水稻条斑病菌致病相关基因的鉴定与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻条斑病菌(Xanthomonas oryzae pv. oryzicola, Xoc)是水稻黄单胞菌(Xanthomonas oryzae)种下两致病变种之一,引起水稻细菌性条斑病(Bacterial Leaf Streak,简称条斑病,BLS)。近年来该病发生日趋严重,成为水稻上第四大病害。该病原菌从气孔或伤口侵入,在薄壁细胞间繁殖与危害,因受叶脉限制产生条斑病症状。由于感病杂交水稻大面积推广,且生产上无有效的抗条斑病种质资源,水稻安全生产受到严重的威胁。近年来,X. oryzae pv. oryzicola大量致病性相关基因(如hrp、avr、 rpf及其它毒性候选基因等)的研究揭示,毒性相关基因的鉴别是全面解析病原菌致病机理以及发展高效生物防治的基础。
     目前,构建植物病原菌突变体库是挖掘新基因和进行功能基因组学研究的有效途径。因此,为了从全基因组范围内挖掘X. oryzae pv. oryzicola致病性相关因子,本研究以RS105为出发菌株,构建了一个包含25,000突变子的X. oryzae pv. oryzicola Tn5转座子插入突变体库,约5×ORF于基因组(约4,600个ORF)的覆盖量。Southern Blot分析表明,Tn5插入突变体库是稳定的、随机的。将每个突变子分别接种感病寄主水稻(cv. Shanyou63),经第一轮筛选共获得了1,753个致病性完全丧失或毒性减弱的突变体。为了进一步验证其在水稻上的致病表型,经第二轮筛选,共获得了114个致病性完全丧失或毒性显著减弱的突变体,其中致病性完全丧失的14个。随后,将114个致病性完全丧失或毒性显著减弱的突变体分别接种非寄主烟草(cv. Xanthi),共获得23个过敏性反应(hypersensitive response, HR)丧失或明显减弱的突变体,其中HR完全丧失的15个。以上突变体的获得,为分析X. oryzae pv. oryzicola致病性相关基因提供了材料基础。
     为了快速准确地确定Tn5插入的位点和具体功能基因,本研究采用热不对称交错PCR(TAIL-PCR)技术对114个致病性完全丧失或显著减弱的突变体进行了鉴别。结果显示,转座子Tn5插入在致病性相关基因上,包括hrp、avr、rpf、wxoc、代谢相关基因、conserved hypothetical protein及其它毒性基因等。大批致病相关基因的发现,不仅为从分子水平上解析X. oryzae pv. oryzicola的致病机理,而且对于揭示植物-病原物互作的致病性和抗病性,具有全局性的科学价值。
     关键毒性基因的功能鉴定是理解X. oryzae pv. oryzicola致病机理的先决条件。为此,对27个在水稻上完全丧失致病性或毒性显著减弱的突变体进行了分析。其中14个突变体完全丧失在水稻上的致病性和在烟草上激发过敏性反应(hypersensitive response, HR)的能力(表型为Pth-/HR-);另外13个突变体全毒性显著减弱,但仍具有在烟草上激发HR的能力(Vir-/HR+)。Tn5插入基因序列分析揭示,14个Pth-/HR-突变体是Tn5插入在以下基因上:hrcC(2个)、hrcT、hrcV(4个)、hpaP、hrcQ、(2个)/hrpF、hrpG和hrpX(2个);13个Vir-/HR+突变体被Tn5插入的基因分别是:tal-C10c-like(TAL效应分子)、rpfC(致病性调控子)、oxyP(过氧化压力调控子)、dsbC(二硫化合物异构酶)、opgH(葡聚糖生物合成葡(萄)糖基转移酶H)、rfbA(1-磷酸葡萄糖乙酰基转移酶)、amtR(氨基转移酶)、purF(氨基磷酸核糖转移酶)、thrC(苏氨酸合成酶)、trpA(色氨酸合成酶a亚基)和3个功能未知蛋白的基因Xoryp_02235、Xoryp_00885和Xoryp_2910。即这27个突变体是Tn5插入在21个不同的ORFs上。此外上述13个全毒性减弱的突变体,功能互补都能恢复至野生型水平,这表明amtR、purF、thrC、trpA、Xoryp_02235、Xoryp_00885和Xoryp_22910是参与X. oryzae pv. oryzicola全毒性的新基因,未见在其它植物病原细菌中报道。Real-time PCR证明,上述7个新毒性基因在植物中是受诱导表达的,但是它们在参与X. oryzae pv. oryzicola致病机理上的详细功能,仍需进一步的研究。
     植物病原细菌与寄主互作的一个重要方面是病原菌在植物组织内获取营养的能力。碳水化合物的获取对于病原菌在寄主植物中生长繁殖、成功建立营养寄生关系至关重要。尽管代谢途径一般不认为是毒性因子,但是阐述碳水化合物获取与代谢的详细机制对于全面理解X. oryzae pv. oryzicola的寄生性和致病性具有重要科学意义。
     果糖-1,6-二磷酸醛缩酶(FbaB),是有机生物体糖酵解和糖异生途径中的一个重要代谢酶。X. oryzae pv. oryzicola基因组中唯一的fbaB基因突变,不仅导致病原菌丧失利用丙酮酸和苹果酸进行生长的能力,也延缓其利用果糖作为唯一碳源时的生长;而且也降低了胞外多糖(EPS)的产量及降低了细菌在水稻上毒性和生长。经序列分析发现fbaB启动子区含有一个不完全的PIP-box (Plant-inducible promoter, TTCGT-N9-TTCGT)。有意义的是,fbaB的表达受hrp调控子HrpG和HrpX的负调控,且PIP-box碱基置换改变了它们对fbaB的调控。Real-time PCR结果显示,RS105菌株中的fbaB在植物中是受诱导表达的;而且fbaB缺失抑制了hrpG和hrpX的表达,hrcC、hrpE和hpa3的转录反而增强,对其余的hrp-hrc-hpa基因表达没有影响。而碳源利用能力测定揭示,hrcC、hrpE和hpa3突变体相应减弱了病原菌利用丙酮酸和苹果酸的能力。另外,fbaB突变体在植物上的毒性和生长以及EPS的产量,功能互补能够完全恢复至野生型水平。这是第一次报道表明,X. oryzae pv. oryzicola吸收的碳水化合物在fbaB基因位点通过一个未知因子在调节hrp基因的表达上扮演着重要作用。
     另外,对X. oryzae pv. oryzicola全基因组搜索发现了两个编码6-磷酸葡萄糖脱氢酶的基因,催化6-磷酸葡萄糖转化成6-磷酸葡萄糖酸,在2-酮-3-脱氧-6-磷酸葡糖酸裂解途径(ED途径)与磷酸戊糖途径中发挥着重要作用。为了明确这两个基因的功能,本研究对X. oryzae pv. oryzicola中起主导作用的zwf(Xoryp_12765)基因进行了缺失突变。结果显示,zwf突变后,病原菌利用葡萄糖、果糖、蔗糖、甘露糖和半乳糖的能力显著降低,但不影响其利用丙酮酸或苹果酸的能力。这表明,zwf突变可能阻碍了磷酸戊糖途径和ED途径,但不影响糖异生途径。同时也发现zwf是受诱导表达的,相对于无糖条件下的,葡萄糖、蔗糖、果糖、甘露糖及半乳糖均显著增强zwf的转录水平达3倍以上。有趣的是,zwf突变导致DSF信号通路关键基因如rpfF、rpfG、clp基因的转录表达发生改变,这暗示,zwf可能参与对DSF下游某些毒性因子的调控。此外,zwf突变,X. oryzae pv. oryzicola胞外蛋白水解酶活性增强,胞外多糖的产量降低、游动性及水稻上的毒性减弱。经功能互补能够完全恢复至野生型水平。这些结果说明,zwf是X. oryzae pv. oryzicola全毒性所需的。
     6-磷酸葡萄糖异构酶在碳水化合物代谢中具有重要作用,可逆的催化6-磷酸葡萄糖转化成6-磷酸果糖。Xoryp_10540(pgi)是X. oryzae pv. oryzicola全基因组中6-磷酸葡糖异构酶唯一编码基因。实验表明,pgi突变致使病原菌不能有效利用果糖、蔗糖、甘露糖、丙酮酸,但是不影响其在葡萄糖或半乳糖作为唯一碳源的培养基上生长。值得一提的是,pgi突变导致DSF信号通路关键基因rpfF、rpfG、clp基因的转录表达发生显著改变。DSF信号检测显示,pgi突变体产生的DSF信号较野生型RS105水平明显减弱。这些结果提示,pgi突变可能对DSF信号调控网络下游基因的表达有一定的影响。同样地,pgi突变降低了病原菌的胞外多糖(EPS)的产量、游动性,并减弱病原菌在水稻上的毒性。功能互补能够完全恢复至野生型水平。这些结果说明,pgi是X. oryzae pv. oryzicola EPS产生和全毒性所需的。
     水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)是水稻黄单胞菌(Xanthomonas oryzae)种下另一致病变种,通过T3SS将各类效应蛋白注入寄主植物细胞内,引起水稻白叶枯病(bacterial blight, BB),是水稻上三大病害之一。病原菌通过叶尖和叶缘上的水孔侵入水稻叶片,定殖于维管束中并在木质部进行传播。依据本实验室基因芯片数据,筛选获得一个参与X. oryzae pv. oryzae能量代谢的基因,PXO03531(ketoglutarate transport protein, kgtP)。该基因在hrpX或hrpG突变体中的表达显著下调。分析发现,kgtP启动子区存在一个不完全的PIP-box (TTCGA-N21-TTCGC),且其编码产物KgtP的N端前50个氨基酸具有典型的Ⅲ型分泌信号。这提示,X. oryzae pv. oryzae kgtP可能是HrpX的调节子及T3SS效应分子。RT-PCR实验证实,HrpX和HrpG正调控kgtP的表达。免疫杂交结果显示,KgtP依赖T3SS,但不依赖于T3S出口控制蛋白HpaB进行分泌。细胞定位结果显示KgtP定位在细胞膜上,推测其结合到植物细胞膜上从而有利于从植物体内获取α-酮戊二酸。kgtP缺失突变,减弱了病原菌在植物上的生长与毒性,且细菌不能在含有α-酮戊二酸或琥珀酸钠为唯一碳源的基本培养基上生长,功能互补能有效恢复至野生型水平。RT-PCR结果显示,X. oryzae pv. oryzae在加入α-酮戊二酸为唯一碳源的基本培养基或与水稻悬浮细胞互作,kgtP的表达受到显著诱导,表明kgtP是受诱导表达的。有趣的是,kgtP缺失突变可以导致水稻上合成α-酮戊二酸的异柠檬酸脱氢酶基因表达明显下降。据此推测,在腐生状态下,X. oryzae pv. oryzae借助KgtP把体外的α-酮戊二酸转运至细胞内;当与水稻细胞互作时,则在HrpX调控下进行表达,通过T3SS进行分泌,结合在寄主细胞膜上,并把寄主细胞内的α-酮戊二酸转运至细菌细胞内以获得营养。
Xanthomonas oryzae pv. oryzicola (Xoc) is one of two pathovars in Xanthomonas oryzae, causing serious bacterial leaf streak (BLS) in rice which becomes the fourth destructive rice diseases recently in China. The pathogen enters through leaf stomata or wounds and colonizes the parenchyma apoplast, causing interveinal lesions that appear as water soaked initially and then develop into translucent, yellow-to-white streaks. As the susceptible hybrid rice grows in large scale and particularly there is no simply inherited gene for resistance to the disease, rice production encounters a serious threat of security. In recent years, a number of pathogenicity-related genes, such as hrp, avr, rpf and other candidate virulence genes, have been discovered in X. oryzae pv. oryzicola, suggesting that genome-widely identification of virulence genes is necessary for fully understanding the bacterial pathogenicity and for developing biotechnology to control the disease.
