饶能高.电化学生物传感器. 微纳电子技术.2003,7/8:359-361
    [30] 韩泾鸿,梁卫国,张虹等.生物化学微阵列光寻址传感器系统研究.中国学术期刊文摘.2001,7(11):TP212
    [31] CAI X X , KLAUKE N , GLIDL E A et al . Implementation of picolitre volume amperometric lactate measurements using microsystems technology. Analytical Chemistry. 2002, 74: 908-914
    [32] Fermann G J , Su Yama J. Point of care testing in the emergency department. The Journal of Emergency Medicine. 2002, 22 (4): 393-404.
    [33] 王新豫,庄逸林.电化学生物传感器的进展.检验检疫科学.2000,10(3):60-63
    [34] 纪军,杨瑞馥.电化学生物传感器快速检测DNA研究进展.生物技术通讯.2002,13(2):S17-S19
    [35] 徐春,蔡宏,何品刚等.二茂铁标记DNA电化学探针的研制及性质研究.高 等学校化学学报.2001,22(9):1492-1495
    [36] 万巧, 张芬芬, 王晓丽.二茂铁掺杂SiO2纳米粒子修饰的次黄嘌呤生物传感器在脑渗析液分析中的应用.化学传感器.2004,24(1):45-50
    [37] Raffa D L, Battaglini F. Novel conducting polyaniline bearing functional groups. J. Electroanal. Chem. 2001, 504: 120-124.
    [38] Pandey P C, Upadhyay S, ShuMa N K et al. Studies on the electrochemical performance of glucose biosensor based on ferrocene encapsulated ORMOSIL and glucose oxidase modified graphite paste electrode. Biosens. Bioelectron. 2003, 18: 1257—1268
    [39] Niu J J, Lee J Y. Reagentless mediated biosenors based on polyelectrolyte and sol-gel derived silica matrix. Sens. Actuators, B. 2002, 82: 250—258
    [40] Wang J, Mo J W, Li S F et al. Comparison of oxygen-rich and mediator-based glucose-oxidase carbon-paste electrodes. Anal. Chim. Acta. 2001, 441: 183—189.
    [41] Santra S, Zhang P, Wang K M et al. Conjugation of Biomolecules with Luminophore-Doped Silica Nanoparticles for Photostable Biomarkers. Anal. Chem. 2001, 73: 4 988—4 993.
    [42] Wei X, Zhang M G, Gorski W. Coupling the Lactate Oxidase to Electrodes by Ionotropic Gelation of Biopolymer. Anal. Chem. 2003, 75: 2060—2064.
    [43] Hopwood M C R S E, Strong A J, Boutelle M G. Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. Trends in Analytical Chemistry, 2003, 22: 487—497
    [44] Xu F, Wang L, Gao M N et al. Amperometric sensor for glucose and hypoxanthine based on a Pd-IrO_2 modifid electrode by a cocrosslinking bienzymic system. Talanta. 2002, 57: 365—373
    [45] 乐其中.生物医学用多功能腔型传感器.国外传感技术.2003,13(5):184
    [46] 周李承,蒋易,周宜开.光纤纳米生物传感器的现状及发展.传感器技术.2002,21(12):56-60
    [47] 王锋,樊先平,王民权.光学生物传感器的研究进展.材料导报.2007.18(7):1-4
    [48] 李瑛塄,朱连德,朱果逸.化学发光生物传感器的研究进展.分析测试学报.2002,21(3):89-93
    [49] 王海英,蔡妙颜,郭祀远.基于光合系统Ⅱ的生物传感器及其应用.生命的化学.2003,23(2):110-113
    [50] 蔡宏,王延琴,何品刚.基于纳米金胶标记DNA探针的电化学DNA传感器研究。高等化学学报.2003,24(8):1390-1394
    [51] 詹曦菁,秦晓勇.胶体金标记技术在免疫检测中的应用与发展.现代中西医结合杂志.2001,10(24):2422-2424
    [52] 谭碧生,曹晓红,莫志宏.金纳米粒子的制备方法及在DNA检测中的应用.重庆大学学报.2003,26(4):1-5
    [53] 王存嫦,阳明辉,渠凤丽.壳聚糖修饰的过氧化氢生物传感器的研究.化学传感器.2004,24(4):12-17
    [54] 唐芳琼,韦正,陈东等.亲水金和憎水二氧化硅纳米颗粒对葡萄糖生物传感器响应灵敏度的增强作用.高等学校化学学报,2000,21:92
    [55] Tian F M, Xu B, Zhu L D et aL. Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode. Anal. Chim. Acta. 2001, 443: 9—16
    [56] 陈丹丹,刘宝红,孔继烈.三氧化二铝溶胶凝胶—固定过氧化氢生物传感器.分析化学,2002,30:958
    [57] Jia J B, Wang B Q, Wu A G et al. A Method to Construct a ThirdGeneration Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network. Anal. Chem. 2002.74, 2217
    [58] 李佳,徐金瑞,孙向英.壳聚糖共价键合化学修饰电极测定亚硝酸根.分析化学.2002,30:206-209
    [59] 邬建敏,陈正贤,阮东梁.以硅胶为载体的交联壳聚糖作为亲和层析填料基质的研究.分析化学,2002,30:1063-1066
    [60] 赵红秋,林琳,唐季安.利用纳米金颗粒增强DNA探针在传感器上的固定程度和识别能力.科学通报.2001,46(2):5-7
    [61] Rick R L, Myszka D G. Advances in surface plasmon resonance biosensor analysis. Current Opinion in Biotechnology, 2000, 11: 54-61
    [62] 王利,蔡新霞,李华清.纳米材料与微电极生物传感器.微纳电子技术.2003,7/8:526-528
    [63] 邹志青,赵建龙.纳米技术和生物传感器.传感器世界.2004,12:6-12
    [64] 刘新生, 张阳德, 王欣。纳米技术在疾病诊断中的应用现状与展望.新乡医学院学报.2004,21(1):71-74
    [65] 缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用.传感器技术.2002,21(11):61-64
    [66] 文茜,黄杉生.农药检测中的生物传感器.化学传感器.2004,12:1-6
    [67] 陈强,李静,殷惠军.亲和型生物传感器及其在中药作用机理研究中的应用展望.中国中西医结合杂志.2004,24(8):746-748
    [68] 何星月,刘之景.生物传感器的应用.物理学和高新技术.2003,32(4):249-252
    [67] 武宝利,张国梅,高春光.生物传感器的应用研究进展.中国生物工程杂志.2004,24(7):65-69
    [68] M. Mir , I. Katakis. Towards a fast-responding, label-free electrochemical DNA biosensor. Anal Bioanal Chem. 2005, 381: 1033-1035

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700