中华蜜蜂表皮蛋白基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫的蜕皮和变态是昆虫发育生物学研究的热点之一。昆虫的角质层主要由表皮蛋白和几丁质组成;几丁质由N-乙酰葡萄糖胺聚合而成,结构明确,而表皮蛋白的结构和特征具有多样性,昆虫角质层的性质主要由其中的表皮蛋白性质所决定。表皮蛋白和表皮蛋白基因被认为是研究昆虫蜕皮与变态调控机理的重要模型,受到越来越多的重视。目前关于表皮蛋白家族基因的研究多数集中在果蝇、家蚕等物种,蜜蜂中这类基因的相关研究很少。中华蜜蜂是我国特有的优良土著蜂种,对维护植物资源物种的多样性,促进农业的可持续发展具有重要的意义。研究表皮蛋白家族基因功能可以为深入阐明分析中华蜜蜂的蜕皮发育机制,丰富中华蜜蜂资源保护理论提供科学依据。
     本研究以中华蜜蜂(Apis cerana cerana)为材料,利用同源序列,通过RT-PCR和RACE-PCR的方法克隆得到中华蜜蜂两个表皮蛋白新基因,分别命名为AccCPR1和AccCPR2并对它们进行了生物信息学分析、表达特性分析和功能预测。本研究的具体结果如下:
     (1)从中华蜜蜂中分离得到首个R&R亚族的表皮蛋白基因,命名为AccCPR1,Genbank登陆号为JQ282798。其cDNA全长为822nt,包括573nt的开放阅读框,编码一个190个氨基酸残基的多肽,预测的分子量和等电点分别为21.3kDa和6.50。生物信息学分析表明,多肽链中包含一个几丁质结合区域,属于典型的R&R-2型表皮蛋白;在几丁质结合区域β-折叠频繁发生(42.5%),而在其他的区域一个β-折叠也没有;AccCPR1与同属于膜翅目的CPRs比属于双翅目或半翅目的CPRs在系统进化关系上更亲密。R&R保守基序中最保守的序列:G-x8-G-x6-Y/F,几乎在所有的表皮蛋白(CPRs)保持不变,但AccCPR1及其直系同源物对于最保守的R&R基序的组成序列(G-x8-G-x6-Y/F)是个例外。在其启动子序列中发现5个E74和4个BR-C转录因子结合位点,推测AccCPR1可能参与蜜蜂的蜕皮与变态。
     实时荧光定量PCR发现,当蜜蜂体内蜕皮激素的浓度到达高峰开始下降时AccCPR1启动转录,这说明AccCPR1的转录需要一个蜕皮激素的“脉冲”机制。我们采用不同的试验方法验证了这个假设。20E是蜕皮激素的主要成分,当给幼虫饲喂含有不同浓度的20E时,高浓度的蜕皮激素抑制了AccCPR1的表达。将白蛹期的胸部表皮在含有不同浓度的20E的培养基中培养,发现高浓度的蜕皮激素抑制AccCPR1的表达,除去20E可以恢复表达。组织特异性表达与免疫组织化学定位表明AccCPR1在表皮与中肠表达。这些结果表明,AccCPR1是一种典型的R&R-2型表皮蛋白,在蜜蜂的发育中发挥重要作用,并且蜕皮激素的“脉冲”机制对AccCPR1的表达非常重要。
     (2)从中华蜜蜂中分离得到第二个R&R亚族的表皮蛋白基因,并命名为AccCPR2,Genbank登陆号为KJ502287。其cDNA全长为1134nt,编码一个234个氨基酸残基的多肽,预测的分子量为26.3kDa,预测的等电点为6.69。多肽链中包含一个几丁质结合区域,R&R保守基序中最保守的序列:G-x8-G-x6-Y/F,可以在AccCPR2及其直系同源物的几丁质结合区域发现。AccCPR2基因组的第一个内含子在编码5个氨基酸之后中断信号肽,而这是昆虫表皮蛋白家族基因组序列的一个典型特征;在5′端空白区域发现了若干个假定的与发育有关的转录因子结合位点,包括3个假定的BR-C结合位点、5个假定的CdxA结合位点、1个假定的HB结合位点和3个假定的DFD结合位点,说明AccCPR2可能参与蜜蜂的蜕皮与变态。
     生物信息学分析表明AccCPR2也属于与几丁质结合的R&R-2类型表皮蛋白,但是其表达方式与以往在有些昆虫上已经发现的“脉冲”机制有比较大的差异。不同发育时期的表达特性分析表明,在蛹期AccCPR2的表达量随着蜕皮激素浓度的升高而增加,说明AccCPR2的转录需要蜕皮激素持续存在。将预蛹期的表皮在含有不同浓度的20E的培养基中培养,发现随着20E浓度的升高,AccCPR2表达量增加,并进一步确定了20E诱导表皮蛋白表达需要的时间。将刚出房的成年幼蜂暴露于各种应激条件中检测发现,AccCPR2mRNA的表达水平在重金属(HgCl2,CdCl2)处理后上升,而在杀虫剂(溴氰菊酯,百草枯)处理后先上升后下降。AccCPR2基因的抗逆性直接证据来自重组蛋白的活性分析,尽管重金属和杀虫剂处理间基因表达的模式有所不同,但是菌落扩散试验的结果是相似的。异源表达结果表明,AccCPR2可能参与抗逆性应激反应。
     本研究结果发现,AccCPR1和AccCPR2同属R&R-2类型表皮蛋白基因,但在多肽链最保守基序上存在结构差异并且两者在蜕皮激素调控下具有不同表达模式,表明不同表皮蛋白家族基因在中华蜜蜂变态发育机制研究中的多样性。
Insect molting and metamorphosis is one of the hot topics in the field of developmentalbiology. The insect cuticle is mainly composed of cuticular protein and chitin. The structure ofchitin is clear, which is polymerized of N-acetyl glucosamine, while the structure andcharacteristics of cuticular protein is various. The nature of the insect cuticle is mainlydetermined by the nature of the cuticular protein. Cuticular protein and cuticular protein gene,which are considered to be an important model for the study of regulation mechanism ofinsect molting and metamorphosis, have received more and more attention. So far,researches about cuticular protein gene are mainly focus on the model speices, such as D.melanogaster and Bombyx mori, and information in honeybee is relatively limited. TheChinese honeybees which are the excellent indigenous bee species are of great significance tothe maintenance of biological diversity of plant resources in China, and to promote thesustainable development of agriculture. The research of cuticular protein family genes mayprovide scientific basis of elucidating the developmental mechanisms of Chinese honeybeesand protecting the indigenous excellent germplasm resource.