     Currently, it is accepted that construction of a Tn5-tagged mutant library is an effective approach to mine pathogenicity-related genes at functional genomic level in various plant pathogens. Therefore, to genome-widely mine pathogenesis-related genes of X. oryzae pv. oryzicola, a Tn5transposon-mediated mutation library was generated using the wild-type RS105as a recipient in this study. Twenty-five thousand transformants were produced by inserting the Tn5transposon, appropriately corresponding to5×ORF coverage of the genome. Southern Blot analysis suggested that Tn5-mediated mutant library is stable and random. Each transformant of the library is inoculated into susceptible host rice (cv. Shanyou63) to screen candidate virulence genes. Totally, in comparison to the wild-type, there were1,753mutants with virulence reduced or lost after the first screening. In order to accurately confirm the phenotypes achieved, we re-inoculated those mutants into rice seedlings. After the second screening,114mutants were obtained with virulence reduced or lost compared to the wild-type. Of those, there were14mutants completely losing pathogenicity in rice. Finishing the virulence assay in rice, we then injected114mutants into tobacco (cv. Xanthi) for HR induction assay. There were23 mutants with the ability of HR induction reduced or lost, compared to the wild-type RS105. Of these, there were15mutants completely losing the ability to trigger HR in tobacco. The mutants identified above may provide a basis for analysis of pathogenesis-related genes in X. oryzae pv. oryzicola.
     In order to rapidly and accurately identify Tn5insertion positions of corresponding genes in each mutants of this library, thermal asymmetric interlaced PCR (TAIL-PCR) was adopted to isolate Tn5-tagged genes of114mutants. The results suggest that random insertions of Tn5targets set at a large number of genes associated with the pathogenicity, including hrp, avr, rpf, wxoc, metabolism-related genes, genes encoding conserved hypothetical proteins, and other known or unknown virulence factors. Novel pathogenicity-related genes were revealed that they play important roles in pathogenesis of X. oryzae pv. oryzicola in rice at molecular level.
     Identification of key virulence genes/factors is prerequisite for understanding pathogenesis of X. oryzae pv. oryzicola in rice. Therefor,27Tn5insertional mutants that either completely lost pathogenicity or reduced virulence in rice were thorough analysed. Specifically,14mutants completely lost pathogenicity in rice and the ability to trigger HR in tobacco (classified as Pth-/HR-) and13reduced the full virulence in rice but kept HR induction in tobacco (Vir-/HR+). Sequencing analysis of the Tn5-tagged genes indicated that these14Pth-/HR-mutants include hrcC (2mutants), hrcT, hrcV (4mutants), hpaP, hrcQ (2mutants), hrpF, hrpG and hrpX (2mutants) genes. The13Vir-/HR+mutants include tal-C10c-like (encodes a TAL effector), rpfC (a regulator of pathogenicity factors), oxyP (an oxidative stress transcriptional regulator), dsbC (a disulfide isomerase), opgH (a glucans biosynthesis glucosyltransferase H), rfbA (a glucose-1-phosphate thymidylyltranssferase), amtR (an aminotransferase), purF (an amidophosphoribosyl-transferase), thrC (a threonine synthase), trpA (a tryptophan synthase alpha subunit), as well as3hypothetical protein coding genes Xoryp_02235, Xoryp_00885and Xoryp_22910. Together, these27Tn5insertions are located in21different open reading frames (ORFs). Reduced virulence by the thirteen mutants above was complemented to the wild-type level in trans by the present of the corresponding wild-type genes above. These results suggested that amtR, purF, thrC, trpA, Xoryp_02235, Xoryp_00885and Xoryp_22910are novel virulence genes involved in X. oryzae pv. oryzicola pathogenesis in rice. Real-time PCR demonstrated that the seven novel virulence genes were significantly (P=0.01, t test) induced in planta, although their precise functions during X. oryzae pv. oryzicola pathogenesis await further investigation.
     One important aspect of interactions between plant pathogens and their hosts is the ability of the pathogen to obtain nutrients within the plant tissue. The ability to acquire carbohydrate is essential for a pathogen to propagate and establish an infection relationship in host plant successfully. Although metabolic pathways are generally not considered to be virulence factors, elucidation of the mechanism to acquire and metabolize carbohydrates is critically important for fully understanding the pathogenicity of X. oryzae pv. oryzicola.
     Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of X. oryzae pv. oryzicola, led the pathogen not only to be unable to use pyruvate and malate for growth and delay its growth when fructose was used as the sole carbon source, but also to reduce extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter)(TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, real-time PCR suggested that the expression of fbaB in X. oryzae pv. oryzicola RS105strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in R△fbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator.
     In addition, two genes encoding glucose6-phosphate dehydrogenase, which catalyzes glucose6-phosphate into gluconate6-phosphate and plays an important role in Entner-Doudoroff pathway (ED pathway) and pentose phosphate pathway, were identified from the mutant library of X. oryzae pv. oryzicola. In order to clarify the functions of these two genes, we took zwf (Xoryp_12765) as our target since it is reported that it plays a dominant role in the pathways above in Xanthomonas species. The deletion mutation in zwf of X. oryzae pv. oryzicola could significantly reduce the ability of pathogen to use glucose, fructose, sucrose, mannose and galactose for growth other than pyruvate and malate. These suggest that the zwf mutation may hinder the pentose phosphate pathway and ED pathway instead of glycolysis. Simultaneously, the expression of zwf was strongly induced by glucose, sucrose, fructose, mannose and galactose at least3times higher than that by the medium without sugar. Interestingly, The mutagenesis in this unique zwf gene of X. oryzae pv. oryzicola also led the alteration in the expression of key genes in DSF signaling pathway, such as rpfF, rpfG and clp, suggesting that zwf may be involved in regulation of virulence factors in the downstream of DSF signaling. In addition, the deletion mutation in zwf resulted in impairment of bacterial virulence in planta, and reduction of motility and extracellular polysaccharide (EPS), but enhanced the activity of extracellular protease. Bacterial virulence and motility and EPS production in RAzwf mutant were completely restored to the wild-type level by the presence of zwf in trans. All these results indicate that zwf is required for the full virulence of X. oryzae pv. oryzicola in rice.
     Glucose6-phosphate isomerase, reversibly converting glucose6-phosphate to fructose6-phosphate, plays an important role in carbohydrate metabolism. There is only one Xoryp_10540(pgi) gene, encoding6-phosphate glucose isomerase, in the genome of X. oryzae pv. oryzicola. The mutagenesis in pgi led the pathogen unable to use fructose, sucrose, mannose and pyruvate for growth effectively, but did not affect its growth when glucose or galactose as the sole carbon source. It is worth mentioning that the mutation in pgi also resulted in alteration of key genes in DSF signaling pathway, such as rpfF, rpfG and clp. Furthermore, detection of DSF signal showed the mutant significantly reduced DSF production compared to the wild-type RS105. These results indicated that, the mutation in pgi may have impacts on the downstream of DSF signal regulatory. Similarly, the deletion in pgi not only impaired bacterial virulence in planta, but also reduced bacterial motility and EPS production. Bacterial virulence and motility and EPS production in RApgi mutant were completely restored to the wild-type level by the presence of pgi in trans. All these results indicate that pgi is essential for EPS production and full virulence of X. oryzae pv. oryzicola.
     Xanthomonas oryzae pv. oryzae (Xoo) is another pathovar of Xanthomonas oryzae that also possesses a type-Ⅲ secretion system (T3SS) to deliver repertoires of T3SS effectors into plant cell to cause serious bacterial blight (BB) in rice. The pathogen invades rice leaves through hydathode openings on leaf tip and leaf margin, and then colonizes the vascular tissues by propagating in the xylem. Based on microarray data in our laboratory, an energy metabolism related-gene, PXO_03531(ketoglutarate transport protein, kgtP), in X. oryzae pv. oryzae was found that it was remarkably downregulated in hrpX or hrpG mutant. Bioinformatic analysis revealed that there is an imperfect PIP-box (TTCGA-N21-TTCGC) in the promoter region of kgtP and the first50amino acids of N-terminal in KgtP possesses a typical T3SS signal. All the above indicated that kgtP may be a HrpX regulon and a T3SS effector in X. oryzae pv. oryzae. RT-PCR assay demonstrated that the kgtP expression was positively regulated by the HrpX and HrpG cassette. Southern Blot assay indicated that the KgtP was secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99A strain. Subcellular localization showed that KgtP could be located into plant cell membrane, suggesting that it binds to plant cell membrane to transport a-ketoglutarate from plant cells into bacterial cells. The deletion mutation in kgtP reduced not only bacterial virulence and growth in planta, but also the growth in a minimal medium without a-ketoglutaric acid or sodium succinate. The reduced virulence and the impairment of a-ketoglutaric acid utilization in the kgtP mutant were restored to the wild-type levels by the presence of kgtP in trans. The kgtP expression was strongly induced when the pathogen either grew in the minimal medium supplemented with a-ketoglutaric acid or interacted with rice cells, suggesting the expression of kgtp is induced. Importantly, the expression of OsIDH, which is responsible for the synthesis of a-ketoglutaric acid in rice, was enhanced when kgtP presents in the pathogen. Taken together, we hypothesize that KgtP transports a-ketoglutaric acid to X. oryzae pv. oryzae from outside substrates for saprophytic growth and from rice cells for parasitism.
引文
1. Adhikari T B, Mew T W. Pathogenic variability in Xanthomonas oryzae pv. oryzicola [J]. IRRN, 1985,10(1):16.
    2. Ahmer B M, Van Reeuwijk J, Watson P R, Wallis T S, Heffron F. Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol,1999,31:971-982.
    3. Aldon D, Brito B, Boucher C, Genin S. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J,2000,19: 2304-2314.
    4. Alfano J R, Collmer A. The type Ⅲ(hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. JBacteriol,1997,179:5655-5662.
    5. Alfano J R, Collmer A. Type III secretion system effector proteins:double agents in bacterial disease and plant defense. Annu Rev Phytopathol,2004,42:385-414.
    6. Altier C. Genetic and environmental control of Salmonella invasion. J Microbiol,2005,43:85-92.
    7. Alvarez A M. Black rot of crucifers. In Mechanisms of Resistance to Plant Diseases, p21-52. Edited by Slusarenko A J, Fraser R S S, van Loon L C. Dordrecht:Kluwer Academic Publications.2000.
    8. Andro T, Chambost J P, et al. Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase.J Bacteriol,1984,160:1199-1203.
    9. Ankenbauer R G, Nester E W. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes:structural specificity and activities of monosaccharides. JBacteriol,1990,172:6442-6446.
    10. Aravind L, Koonin E V. The HD domain defines a new super family of metal-dependent phosphohydrolases. Trends Biochem Sci,1998,23:469-472.
    11. Arlat M, Gough C L, Zischek P, et al. Transcriptional organization and expression of the large hrp gene cluster of Pseudomonas solanacearum. Mol Plant-Microbe Interact,1992,5:187-193.
    12. Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature,2002,415(6875): 977-983.
    13. Aslam S N, Newman M A, Erbs G, et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol,2008,18:1078-1083.
    14. Awoderu V A, Bangura N, John V T. Incidence, distribution and severity of bacterial diseases on rice in West Africa. Trop Pest Manag,1991,37:113-117.
    15. Ayliffe M A, Lagudah E S. Molecular Genetics of Disease Resistance in Cereals. Annals of Botany, 2004,94:765-773.
    16. Bajaj V, Hwang C, Lee C A. hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol,1995,18:715-727.
    17. Baker C J, Orlandi E W. Active oxygen in plant pathogenesis. Annu Rev Phytopathol,1995,33: 299-321.
    18. Barber C E, Tang J L, Feng J X, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Molecular Microbiology,1997,24:555-566.
    19. Beloin C, Dorman C J. An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol Microbiol,2003,47:825-838.
    20. Bender C L, Alarcon-Chaidez F, Gross D C. Pseudomonas syringae phytotoxins:mode of action, Regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev,1999, 63:266-292.
    21. Bergmeyer H U, Bernt E. Glutamate-pyruvate transaminase UV assay. Methods of enzymatic analysis,1974,2:752-758.
    22. Bergmeyer H U, Bernt E. Lactate dehydrogenase colorimetric assay with L lactate, NAD, phenazine methosulphate and INT. Methods of enzymatic analysis,1974,2:579-582.