     In this research, we selected the Chinese honeybee as the experiment material, and twogenes, AccCPR1, AccCPR2, have been cloned by RT-PCR and RACE-PCR. Then, a seriesof research have been managed on the isolation, sequence and expression profile analysis, andfunctional identification of the two genes. The main results are as follows:
     (1) The first cuticle protein R&R gene named AccCPR1was identified from A. ceranacerana. The full-length cDNA (GenBank accession number: JQ282798) has a length of822nt,which contains an open reading frame (ORF) of573nt encoding a190amino acidpolypeptide with a predicted molecular mass of21.3kDa and an isoelectric point of6.50. Theprotein contains a chitin binding region and is a typical cuticle R&R-2protein. The analysisof the secondary structure indicated thatβ-sheets occurred frequently (42.5%) throughout thestructure of the region, whereas there were none in other regions. The phylogenetic treeindicated that AccCPR1has a greater level of sequence identity with Hymenoptera CPRs thanwith Diptera or Hemiptera CPRs. The strict R&R consensus: G-x8-G-x6-(Y/F) was found inthis region. But AccCPR1and its orthologs are exception for the most conservative sequencemotif. Five putative E74binding sites and four BR-C binding sites were predicted in the5'-flanking region, which suggests a potential function in molting and metamorphosis.
     RT-qPCR showed that AccCPR1transcript occurred as the ecdysteroid titer decreased after reaching a peak, which suggests AccCPR1expression requires a “pulse” regimen ofecdysteroids. This hypothesis was tested using different experimental strategies.20E is amajor component of ecdysone. When larvae were reared with different concentrations of20Ein their diet, the ecdysteroid peak repressed AccCPR1expression. Exposure of the thoracicintegument of the pupae in vitro to different concentration of20E repressed AccCPR1expression, which recovered after the removal of20E. Tissue-specific expression andimmunohistochemical localization showed AccCPR1expressed in the epidermis and in themidgut. These results suggest that AccCPR1is a typical cuticle R&R-2protein that plays animportant role in development, and an ecdysteroid pulse is critical for high AccCPR1geneexpression.
     (2) We cloned and characterized another cuticle protein R&R gene, referred to AccCPR2,from the honeybee (A. cerana cerana). The full-length cDNA (GenBank accession number:KJ502287) has a length of1134nt, which contains an open reading frame (ORF) of705ntencoding a234amino acid polypeptide with a predicted molecular mass of26.3kDa and anisoelectric point of6.90. The protein contains a chitin binding region and the strict R&Rconsensus: G-x8-G-x6-(Y/F) was found in this region. The first intron interrupts the signalpeptide after five coding amino acids in the AccCPR2genomic sequence, which is a typicalcharacteristic of CPR genomic sequences in insects. Three BR-C, five CdxA, one HB andthree DFD binding sites were predicted in the5'-flanking region, suggesting a potentialfunction in molting and metamorphosis.