    23. Bergmeyer H U, Bernt E. Lactate dehydrogenase UV assay with pyruvate and NADH. Methods of enzymatic analysis,1974,2:574-579.
    24. Bernard T, Jebbar M, Rassouli Y, et al. Ectoine accumulation and osmotic regulation in Brevibacterium linens. J Gen Microbiol,1993,139:129-136.
    25. Bhriain N N, Brown N L, Lund P A.1989. Mercury resistance in bacteria. In Hopwood D A and Chater K F (eds) Genetics of Bacterial Diversity. Academic Press New York,1989, p176-195.
    26. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N, Vasse J, Lauber E, Arlat M. Plant carbohydrate scavenging through TonB-dependent receptors:a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2,2007, e224.
    27. Bockelmann W, Hoppe-Seyler T. The surface flora of bacterial smear-ripened cheeses from cow's and goat's milk. Int J Food Microbiol,2001,11:307-314.
    28. Bogdanove A J, Kim J F, Wei Z, Kolchinsky P, Charkowski A O, Conlin A K, Collmer A, Beer S V. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci USA,1998,95(3):1325-1330.
    29. Bogdanove A J, Koebnik R, Lu H, Furutani A, Angiuoli S V, Patil P B, Van Sluys M A, Ryan R P, Meyer D F, Han S W, Aparna G, Rajaram M, Delcher A L, Phillippy A M, Puiu D, Schatz M C, Shumway M, Sommer D D, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee S W, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz C M, Dorman K S, Ronald P C, Verdier V, Dow J M, Sonti R V, Tsuge S, Brendel V, Rabinowicz P D, Leach J E, White F F, Salzberg S L. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol,2011.
    30. Bogs J, Geider K. Molecular Analysis of Sucrose Metabolism of Ewinia amylovora and influence on Bacterial Virulence. JBacteriol,2000,182:5351-5358.
    31. Boller T, Felix G. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol,2009,60:379-406.
    32. Boller T, He S Y. Innate immunity in plants:an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science,2009,324:742-744.
    33. Bonas U, Fenselau S, Horns T, Mric C, Moussian B, Pierre M, Wengelnik K, den Aekerveken V. hrpX and avirulence gene of Xanthomonas campestris pv. vesicatoria controlling the interaction with pepper and tomato. Advances in molecular genetics of plant-microbe interactions,1994,3: 58-64.
    34. Boon C, Deng Y, Wang L H, et al. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. The ISME Journal,2008,2:27-36.
    35. Boucher C A, Gijsegem F V, Barberis P A, Arlat M, Zischek C. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J Bacteriol, 1987,169:5626-5632.
    36. Bradbury J F. Genus II. Xanthomonas Dowson. In:Bergey's Manual of Systematic Bacteriology (Krieg N R and Holt J G eds), p199-210. Baltimore:Williams & Wilkins.1984.
    37. Brito B, Aldon D, Barberis P, Boucher C, Genin S. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol Plant-Microbe Interact,2002,15:109-119.
    38. Burkovski A. Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives:an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Rev,2003, 27:617-628.
    39. Buttner D, Bonas U. Getting across-bacterial type Ⅲ effector proteins on their way to the plant cell. EMBO J,2002b,21:5313-5322.
    40. Biittner D, Bonas U. Port of entry-the type Ⅲ secretion translocon. Trends in Microbiology,2002a, 10:186-192.
    41. Buttner D, Bonas U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev,2010,34(2):107-133.
    42. Buttner D, Bonas U. Who comes first? How plant pathogenic bacteria orchestrate type Ⅲ secretion. Current Opinion in Microbiology,2006,9:1-8.
    43. Buttner D, He S Y. Type Ⅲ protein secretion in plant pathogenic bacteria. Plant Physiol,2009,150: 1656-1664.
    44. Buttner D, Nennstiel D, Klusener B, Bonus U. Functional analysis of HrpF, a putative type Ⅲ translocon protein from X. campestris pv. vesicatoria. JBacteriol,2002,184:2389-2398.
    45. Buttner D, Noel L, Stuttmann J, Bonas U. Characterization of the Nonconserved hpaB-hrpF Region in the hrp Pathogenicity Island from Xanthomonas campestris pv. vesicatoria. Mol Plant-Microbe Interact,2007,20 (9):1063-1074.
    46. Calhoun M W, Thomas J W, Gennis R B. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci,1994,19:325-330.
    47. Chang W H, Lee M C, Yang M T, Tseng Y H. Expression of heat-shock genes groESL in Xanthomonas campestris is upregulated by CLP in an indirect manner. FEMS Microbiol Lett,2005, 243:365-372.
    48. Chao N X, Wei K, Chen Q, Meng Q L, Tang D J, He Y Q, Lu G T, Jiang B L, Liang X X, Feng J X, Chen B, Tang J L. The rsmA-like gene rsmA (Xcc) of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis. Mol Plant-Microbe Interact,2008,21 (4):411-423.
    49. Chatterjee S, Wistrom C, Lindow S E. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proceeding of the National Academy Science of USA, 2008,105:2670-2675.
    50. Chen G Y, Zou L F, Wu X M, Li Y R, Wang J S. avr/pthl3 gene of Xanthomonas oryzae pv. oryzicola, a novel virulence member of AvrBs3/PthA family, strengthening virulence of Xanthomonas oryzae pv. oryzae on rice. Chin J Rice Sci,2005,19:291-296.
    51. Cheng K J, Ingram J M, Costerton J W. Release of alkaline phosphatase from cells of Pseudomonas aeruginosa by manipulation of cation concentration and of pH. Bacteriol,1970,104:748-753.
    52. Chisholm S T, Coaker G, Day B, Staskawicz B J. Host-microbe interactions:shaping the evolution of the plant immune response. Cell,2006,124:803-814.
    53. Cho H J, Park Y J, Noh T H, Kim Y T, Kim J G, Song E S, Lee D H, Lee B M. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859. Micobial Pathogenesis,2008,44:473-483.
    54. Christman M F, Storz G, Ames B N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci,1989,86:3484-3488.
    55. Chu C C. The N6 medium and its application to anther culture of cereal crops. In Proc. Symp. On Plant Tissue Culture. Science Press Bejing China,1978, Pages:43-50.
    56. Cirillo D M, Valdivia R H, Monack D M, Falkow S. Macrophage-dependent induction of the Salmonella pathogenicity island type Ⅲ secretion system and its role in intracellular survival. Mol Microbiol,1998,30:175-188.
    57. Cogez V, Talaga P, Lemoine J, Bohin J P. Osmoregulated periplasmic glucans of Erwinia chrysanthemi. JBacteriol,2001,183:3127-3133.
    58. Cove J H, Holland K T. The vitamin requirements of staphylococci isolated from human skin. J Appl Bacteriol,1990,49:29-37.
    59. Cross S E, Kreth J, Zhu L, Sullivan R, Shi W, Qi F, Gimzewski J K. Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions. Microbiology,2007,153:3124-3132.
    60. Csonka L N. Physiology and genetic responses of bacteria to osmotic stress. Microbiol Rev,1989, 53:121-147.
    61. Cunnac S, Boucher C, Genin S. Characterization of the cisacting regulatory element controlling HrpB-mediated activation of the type Ⅲ secretion system and effector genes in Ralstonia solanacearum. JBacteriol,2004,186:2309-2318.
    62. da Silva A C, Ferro J A, Reinach F C, Farah C S, Furlan L R, Quaggio R B, Monteiro-Vitorello C B, Van Sluys M A, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature,2002,417:459-463.
    63. Dai LY, Liu X L, Xiao Y H, Wang G L. Recent advances in cloning and characterization of disease resistance genes in rice. Journal oflntegrative Plant Biology,2007,49(1):112-119.
    64. Dar G H, Anand R C, Sharma P K. Genetically engineered microorganisms to rescue plants from frost injury. Adv Biochem Eng Biotechnol,1993,50:1-19.
    65. Das A, Rangaraj N, Sonti R V. Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. Mol Plant-Microbe Interact, 2009,22:73-85.
    66. Davies S J, Golby P, Omrani D, Guest J R, Kelly D J, Andrews S C. Inactivation and regulation of the aerobic C4-dicarboxylate transport (dctA) gene of Escherichia coli. J Bacteriol,1999,181: 5624-5635.
    67. De Crecy-Lagard V, Glaser P, Lejeune P, Sismeiro, Barber C E, Daniels M J, Danehin A. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenieity.J Bacteriol,1990,172:5877-5883.
    68. Dean R A, Timberlake W E. Production of cell wall-degrading enzymes by Aspergillus nidulans:a model system for fungal pathogenesis of plants. Plant Cell,1989,3:265-273.
    69. Denny T P. Involvement of bacterial polysaccharides in plant pathogenesis. Annu Rev Phytopathol, 1995,33:173-197.
    70. Dharmapuri S, Sonti R V. A transposon insertion in the gumG homologue of Xanthomonas oryzae pv. oryzae causes loss of extracellular polysaccharide production and virulence. FEMS Microbiol Lett,1999,179:53-59.
    71. Dow J M, Crossman L, Findlay K, He Y Q, Feng J X, Tang J L. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA,2003,100:10995-11000.
    72. Dow J M, Osbourn A E, Wilson T J, Daniels M J. A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol Plant Microbe In, 1995,8:768-777.
    73. Dussurget O. New insights into determinants of Listeria monocytogenes virulence. Int Rev Cell Mol Biol,2008,270:1-38.
    74. Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol,2010,8:401-412.
    75. Ellermeier J R, Slauch J M. Adaptation to the host environment:regulation of the SPI1 type Ⅲ secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol,2007,10: 24-29.
    76. Engelke T H, Jagadish M N, Puhler A. Biochemical and genetic analysis of Rhizobium meliloti mutants defective in C4-dicarboxylate transport. J Gen Microbiol,1987,133:3019-3029.
    77. Falkow S. Perspectives series:host/pathogen interactions. Invasion and intracellular sorting of bacteria:searching for bacterial genes expressed during host/pathogen interactions. J Clin Invest, 1997,100:239-243.
    78. Famelart M H, Bouillanne C, Kobilinsky A, et al. Studies on Brevibacterium linens metabolism in a fermentor. Appl Microbiol Biotechnol,1987,26:378-382.
    79. Famelart M H, Kobilinsky A, Bouillanne C, et al. Influence of temperature, pH and dissolved oxygen on growth of Brevibacterium linens in a fermentor. Appl Microbiol Biotechnol,1987,25: 442-448.
    80. Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kernmerling B, krzymowsk M, Nurnberger T. NPP1, a phytophthora-associated trigger of plant defense in parsiey and Arabiddopsis. Plant,2002,32:375-390.
    81. Feng J X, Song Z Z, Duan C J, Zhao S.Wu Y Q,Wang C, Dow J M, Tang J L. The H-NS-like protein-encoding gene xrvA of Xanthomonas oryzae pv. oryzae regulates virulence in rice. Microbiology,2009,155:3033-3044.
    82. Fenselau S, Bonas U. Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. Mol-Plant Microbe Interact,1995,8: 845-854.
    83. Feurer C, Vallaeys T, Corrieu G, Winger F. Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a French soft, red-smear cheese? J Dairy Sci, 2004,87:3189-3197.
    84. Finan T M, Oresnik I, Bottacin A. Mutants of Rhizobium meliloti defective in succinate metabolism. JBacteriol,1998,170:3396-3403.
    85. Fouhy Y, Scanlon K, Schouest K, et al. Diffusible signal factor dependent cell-cell signaling and virulence in the Nosocomial pathogen Stenotrophomonas maltophilia. Journal of Bacteriology, 2007,189:4964-4968.
    86. Foulongne V, Bourg G, Cazevieille C. Michaux-Charachon S, O'Callaghan D. Identification of Brucella suis Genes Affecting Intracellular Survival in an In Vitro Human Macrophage Infection Model by Signature-Tagged Transposon Mutagenesis Infect. Immun,2000,68:1297-1303.
    87. Frank D W. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol,1997,26: 621-629.
    88. Frings E, Kunte H J, Galinsky E A. Compatible solutes in .representatives of the genera Brevibacterium and Corynebacterium:occurrence of tetrahydropyrimidines and glutamine. FEMS Microbiol Lett,1993,109:25-32.
    89. Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S. Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a-10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett, 2006,259:133-141.
    90. Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S. Identification of novel type Ⅲ secretion effectors in Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact, 2009,22:96-106.
    91. Furutani A, Tsuge S, Ohnishi K, Hikichi Y, Oku T, Tsuno K, Inoue Y, Ochiai H, Kaku H, Kubo Y. Evidence for HrpXo dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae. JBacteriol,2004,186:1374-1380.
    92. Galan J E, Collmer A. Type III secretion machines:bacterial devices for protein delivery into host cells. Science,1999,284:1322-1328.
    93. Galperin M Y. A census of membrane-bound and intracellular signal transduction proteins in bacteria:bacterial IQ, extroverts and introverts. BMC Microbiol,2005,5:35.
    94. Gaudriault S, Malandrin L, Paulin J P, Barny M A. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol,1997,26(5):1057-1069.
    95. Gavrish E Y, Krauzova V I, Potekhina N V, et al. Three new species of brevibacteria, Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov. and Brevibacterium permense sp. nov. Microbiology,2005,73:176-183.
    96. Glenn A R, Poole P S, Hudman J F. Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum. J Gen Microbiol,1998,119:267-271.
    97. Golby P, Kelly D J, Guest J R, Andrews S C. Transcriptional regulation and organization of the dcuA and dcuB genes encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli. J Bacteriol,1998,180:6586-6596.
    98. Goncalves L R, Soares M R, Nogueira F C, Garcia C, Camisasca D R, Domont G, Feitosa A C, Pereira D A, Zingali R B, Alves G Comparative proteomic analysis of whole saliva from chronic periodontitis patients. J Proteomics,2010,73:1334-1341.
    99. Gorke B, Stulke J. Carbon catabolite repression in bacteria:many ways to make the most out of nutrients. Nat Rev Microbiol,2008,6(8):613-624.
    100. Goryshin I Y, Jendrisak J, Homan L M, Meis R, Rezniko W S. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol,2000,18:97-100.
    101. Gossele F, Cruz C M V, Outryve M F V, Swings J, Ley J D. Differentiation between the bacteria causing bacterial blight (BB), bacterial leaf streak (BLS), and bacterial brown blotch on rice. Int Rice,1985.
    102. Goto M. Resistance of rice varieties and species of wild rice to bacterial leaf streak blight and bacterial leaf streak disease [J]. Philippine Agriculture,1965,48:329-338.
    103. Gottschalk G. Bacterial Metabolism. New York:Springer-Verlag.1986.
    104. Grant M, Mansfield J. Early events in host-patnogen interactions. Curremt Opinion in plant Biology, 1999,2:312-319.
    105. Grassl G A, Finlay B B. Pathogenesis of enteric Salmonella infections. Curr Opin Gastroenterol, 2008,24:22-26.
    106. Gross D C, Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae. Annu Rev PhytoPathol,1991,29:247-278.
    107. Gu K, Yang B, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature,2005,435(7045):1122-1125.
    108. Guo X X, Zou H S, Li Y R, Zou L F, Chen G Y. hrpD6 gene determines Xanthomonas oryzae pv. oryzae to trigger hypersensitive response in tobacco and pathogenicity in rice. Acta Microbiologica Sinica,2010,50:1155-1163.
    109. Guo Y H, Xu Z G, Hu B S, Shen X P, Chen Z Y, Liu Y F. Virulence differentiation of Xanthomonas oryzae pv. oryzicola in Southern region of China. Chinese Journal of Rice Science, 2004,18 (1):83-85. (In Chinese)
    110. Guo Y H, Xu Z G. Current Progress in the Research on Virulence Differentiation of Xanthomonas oryzae pv. oryzicola. Journal ofAnhui Agri Sci,2006,34 (23):6247-6248. (In Chinese)
    111. Ha U H, Wang Y, Jin S. DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect Immun,2003,71:1590-1595.
    112. Hansen-Wester I, Hensel M. Salmonella pathogenicity islands encoding type Ⅲ secretion systems. Microbes Infec,2001,3:549-559.