     Bioinformatics analysis indicated that AccCPR2contains a chitin binding region and is atypical cuticle R&R-2protein, while its expression pattern has a relatively large differenceswith "pulse" mechanismin that have been found in some insects. Expression profile of thedifferent developmental stages showed that the expression level of AccCPR2increased withthe increase of ecdysone concentration during the pupal stage, indicating that AccCPR2transcription needs ecdysone persist. Exposure of the integument of the pharte pupae in vitroto different concentration of20E, the expression of AccCPR2was identified with the increaseof20E concentration. Environmental stressors, such as heavy metals and pesticides, alsoinfluenced gene expression. In addition, a disc diffusion assay showed that AccCPR2enhanced the ability of bacterial cells to resist multiple stresses. We infer from our results thatAccCPR2acts in honeybee development and in protecting these insects from abiotic stresses.
     The results of this study found that, AccCPR1and AccCPR2belong to R&R-2typecuticle protein genes. There are structural differences of the most conserved motifs betweenthe two polypeptide chains and the two genes are regulated by ecdysone titer with different expression patterns, suggesting different cuticle protein genes in Apis cerana cerana play avariety of roles in metamorphosis mechanisms.
引文
李洪亮,杨渝晓,沈立荣,高其康,程家安.中华蜜蜂工蜂头部cDNA文库的构建与分析.中国蜂业,2007,58(6):8-10.
    刘清明,苑园园,林键荣,钟杨生.昆虫表皮蛋白及其表达调控机理的研究进展.昆虫知识,2010,47(2):247-255.
    王凤鹤,杨甫,耿金虎,徐希莲.北京中华蜜蜂的保护与利用.昆虫知识,2007,44(6):144-148.
    杨冠煌.引入西方蜜蜂对中蜂的危害及生态影响.昆虫学报,2005,48(3):401-406.
    周冰峰,许正鼎.蜜蜂低温采集活动的研究.中国养蜂,1988,(5):7-9.
    Andersen S.O. Amino acid sequence studies of endocuticular proteins from the desert locust,Schistocerca gregaria. Insect Biochem. Mol. Biol.,1998,28:421-434.
    Andersen S.O. Studies on proteins in post-ecdysial nymphal cuticle of locust, Locustamigratoria, and cockroach, Blaberus craniifer. Insect Biochem. Mol. Biol.,2000,30(7):569-577.
    Andersen S.O.. Cuticular sclerotization and tanning. In: Gilbert, L.I., Iatrou, K., Gill, S.S.(Eds.), Comprehensive Molecular Insect Science, vol.4. Elsevier Pergamon, Australia,2005, pp:145-170.
    Andersen S.O., H jrup, P., Roepstorff, P.. Insect cuticular proteins. Insect Biochem. Molec.Biol,1995,25(2):153-176.
    Andersen S.O., Peter M.G., Roepstorff P.. Cuticular sclerotization in insects. Comp. Biochem.Physiol.,1996,113B:689-705.
    Andersen S. O.,Rafn K., Roepstorff P. Sequence studies of proteins from larval and pupalcuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem. Mol. Biol.,1997,27(2):121-131.
    Apple R.T., Fristrom J.W..20-Hydroxyecdysone is required for, and negatively regulates,transcription of Drosophila pupal cuticle protein genes. Dev Biol.,1991,146:569–582.
    Ashburner M., Chihara C., Meltzer P., Richards G.. Temporal control of puffing activity inpolytene chromosomes. Cold Spring Harb. Symp. Quant. Biol.,1974,38:655-662.
    Behr M., Hoch M.. Identification of the novel evolutionary conserved obstructor multigenefamily in invertebrates. FEBS Lett.,2005,579:6827-6833.
    Binger L. C., Willis J. H.. Identification of the cDNA, gene and promoter for a major proteinfrom flexible cuticles of the giant silkmoth Hyalophora cecropia. Insect Biochem. Mol.Biol.,1994,24(10):989-1000.
    Bondgaard M, Bjerregaard P.. Association between cadmium and calcium uptake anddistribution during the moult cycle of female shore crabs, Carcinus maenas: an in vivostudy. Aquat Toxicol.,2005,72:17–28.
    Bouhin H., Braquart C., Charles J.P., Quennedey B., Delachambre J.. Nucleotide sequence ofan adult-specific cuticular protein gene from the beetle Tenebrio molitor: effects of20-hydroxyecdysone on mRNA accumulation. Insect Mol. Biol.,1993,2:81-88.
    Bouhin H., Charles J.P., Quennedey B., Courrent A., Delachambre J.. Characterization of acDNA clone encoding a glycine-rich cuticular protein of Tenebrio molitor:developmental expression and effect of a juvenile hormone analogue. Insect Mol. Biol.,1992a,1:53-62.
    Bouhin H., Charles J.P., Quennedey B., Delachambre J.. Developmental profiles of epidermalmRNAs during the pupal-adult molt of Tenebrio molitor and isolation of a cDNA cloneencoding an adult cuticular protein: effects of a juvenile hormone analogue. Dev. Biol.,1992b,149:112-122.
    Braquart C., Bouhin H., Quennedey A., Delachambre J.. Up-regulation of an adult cuticulargene by20-hydroxyecdysone in insect metamorphosing epidermis cultured in vitro. Eur.J. Biochem.,1996,240:336-341.