    113. Hardin G N E, Cleary J M, Cabanas D K, et al. Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in Xanthomonas campestris [J]. J Bacteriol,1987,169: 2854-2861.
    114. Hayward A C. The host of Xanthomonas. In Xanthomonas, p51-54. Edited by Swings J G & Civerolo E L. London:Chapman & Hall.1993.
    115. He S Y, Jin Q. The Hrp Pilus:learning from flagella, Curr Opin Microbiol,2003,6:15-19.
    116. He S Y, Nomura K, Whittam T S. Type Ⅲ protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta,2004,1694 (1-3):181-206.
    117. He S Y. Type Ⅲ protein secretion system in plant and animal pathogenic bacteria. Annu Rev Phytopathol,1998,36:363-392.
    118. He Y W, Boon C, Zhou L, Zhang L H. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR. Mol Microbiol,2009, 71:1464-1476.
    119. He Y W, Ng A Y, Xu M, Lin K, Wang L H, Dong Y H, Zhang L H. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol,2007,64:281-292.
    120. He Y W, Wang C, Zhou L, et al. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain protein interaction. The Journal of Biological Chemistry,2006,281:33414-33421.
    121. He Y W, Xu M, Lin K et al. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris:identification of novel cell-cell communication dependent genes and functions. Mol Microbiol,2006,59:610-622.
    122. He Y W, Zhang L H. Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev,2008,32(5):842-857.
    123. He Y W. Cell-cell communication in Xanthomonas campestris pv. campestris. PhD Thesis, Library of National University of Singapore (http://libpwebl.nus.edu.sg/lion/1/wtheses.html),2006, Singapore.
    124. Hiniker A, Bardwell J C. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem,2004,279:12967-12973.
    125. Hiniker A, Collet J F, Bardwell J C. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem,2005,280:33785-33791.
    126. Hirokazu O, Yasuhiro I, Masaru T. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ, 2005,39 (4):275-287.
    127. Hochster R M, Katznelson H. On the mechanism of glucose-6-phosphate oxidation in cell-free extracts of Xanthomonas phaseoli. Can JBiochem Physiol,1958,36:669-689.
    128. Hochster R M, Katznelson H. On the mechanism of glucose-6-phosphate oxidation in cell-free extracts of Xanthomonas phaseoli (XP8). Can J Biochem Physiol,1958,36:669-689.
    129. Houben E N, et al. Differential expression of a virulence factor in pathogenic and non-pathogenic mycobacteria. Mol Microbiol,2009,72:41-52.
    130. Hsiao Y M, Liao H Y, Lee M C, Yang T C, Tseng Y H. Clp upregulates transcription of engA gene encoding a virulence factor in Xanthomonas campestris by direct binding to the upstream tandem Clp sites. FEBS Lett,2005,579:3525-3533.
    131. Hsiao Y M, Liu Y F, Huang Y L, Lee P Y. Transcriptional analysis of pmeA gene encoding a pectin methylesterase in Xanthomonas campestris pv. campestris. Res Microbiol,2011,162:270-278.
    132. Hsu C H, Lo Y M. Characterization of xanthan gum biosynthesis in a centrifugal, packed-bed reactor using metabolic flux analysis. Process Biochem,2003,38:1617-1625.
    133. Huang D L, Tang D J, Liao Q, Li X Q, He Y Q, Feng J X, Jiang B L, Lu G T, Tang J L. The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Mol Plant-Microbe Interact,2009,22(3): 321-329.
    134. Huang H C, Hutcheson S W, Collmer A. Characterization of the hrp cluster from Pseudomonas syringae pv. syringae and TnphoA tagging of genes encoding exported of membrane spanning Hrp proteins. Mol Plant-Microbe Interact,1991,4:469-476.
    135. Hueck C J. Type Ⅲ protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev,1998,62:379-433.
    136. Hung C H, Wu H C, Tseng Y H. Mutation in the Xanthomonas campestris xanA Gene Required for Synthesis of Xanthan and Lipopolysaccharide Drastically Reduces the Efficiency of Bacteriophage φL7 Adsorption. Biochemical and Biophysical Research Communications,2002,29:338-343.
    137. Huser A, Takahara H, Schmalenbach W, O'Connell R. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant-Microbe Interact,2009,22:143-156.
    138. Ielpi L, Couso O R, Dankert A M. Lipid-Linked Intermediates in the Biosynthesis of Xanthan Gum. FEBSLett,1981(b),130(2):253-256.
    139. Ielpi L, Couso O R, Dankert A M. pyruvic acid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid. Biochem Biophys Res Commun,1981 (a), 102(4):1400-1408.
    140. Ielpi L, Couso R O, Dankert M A. Sequential assembly and polymerization of the prenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol,1993,175:2490-2500.
    141. Ihgarashi K, Ito K, Kashiwagi K. Polyamine uptake systems in Escherichia coli. Res Microbiol,2001,152:271-278.
    142. Inui M, Nakata K, Roh J H, Zahn K, Yukawa H. Molecular and functional characterization of the Rhodopseudomonas palustris No.7 phosphoenolpyruvate carboxykinase gene. J Bacteriol,1999, 181:2689-2696.
    143. Islam M R, Kabir M S, Hirata H, Tsuge S, Tsuyumu S. A leucine-rich protein, LrpX, is a new regulator of hrp genes in Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol,2009,75:66-71.
    144. Jacques M A, Josi K, Darrasse A, et al. Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown beans. Applied and Environmental Microbiology,2005,71:2008-2015.
    145. Janausch I G, Zientz E, Tran Q H, KrOger A, Unden G. C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta,2002,1553:39-56.
    146. Jarman T R, Pace G W. Energy requirements for microbial exopolysaccharide synthesis [J]. Arch Microbiol,1984,137(3):231-235.
    147. Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions:Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J,1987,6:3901-3907.
    148. Ji G H, Xu Z G. Analysis of DNA Polymorphism and Virulence in China Strains of Xanthomonas oryzae pv. oryzicola. Journal of Huazhong Agri,2000,19 (5):430-433. (In Chinese)
    149. Jiang B L, Liu J, Chen L F, Ge Y Y, Hang X H, He Y Q, Tang D J, Lu, G T, Tang J L. DsbB Is Required for the Pathogenesis Process of Xanthomonas campestris pv. campestris. Mol Plant-Microbe Interact,2008,21:1036-1045.
    150. Jiang J, Zou H S, Li Y R, Chen G Y. Expression of the hrcC, hrpE and hpa3 genes is not regulated by the hrpG and hrpX genes in a rice pathogen Xanthomonas oryzae pv. oryzicola. Wei Sheng Wu Xue Bao,2009,49:1018-1025. (In Chinese)
    151. Jin Q L, Thilmony R, Zwiesler-Vollick J, He S Y. Type Ⅲ secretion in Pseudomonas syringae. Microbes Infect,2003,5:301-310.
    152. Jones J D G, Dangl J L. The plant immune system. Nature,2006,444:323-329.
    153. Jones B D. Salmonella invasion gene regulation:a story of environmental awareness. J Microbiol, 2005,43:110-117.
    154. Katagiri F, Thilmony R, He S Y. The Arabidopsis thaliana-Pseudomonas syringae interaction, in: Somerville C R, Meyerowitz E M(Eds.), The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD,2002.
    155. Kim J G, Park B K, Yoo C H, Jeon E, Oh J, Hwang I. Characterization of the Xanthomonas axonopodis pv. glycines Hrp Pathogenicity Island. JBacteriol,2003,185 (10):3155-3166.
    156. Kim S Y, Kim J G, Lee B M, Cho J Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol Lett,2009,31:265-270.
    157. Kim S Y, Lee B M, Cho J Y. Relationship between glucose catabolism and xanthan production in Xanthomonas oryzae pv. oryzae. Biotechnol Lett,2010,32(4):527-531.
    158. Kingsbury J M, McCusker J H. Fungal Homoserine Kinase(thr1△) Mutants Are Attenuated in Virulence and Die Rapidly upon Threonine Starvation and Serum Incubation. Eukaryot Cell,2010, 9:729-737.
    159. Kingsley M T, Gabriel D W, Marlow G C, Roberts P D. The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide. J Bacteriol,1993,175:5839-5850.
    160. Koebnik R, Kruger A, Thieme F, Urban A, Bonas U. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. JBacteriol,2006,188:7652-7660.
    161.Kriechbaumer V, Weigang L, Fiesselmann A, Letzel T, Frey M, Gierl A, Glawischnig E. Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biology,2008,8: 44.
    162. Kullik I, Toledano M B, Tartaglia L A, Storz G. Mutational analysis of the redoxsensitive transcriptional regulator OxyR:regions important for oxidation and transcriptional activation. J Bacteriol,1995,177:1275-1284.
    163. Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol,2002,5(4):325-331.
    164. Laia M L, Moreira L M, Dezajacomo J, Brigati J B, Ferreira C B, Ferro M I, Silva A C, Ferro J A, Oliveira J C. New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library. BMC Microbiol,2009,9:12.
    165. Lapouge K, Schubert M, Allain F H, Haas D. Gac/Rsm signal transduction pathway of gamma-proteobacteria:from RNA recognition to regulation of social behaviour. Mol Microbiol, 2008,67:241-253.
    166. Lasica A M, Jagusztyn-Krynicka E K. The role of Dsb proteins of gram-negative bacteria in the process of pathogenesis. FEMS (Fed Eur Microbiol Soc) Microbiol Rev,2007,31:626-636.
    167. Lawhon S D, Maurer R, Suyemoto M, Altier C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol,2002,46: 1451-1464.
    168. Le Gall T, et al. Analysis of virulence plasmid gene expression defines three classes of effectors in the type Ⅲ secretion system of Shigella flexneri. Microbiology,2005,151:951-962.
    169. Leach J E, White F F, Rhoads M J, Leung H. A repetitive DNA sequence differentiates Xanthomonas campestris pv. oryzae from other pathovar of X. campestris. Mol Plant-Microbe Interact,1990,3:238-246.
    170. Lee B M, Park Y J, Park D S, Kang H W, Kim J G, Song E S, Park IC, Yoon Y H, Hahn J H, Koo B S, Lee G B, Kim H, Park H S, Yoon K O, Kim J H, Jung C H, Koh N H, Seo J S, Go S J. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research,2005,33(2):577-586.
    171. Lee C, Lee S M, Mukhopadhyay P, Kim S J, Lee S C, Ann W S, Yu M H, Storz G, Ryu S E. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path, Nat Struct Mol Biol,2004,11:1179-1185.
    172. Lee M C, Weng S F, Tseng Y H. Flagellin gene fliC of Xanthomonas campestris is upregulated by transcription factor Clp. Biochem Biophys Res Commun,2003,307:647-652.
    173. Lee S W, Jeong K S, Han S W, Lee S E, Phee B K, Hahn T R, Ronald P. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J Bacteriol,2008,190:2183-2197.
    174. Lee Y, Kim Y, Yeom S, Kim S, Park S, Jeon C O, Park W. The role of disulfide bond isomeraseA (DsbA) of Escherichia coli O157:H7 in biofilm formation and virulence. FEMS Microbiol Lett, 2008,278:213-222.
    175.Lerouge I, Vanderleyden J. O-antigen structural variation:Mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev,2002,26:17-47.
    176. Letisse F, Chevallereau P, Simon J L, Lindley N. The influence of metabolic network structures and energy requirements on xanthan gum yields. J Biotechnol,2002,99:307-317.
    177. Letisse F, Chevallereau P, Smon J L, et al. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources [J]. Appl Microbiol Biotechnol,2001,55(4):417-422.
    178. Li Y R, Che Y Z, Zou H S, Cui Y P, Guo W, Zou L F, Biddle E M, Yang C H, Chen G Y. Hpa2 Required by HrpF To Translocate Xanthomonas oryzae Transcriptional Activator-Like Effectors into Rice for Pathogenicity. Appl Environ Microbiol,2011,77:3809-3818.
    179. Li Y R, Zou H S, Che Y Z, Cui Y P, Guo W, Zou L F, Chatterjee S, Biddle E M, Yang C H, Chen G Y. A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola. Mol Plant-Microbe Interact,2011,24:1086-1101.
    180. Li Y R, Zou L F, Wu X M, Yang J, Chen G Y. Current Progress in the Research on avrBs3/pthA Family Genes of Xanthomonas oryzae. Scientia Agricultura Sinica,2007,40 (10):2193-2199. (In Chinese)
    181. Lindeberg M, Myers C R, Collmer A, Schneider D J. Roadmap to new virulence determinants in Pseudomonas syringae:insights from comparative genomics and genome organization. Mol Plant-Microbe Interact,2008,21:685-700.
    182. Lindgren P B, Peet R C, Panopoulos N J. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants. JBacteriol,1986,168: 512-522.
    183. Lindgren P B. The role of hrp Genes during plant-bacterial interactions. Annu Rev Phy topathol, 1997,35:129-152.
    184. Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars:Model pathogens of a model crop. Mol Plant Pathology,2006,7:303-324.
    185. Liu J, Liu X, Dai L, Wang G:Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics 2007,34(9):765-776.
    186. Liu Y G, Huang N. Efficient Amplification of Insert End Sequences from Bacterial Artificial Chromosome Clones by Thermal Asymmetric Interlaced PCR. Plant Molecular Biology Reporter, 1998,16:175-181.
    187. Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995,25:674-681
    188. Lorenz M C, Fink G R. Life and death in a macrophage:role of the glyoxylate cycle in virulence. Eukaryot Cell,2002,1(5):657-662.
    189. Lu G T, Tang Y Q, Li C Y, Li R F, An S Q, Feng J X, He Y Q, Jiang B L, Tang D J, Tang J L. An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence. J Bacteriol,2009,191(11): 3639-3648.
    190. Lu G T, Xie J R, Chen L, Hu J R, An S Q, Su H Z, Feng J X, He Y Q, Jiang B L, Tang D J, Tang J L. Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence. Microbiology,2009,155:1602-1612.
    191. Lu G T, Yang Z J, Peng F Y, Tan Y N, Tang Y Q, Feng J X, Tang D J, He Y Q, Tang J L. The role of glucose kinase in carbohydrate utilization and extracellular polysaccharide production in Xanthomonas campestris pathovar campestris. Microbiology,2007,153:4284-4294.
    192. Lu H, Patil P, Van Sluys M A, White F F, Ryan R P, Dow J M, Rabinowicz P, Salzberg S L, Leach J E, et al. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS ONE,2008,3:e3828.
    193. Maddocks S E, Oyston P C. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology,2008,154:3609-3623.
    194. Mailloux R J, Beriault R, Lemire J, Singh R, Chenier D R, Hamel R D. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS ONE,2007,2:e690.
    195. Makino S, Sugio A, White F, Bogdanove A J. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Mol Plant-Microbe Interact,2006,19:240-249.
    196. Mann S, Ploux O. Pyridoxal-5'-phosphate-dependent enzymes involved in biotin biosynthesis: Structure, reaction mechanism and inhibition. Biochim Biophys Acta,2011.
    197. McCarthy Y, Ryan R P, O'Donovan K, He Y Q, Jiang B L, Feng J X, Tang J L, Dow J M. The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol Plant Pathol,2008,9:819-824.
    198. McGhie E J, Brawn L C, Hume P J, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol,2009,12:117-124.
    199. McKinney J D, H6ner zu Bentrup K, Munoz-Elias E J, Miczak A, Chen B, Chan W T, Swenson D, Sacchettini J C, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature,2000,406(6797):735-738.
    200. Mehrotra J, Bishai W R. Regulation of virulence genes in Mycobacterium tuberculosis. Int J Med Microbiol,2001,291:171-182.
    201. Mellgren E M, Kloek A P, Kunkel B N. Mqo, a tricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv. tomato strain DC3000 on Arabidopsis thaliana. J Bacteriol, 2009,191:3132-3141.
    202. Messens J, Collet J F. Pathways of disulfide bond formation in Escherichia coli. Int J Biochem Cell Biol,2006,38:1050-1062.
    203. Mew T W, Alvarez A M, Leach J E, Swings J. Focus on bacterial blight of rice. Plant Dis,1993,77: 5-12.
    204. Mhedbi-Hajri N, Darrasse A, Pigne S, Durand K, Fouteau S, Barbe V, Manceau C, Lemaire C, Jacques M A. Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads. BMC Evol Biol,2011,11:67.