    Bruey-Sedano, N.,2001. Analyse fonctionnelle des séquences régulatrices du gène cuticulaireACP65A chez la drosophile. PhD thesis, Université de Bourgogne.
    Bruey-Sedano N., Alabouvette J., Lestradet M., Hong L., Girard A., Gervasio E., QuennedeyB., Charles J.P.. The Drosophila ACP65A cuticle gene: deletion scanning analysis ofcis-regulatory sequences and regulation by DHR38. Genesis.,2005,43:17-27.
    Bustin S.A., Beaulieu J., Huggett J., Jaggi R., Kibenge F.S., Olsvik P.A., Penning L.C., ToegelS.. MIQE précis: Practical implementation of minimum standard guidelines forfluorescence-based quantitative real-time PCR experiments. BMC Mol. Biol.,2010,11:74.
    Butenandt A., Karlson P.. über die Isolierung eines Metamorphosehormons der Insekten inkristallisierter Form. Z. Naturforsh,1954,9b:389-391.
    Charles J.P. The regulation of expression of insect cuticle protein genes. Insect Biochem. Mol.Biol,2010,40:205-213.
    Charles J.P., Bouhin H., Quennedey B., Courrent A., Delachambre J.. cDNAcloninganddeduced amino acid sequence of a major, glycine-rich cuticular protein fromthe coleopteranTenebrio molitor. Temporal and spatial distribution of the transcriptduring metamorphosis. Eur. J. Biochem,1992,206(3):813-819.
    Charles J.P., Chihara C., Nejad S., Riddiford L.M.. A cluster of cuticle protein genes ofDrosophila melanogaster at65A: sequence, structure and evolution. Genetics.,1997,147:1213-1224.
    Charles J.P., Chihara C., Nejad S., Riddiford L.M.. Identification of proteins anddevelopmental expression of RNAs encoded by the65A cuticle protein gene cluster inDrosophila melanogaster. Insect Biochem. Mol. Biol.,1998,28:131-138.
    Chihara C.J., Kimbrell D.A.. The cuticle proteins of Drosophila melanogaster: geneticlocalization of a second cluster of third-instar genes. Genetics,1986,114:393-404.
    Cornman R.S.. Molecular evolution of Drosophila cuticular protein genes. PLoS One.2009,4(12): e8345.
    Cornman R. S., Togawa T., Dunn W. A., He N., Emmons1A. C., Willis J. H.. Annotation andanalysis of a large cuticular protein family with the R&R Consensus in Anophelesgambiae. BMC Genomics.,2008,9:1-16.
    Cornman R.S., Willis J.H.. Annotation and analysis of low-complexity protein families ofAnopheles gambiae that are associated with cuticle. Insect Mol. Biol.,2009,18:607-622.
    Cornman R.S., Willis J.H.. Extensive gene amplification and concerted evolution within theCPR family of cuticular proteins in mosquitoes. Insect Biochem. Mol. Biol.,2008,38:661-676.
    Crooks G.E., Hon G., Chandonia J.M., Brenner S.E.. WebLogo: a sequence logo generator.Genome Res.,2004,14:1188-1190.
    Dean R.L., Bollenbacher W.E., Locke M., Gilbert L.I., Smith S.L.. Haemolymph ecdysteroidlevels and cellular events in the intermoult/moult sequence of Calpodes ethilus. J. InsectPhysiol.,1980,26:267-280.
    Denison R. and Raymond-Delpech V.. Insights into the molecular basis of social behaviourfrom studies on the honeybee, Apis mellifera. Invert Neurosci.,2008,8:1-9.
    Doctor J., Fristrom D., Fristrom J.W.. The pupal cuticle of Drosophila: biphasic synthesis ofpupal cuticle proteins in vivo and in vitro in response to20-hydroxyecdysone. J. Cell.Biol.,1985,101:189-200.
    Dyer F. C.. The biology of the dance language. Annu. Rev. Entomol..2002,47:917-949.
    Ekker S.C., von Kessler D.P. and Beachy P.A. Differential DNA sequence recognition is adeterminant of specificity in homeotic gene action. EMBO J.,1992,11:4059–4072.
    Fechtel K., Natzle J.E., Brown E.E., Fristrom J.W.. Prepupal differentiation of Drosophilaimaginal discs: identification of four genes whose transcripts accumulate in response to apulse of20-hydroxyecdysone. Genetics.,1988,120:465-474.
    Fristrom D., Liebrich W.. The hormonal coordination of cuticulin deposition andmorphogenesis in Drosophila imaginal discs in vivo and in vitro. Dev. Biol.,1986,114:1-11.
    Frumkin A., Pillemer G., Haffner R., Tarcic N., Gruenbaum Y. and Fainsod, A. A role forCdxA in gut closure and intestinal epithelia differentiation. Development.,1994,120:253-263.
    Futahashi R., Okamoto S., Kawasaki H., Zhong Y.S., Iwanaga M., Mita K., Fujiwara H..Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori.Insect Biochem. Mol. Biol.,2008,38(12):1138-1146.
    Fu Y. T.,Frith M. C.,Haverty P. M.,Weng Z.. Motif Viz: an analysis and visualization toolfor motif discovery. Nucleic Acids Res.,2004,32:420-423.
    Guan X., Middlebrooks B.W., Alexander S., Wasserman,S.A.. Mutation of TweedleD, amember of an unconventional cuticle protein family, alters body shape in Drosophila.Proc. Natl. Acad. Sci. U.S.A.,2006,103(45):16794-16799.
    Hamodrakas S.J.. A protein secondary structure prediction scheme for the IBM PC andcompatibles. CABIOS,1988,4:473-477.
    Hamodrakas S.J., Willis J.H., Iconomidou V.A.. A structural model of the chitin-bindingdomain of cuticle proteins. Insect Biochem. Mol. Biol.,2002,32(11):1577-1583.
    Hartfelder K.. Structure and function of the prothoracic gland in honey bee (Apis mellifera L.)development. Inv. Reprod. Dev.,1993,23:59-74.
    He N., Botelho J.M., McNall R.J., Belozerov V., Dunn W.A., Mize T., Orlando R., Willis J.H..Proteomic analysis of cast cuticles from Anopheles gambiae by tandem massspectrometry. Insect Biochem. Mol. Biol.,2007,37:135-146.
    Hiruma K., Riddiford L.M.. The molecular mechanisms of cuticular melanization: theecdysone cascade leading to dopa decarboxylase expression in Manduca sexta. Insect.Biochem. Mol. Biol.,2009,39,245-253.
    Hiruma K., Hardie J., Riddiford L.M.. Hormonal regulation of epidermal metamorphosis invitro: control of expression of a larvalspecific cuticle gene. Dev Biol.,1991,114:369–378.
    Hoffmeister H., Grutzmacher H.F., Dunnebeil K.,1967. Studies on the structure andbiochemical action of ecdysterone. Z. Naturforsch. B.,1967,22,66-70.
    Honegger H.W., Dewey E.M., Ewer J.. Bursicon, the tanning hormone of insects: recentadvances following the discovery of its molecular identity. J. Comp. Physiol. A.Neuroethol. Sens. Neural. Behav. Physiol.,2008,194,989-1005.
    Honeybee Genome Sequencing Consortium. Insights into social insects from the genome ofthe honeybeeApis mellifera. Nature,2006,443,931-949.
    Hopkins T.L., Krchma L.J., Ahmad S.A., Kramer K.J.. Pupal cuticle proteins of Manducasexta: characterization and profiles during sclerotization. Insect Biochem. Mol. Biol.,2000,30,19-27.
    Horn D.H., Fabbri S., Hampshire F., Lowe M.E.. Isolation of crustecdysone(20R-hydroxyecdysone) from a crayfish (Jasus lalandei H. Milne-Edwards). Biochem. J.,1968,109,399-406.
    Horodyski F. M., Riddiford L. M.. Expression and hormonal control of a new larval cuticularmultigene family at the onset of metamorphosis of the tobacco hornworm. Dev. Biol.,1989,132:292-303.
    Jadrich J. L., O'Connor M. B. and Coucouvanis E. Expression of TAK1, a mediator of TGF-βand BMP signaling, during mouse embryonic development. Gene Expr. Patterns.,2003,3,131-134.
    Iconomidou V.A., Chryssikos G.D., Gionis V., Willis J.H., Hamodrakas S.J..“soft”-cuticleprotein secondary structure as revealed by FT-Raman, ATR FT-IR and CD spectroscopy.Insect Biochem. Mol. Biol.,2001,31,877-885.
    Iconomidou V.A., Willis J.H., Hamodrakas S.J.. Is beta-pleated sheet the molecularconformation which dictates formation of helicoidal cuticle? Insect Biochem. Mol. Biol.,1999,29(3):285-292.
    Iconomidou V.A., Willis J.H., Hamodrakas S.J.. Unique features of the structural model of‘hard’ cuticle proteins: implications for chitin-protein interactions and cross-linking incuticle. Insect Biochem. Mol. Biol.,2005,35(6):553-560.
    Jasrapuria S., Arakane Y., Osman G., Kramer K.J., Beeman R.W., Muthukrishnan S.. Genesencoding proteins with peritrophin A-type chitin binding domains in Triboliumcastaneum are grouped into three distinct families based on phylogeny, expression andfunction. Insect Biochem. Mol. Biol.,2010,40:214-227.
    Kalm L.V., Crossgrove K., Seggern D.V., Guild G.M., Beckendorf S.K.. The Broad-Complexdirectly controls a tissue-specific response to the steroid hormone ecdysone at the onsetof Drosophila metamorphosis. EMBO J,1994,13:3505–3516.
    Kawasaki H., Hirose S., Ueda H.. Beta FTZ-F1dependent and independent activation ofEdg78E, a pupal cuticle gene, during the early metamorphic period in Drosophilamelanogaster. Dev. Growth Differ.,2002,44:419-425.
    Kayashima Y., Hirose S., Ueda H.. Anterior epidermis-specific expression of the cuticle geneEDG84A is controlled by many cis-regulatory elements in Drosophila melanogaster. Dev.Genes. Evol.,2005,215:545-552.
    Kaznowski C.E., Schneiderman H.A., Bryant P.J.. Cuticle secretion during larval growth inDrosophila melanogaster. J. Insect. Physiol.,1985,31:801-813.
    Kimbrell D.A., Berger E., King D.S., Wolfgang W.J., Fristrom J.W.. Cuticle protein geneexpression during the third instar of Drosophila melanogaster. Insect Biochem.,1988,18:229-235.
    King D.S., Bollenbacher W.E., Borst D.W., Vedeckis W.V., O'Connor J.D., Ittycheriah, P.I.,Gilbert, L.I.. The secretion of alpha-ecdysone by the prothoracic glands of Manduca sextain vitro. Proc. Natl. Acad. Sci. U.S.A.,1974,71:793-796.
    King-Jones K., Thummel C.S.. Nuclear receptorsea perspective from Drosophila. Nat. Rev.Genet.,2005,6:311-323.
    Kozlova T., Pokholkova G.V., Tzertzinis G., Sutherland J.D., Zhimulev I.F., Kafatos F.C..Drosophila hormone receptor38functions in metamorphosis: a role in adult cuticleformation. Genetics.,1998,149:1465-1475.
    Kucharski R., Maleszka J., Maleszka R.. Novel cuticular proteins revealed by the honey beegenome. Insect Biochem. Mol. Biol.,2007,37:128-134.
    Lemoine A., Mathelin J., Braquart-Varnier C., Everaerts C., Delachambre J.. A functionalanalysis of ACP-20, an adult-specific cuticular protein gene from the beetle Tenebrio:role of an intronic sequence in transcriptional activation during the late metamorphicperiod. Insect Mol. Biol.,2004,13:481-493.
    Lemoine A., Millot C., Curie G., Delachambre J.. A monoclonal antibody against anadult-specific cuticular protein of Tenebrio molitor (Insecta, Coleoptera). Dev. Biol.,1989,136:546-554.
    Lestradet M., Gervasio E., Fraichard S., Dupas S., Alabouvette J., Lemoine A., Charles J.P..The cis-regulatory sequences required for expression of the Drosophila melanogasteradult cuticle gene ACP65A. Insect Mol. Biol.,2009,18:431-441.
    Livak K.J., Schmittgen T.D.. Analysis of relative gene expression data using real-timequantitative PCR and the2(DeltaC(T)) method. Methods.,2001,25:402-408.
    Locke M.. The Wigglesworth Lecture: insects for studying fundamental problems in biology.J. Insect Physiol.,2001,47:495-507.
    Magkrioti C.K., Spyropoulos I. C.,Iconomidou V. A. Willis J. H. Hamodrakas S. J..CuticleDb: a relational database of Arthropodc uticular proteins. BMC Bioinformatics,2004,5:138-143.
    Mathelin J., Quennedey B., Bouhin H., Delachambre, J.. Characterization of two newcuticular genes specifically expressed during the post-ecdysial molting period inTenebrio molitor. Gene.,1998,211:351-359.
    Merzendorfer H., Zimoch L.. Chitin metabolism in insects: structure, function and regulationof chitin synthases and chitinases. J. Exp. Biol.,2003,206:4393-4412.
    Michelette E.R.F, Soares A.E.E.. Characterization of preimaginal developmental stages inAfricanized honey bee workers (Apis mellifera L). Apidologie.,1993,24:431-440.
    Mitchell H.K., Weber-Tracy U.M., Schaar G.. Aspects of cuticle formation in Drosophilamelanogaster. J. Exp. Zool.,1971,176:429-443.
    Murata T., Kageyama Y., Hirose S., Ueda H.. Regulation of the EDG84A gene by FTZ-F1during metamorphosis in Drosophila melanogaster. Mol. Cell. Biol.,1996,16:6509-6515.
    Nasonia Genome Working Group,2010. Functional and evolutionary insights from thegenomes of three parasitoid Nasonia species. Science.,2010,327:343-348.
    Neville A.C.,1975. Biology of the Arthropod Cuticle. Springer, Berlin.
    Nita M., Wang H.B., Zhong Y.S., Mita K., Iwanaga M., Kawasaki H.. Analysis ofecdysone-pulse responsive region of BMWCP2in wing disc of Bombyx mori. Comp.Biochem. Physiol. B., Biochem. Mol. Biol.,2009,153:101-108.
    Noji T., Ote M., Takeda M., Mita K., Shimada T., Kawasaki H.. Isolation and comparison ofdifferent ecdysone-responsive cuticle protein genes in wing discs of Bombyx mori. InsectBiochem. Mol. Biol.,2003,33(7):671-679.
    N rum U, Bondgaard M, Pedersen TV, Bjerregaard P.2005. In vivo and in vitro cadmiumaccumulation during the moult cycle of the male shore crab Carcinus maenas-interactionwith calcium metabolism. Aquat Toxicol.,2005,72:29-44.
    Okamoto S., Futahashi R., Kojima T.,Mita K. Fujiwara H.. Acatalogue of epidermal genes:genes expressed in the epidermis during larval molt of the silkworm, Bombyx mori. BMCGenomics,2008,9:396.
    Pinto L.Z., Hartfelder K., Bitondi M.M.G., Simoes, Z.L.P.. Ecdysteroid titer in pupae ofhighly social bees related to distinct modes of caste development. J. Insect Physiol.,2002,48:783-790.
    Qin G., Lapidot S., Numata K., Hu X., Meirovitch S., Dekel M., Podoler I., Shoseyov O.,Kaplan D.L.. Expression, cross-linking, and characterization of recombinant chitinbinding resilin. Biomacromolecules.,2009,10:3227-3234.
    Rachinsky A., Strambi C., Strambi A., Hartfelder K.. Caste and metamorphosis—hemolymph titers of juvenile hormone and ecdysteroids in last instar honeybee larvae.Gen. Comp. Endocrinol.,1990,79:31-38.
    Rebers J.E. and Willis J.H.. A conserved domain in arthropod cuticular proteins binds chitin.Insect Biochem. Mol. Biol.,2001,31(11):1083-1093.
    Rebers J.F., Riddiford L.M.. Structure and expression of a Manduca sexta larval cuticle genehomologous to Drosophila cuticle genes. J. Mol. Biol.,1988,203,(2):411-423.
    Rees H.H.,1989. Zooecdysteroids: structures and occurrence. In: Koolman, J.(Ed.),Ecdsysone. Georg Thieme Verlag, Stuttgart, New York, pp.28-38.
    Riddiford L.M.. Hormone action at the cellular level. In: Kerkut, G.A., Gilbert, L.I.(Eds.),Comprehensive Insect Physiology and Biochemistry and Pharmacology. Pergamon Press,Oxford,1980, pp.37–84.
    Riddiford L.M.,1993. Hormones and Drosophila development. In: Bate, M., Arias, A.M.(Eds.), The development of Drosophila melanogaster. Cold Spring Harbor LaboratoryPress.
    Riddiford L.M., Hiruma K., Zhou X., Nelson C.A.. Insights into the molecular basis of thehormonal control of molting and metamorphosis from Manduca sexta and Drosophilamelanogaster. Insect Biochem. Mol. Biol.,2003,33:1327-1338.
    Roberts P.E., Willis J.H.. Effects of juvenile hormone, ecdysterone, ctinomycin D, andmitomycin C on the cuticular proteins of Tenebrio molitor. J. Embryol. Exp. Morphol.,1980,56:107-123.
    Roelofs D., Janssens T.K., Timmermans M.J., Nota B., Marien J., Bochdanovits Z., Ylstra B.,Van Straalen N.M.. Adaptive differences in gene expression associated with heavy metaltolerance in the soil arthropod Orchesella cincta. Mol Ecol.,2009,18:3227-3239.
    Rondot I., Quennedey B., Delachambre J.. Structure, organization and expression of twoclustered cuticle protein genes during the metamorphosis of an insect, Tenebrio molitor.Eur. J. Biochem.,1998,254:304-312.
    Schneider T.D., Stephens R.M.. Sequence Logos: a new way to display consensus sequences.Nucl. Acids Res.,1990,18:6097-6100.
    Schwartz L.M., Truman J.W.. Peptide and steroid regulation of muscle degeneration in aninsect. Science,1982,215:1420-1421.
    Schwartz L.M., Truman J.W.. Hormonal control of rates of metamorphic development in thetobacco hornwormManduca sexta. Dev. Biol.,1983,99:103-114.
    Shaw J.R., Colbourne J.K., Davey J.C., Glaholt S.P., Hampton T.H., Chen C.Y., Folt C.L.,Hamilton J.W.. Gene response profiles for Daphnia pulex exposed to the environmentalstressor cadmiumreveals novel crustacean metallothioneins. BMC Genomics.,2007,8:477.
    Silva I.C., Message D., Cruz C.D., Campos L.A.O., Sousa-Majer, M.J.. Rearing Africanizedhoney bee (Apis mellifera L.) brood under laboratory conditions. Genet. Mol. Res.,2008,8:623-629.
    Slama, K.. Homeostatic function of ecdysteroids in ecdysis and oviposition. Acta Entomol.Bohemos.,1980,77:145-168.
    Soares M.P., Elias-Neto M., Simoes Z.L., Bitondi M.M.. A cuticle protein gene in thehoneybee: expression during development and in relation to the ecdysteroid titer. InsectBiochem. Mol. Biol.,2007,37:1272-1282.
    Steel C.G.H., Vafopoulou X.,1989. Ecdysteroid titer profiles during growth and developmentof arthropods. In: Koolman, J.(Ed.), Ecdysone. From Chemistry to Mode of Action.Georg Thieme Verlag, Stuttgart, New York, pp.221-231.
    Sullivan A.A., Thummel C.S.. Temporal profiles of nuclear receptor gene expression revealcoordinate transcriptional responses during Drosophila development. Mol. Endocrinol.,2003,17:2125-2137.
    Suzuki Y., Matsuoka T., Iimura Y., Fujiwara H.. Ecdysteroid-dependent expression of a novelcuticle protein gene BMCPG1in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol.,2002,32:599-607.
    Tang L., Liang J., Zhan Z., Xiang Z., He N.. Identification of the chitin binding proteins fromthe larval proteins of silkworm, Bombyx mori. Insect Biochem. Mol. Biol.,2010,40:228-234.
    Togawa T., Dunn W.A., Emmons A.C., Willis J.H.. CPF and CPFL, two related gene familiesencoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem. Mol.Biol.,2007,37(7):675-688.
    Togawa T., Dunn W.A., Emmons A.C., Nagao J., Willis J.H.. Developmental expressionpatterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae.Insect Biochem. Mol. Biol.,2008,38:508-519.
    Togawa T., Nakato H., Izumi S.. Analysis of the chitin recognition mechanism of cuticleproteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol.,2004,34(10):1059-1067.
    Truman J.W.. Hormonal control of insect ecdysis: endocrine cascades for coordinatingbehavior with physiology. Vitam. Horm.,2005,73:1-30.
    Wang H.B., Iwanaga M., Kawasaki H.. Activation of BMWCP10promoter and regulation byBR-C Z2in wing disc of Bombyx mori. Insect. Biochem. Mol. Biol.,2009a,39:615-623.
    Wang J, Wang X, Liu C, Zhang J, Zhu C, Guo X.. The NgAOX1a gene cloned from Nicotianaglutinosa is implicated in the response to abiotic and biotic stresses. Biosci Rep.,2008,28:259-266.
    Warren J.T., Yerushalmi Y., Shimell M.J., O'Connor M.B., Restifo L.L., Gilbert L.I.. Discretepulses of molting hormone,20-hydroxyecdysone, during late larval development ofDrosophila melanogaster: correlations with changes in gene activity. Dev. Dyn.,2006,235:315-326.
    Weinstock G.M., Robinson G.E., Gibbs R.A., Worley K.C., Evans J.D., Maleszka R. et al..Insights into social insects from the genome of the honeybee Apis mellifera. Nature.,2006,443:931-949.
    Williams D. L.. A veterinary approach to the European honey bee (Apis mellifra). Vet. J.,2000,160:61-73.
    Willis J.H.. Metamorphosis of the cuticle, its proteins, and their genes. In: Gilbert, L.I., Tana,J.R., Atkinson, B.G.(Eds.), Cell Biology: A Series of Monographs: Metamorphosis.Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells.Academic Press,.1996, San Diego, pp.253-282.
    Willis J.H., Iconomidou, V.A., Smith, R.F., Hamodrakas, S.J.,2005. Cuticular proteins.In:Gilbert, L.I., Iatrou, K., Gill, S.S.(Eds.), Comprehensive Molecular Insect Science, vol.4. Elsevier B.V., Amsterdam; New York, pp.79-110.
    Willis J.H.. Structural cuticular proteins from arthropods: Annotation, nomenclature, andsequence characteristics in the genomics era. Insect Biochem. Mol. Biol.,2010,40:189-204.
    Wolfgang W.J., Riddiford L.M.. Cuticular morphogenesis during continuous growth of thefinal instar larva of a moth. Tissue. Cell.,1981,13:757-772.
    Wolfgang W.J., Riddiford L.M.. Larval cuticular morphogenesis in the tobacco hornworm,Manduca sexta, and its hormonal regulation. Dev. Biol.,1986,113:305-316.
    Woyciechowski M. and Moroń D.. Life expectancy and onset of foraging in the honeybee(Apis mellifera). Insectes Soc..2009,56:193-201
    Yang G.. Harm of introducing the western honeybee Apis mellifera L. to the Chinesehoneybee Apis cerana F. and its ecological impact. Acta Entomol Sin.,2005,3:401-406.
    Zhong Y.S., Mita K., Shimada T., Kawasaki H.. Glycine-rich protein genes, which encode amajor component of the cuticle, have different developmental profiles from other cuticleprotein genes in Bombyx mori. Insect Biochem. Mol. Biol.,2006,36:99-110.
    Zhou, X., Riddiford, L.M.. Broad specifies pupal development and mediates the 'status quo'action of juvenile hormone on the pupaleadult transformation in Drosophila and Manduca.Development.,2002,129:2259-2269.
    Zitnan D., Kim Y.J., Zitnanova I., Roller L., Adams M.E.. Complex steroidpeptide-receptorcascade controls insect ecdysis. Gen. Comp. Endocrinol.,2007,153:88-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700