    205. Miller J H. Experiments in molecular genetics. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.1972.
    206. Minsavage G V, Mudgett M B, Stall R E, Jones J B. Importance of opgHXcv of Xanthomonas campestris pv. vesicatoria in host-parasite interactions. Mol Plant-Microbe Interact,2004,17: 152-161.
    207. Mizukami T, Wakimoto S. Epidemiology and control of bacterial leaf blight of rice. Annu Rev Phytopathol,1969,7:51-72.
    208. Moir J W, Wood N J. Nitrate and nitrite transport in bacteria. Cell Mol Life Sci,2001,58:215-224.
    209. Mole B M, Baltrus D A, Dangl J L, Grant S R. Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol,2007,15(8):363-371.
    210. Montesano M, Brader G, Palva A E. Pathogen derived elicitors:searching for receptors in Plant. Mol Plant Pathol,2003,4(1):73-79.
    211. Morris V L, Jackson D P, Grattan M, et al. Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase. J Bacteriol,1995,177(7):1727-1733.
    212. Moss W P. Interactions of Xanthomonas campestris pv. vesciatoria hrp mutants with the pathogenic parent and the host plant leading to biological control of bacterial spot disease of tomato. PhD Thesis, Auburn University, Auburn, AL. Microbiol,2000,63:429-442.
    213. Mudgett M B. Newinsights in the function of phytopathogenic bacterial type Ⅲ secretion in plants. Annu Rev Plant Biol,2005,56:509-531.
    214. Mukhopadhyay P, Williams J, Mills D. Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae. JBacteriol,1988,170:5479-5488.
    215. Mysore K S, Ryu C M. Nonhost resistance:how much do we know? Trends Plant Sci,2004,9(2): 97-104.
    216. Nam H S, Anderson A J, Yang K Y, Cho B H, Kim Y C. The dctA gene of Pseudomonas chlororaphis 06 is under RpoN control and is required for effective root colonization and induction of systemic resistance. FEMS Microbiol Lett,2006,256:98-104.
    217. Newman M A, Dow J M, Daniels M J. Bacterial lipopolysaccharides and plant-pathogen interactions. Eur J Plant Pathol,2001,107:95-102.
    218. Newman M A, Von Roepenack-Lahaye E, Parr A, Daniels M J, Dow J M. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J,2002, 29:487-495.
    219. NiNo-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars:model pathogens of a model crop. Molecular Plant Pathology,2006,7:303-324.
    220. Noel L, Thieme F, Nennstiel D, Bonas U. cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol,2001, 41:1271-1281.
    221. Noe"l L, Thieme F, Nennstiel D, Bonas U. Two novel type Ⅲ-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol,2002,184: 1340-1348.
    222. Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn Agric Res Q,2005,39:275-287.
    223. Oh M K, Rohlin L, Kao K C, Liao J C. Global expression profiling of acetate-grown Escherichia coli. JBiol Chem,2002,277:13175-13183.
    224. Ojanen T, Helander I M, Haahtela K, Korhonen T K, Laakso T. Outer-membrane proteins and lipopolysaccharides in pathovars of Xanthomonas campestris. Appl Environ Microb,1993,59: 4143-4151.
    225. Oku T, Tanaka K, Iwamoto M, Inoue Y, Ochiai H, Kaku H, Tsuge S, Tsuno K. Structural conservation of the hrp gene cluster in Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol,2004, 70:159-167.
    226. Oku T, Wakasaki Y, Adachi N, Kado C I, Tsuchiya K, Hibi T. Pathogenicity, non-host hypersensitivity and host defence non-permissibility regulatory gene hrpX is highly conserved in Xanthomonas pathovars. JPhytopathol,1998,146:197-200.
    227. Osteras M, Driscoll B T, Finan T M. Increased pyruvate orthophosphate dikinase activity results in an alternative gluconeogenic pathway in Rhizobium (Sinorhizobium) meliloti. Microbiology,1997, 143:1639-1648.
    228. Ottemann K M, Miller J F. Roles for motility in bacterial-host interactions. Mol Microbiol,1997,24: 1109-1117.
    229. Ou S H, Frank G, Merca S P. Varietal resistance to bacterial leaf streak disease of rice in the Philippine [J]. Philippine Agriculture,1970,54(1-2):8-45.
    230. Ou S H. Rice diseases. Commonwealth Agricultural Bureau, Kew, Surrey.1985.
    231. Ou S H. Rice Diseases. Kew, Surrey:Commonwealth Mycological Institute.1972.
    232. Park D H, Mirabella R, Bronstein P A, Preston G M, Haring M A, Lim C K, Collmer A, Schuurink R C. Mutations in y-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant J,2010,64:318-330.
    233. Parsot C. Shigella type Ⅲ secretion effectors:how, where, when, for what purposes? Curr Opin Microbiol,2009,12:110-116.
    234. Pemberton C L, Salmond G P C. The NePl-like Proteins-a growing family of microbial elicitors of Plant necrosis. Mol Plant Pathol,2004,5:353-359.
    235. Poncet S, et al. in Bacterial Sensing and Signaling. Contributions to Microbiology,2009, Vol.16 (eds Collin M & Schuch R) 1-15 (Karger, Basel).
    236. Poole R K, Cook G M. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microbial Physiol,2000,43:163-224.
    237. Prosseda G, et al. A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli. Res Microbiol,1998,149:15-25.
    238. Qian W, Han Z J, Tao J, He C. Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. Mol Plant-Microbe Interact,2008,21:1128-1138.
    239. Qian W, Jia Y, Ren S X, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res,2005,15:757-767.
    240. Qu H, Xin Y, Dong X, Ma Y F. An rmlA gene encoding D-glucose-1-phosphate thymidylyltransferase is essential formycobacterial growth. FEMS Microbiol Lett,2007,275: 237-243.
    241. Qutob D, Kamoun S, Gijzen M. ExPression of a phytoPhthora sojae neerosis-inducing protain occurs during transition from biotroPhy to necrotroPhy. Plant J,2002,32(3):361-373.
    242. Romling U, Gomelsky M, Galperin M Y. C-di-GMP:the dawning of a novel bacterial signaling system. Mol Microbiol,2005,57:629-639.
    243. Rahme L G, Mindrinos M N, Panopoulos N J. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol,1992,174: 3499-3507.
    244. Rajeshwari R, Jha G, Sonti R V. Role of an in planta-expressed xylanase of Xanthomonas oryzae pv. oryzae in promotin virulence on rice. Mol Plant-Microbe Interact,2005,18 (8):830-837.
    245. Ray S K, Rajeshwari R, Sharma Y, Sonti R V. A high-molecular weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol,2002,46:637-647.
    246. Ray S K, Rajeshwari R, Sonti R V. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol Plant-Microbe Interact,2000,13:394-401.
    247. Reid C J, Walshaw D L, Poole P S. Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons. Microbiology,1996,142: 2603-2612.
    248. Reinking O A. PhiliPPine economic Plant disease, PhiliPPine Joumal of Science,1918, AB: 165-274.
    249. Relman D A. Genome-wide responses of a pathogenic bacterium to its host. J Clin Invest,2002, 110:1071-1073.
    250. Reng Q, Ni R. Prevention and Cure for Bacterial Leaf Streak. Anhui Agri Sci Bull,2008,14 (18): 87-97. (In Chinese)
    251. Reverchon S, Expert D, Robert-Baudouy J, Nasser W. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J Bacteriol,1997,179(11):3500-3508.
    252. Ripio M T, Brehln K, Lara M, Suarez M, et al. Glucose-1-Phosphate utilization by Listeria monocytogenes PrfA dependent and coordinately expressed with virulence factors. J Bacteriol, 1997,179:7174-7180.
    253. Romeo T. Global regulation by the small RNA-binding Protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol,1998,29:1321-1330.
    254. Ross P, Aloni Y, Weinbouse H, et al. Control of cellulose biosynthesis in Acetobacter xylinum:a unique quanyl oligonucleotide is the immediate activator of the cellulose synthase. Carbohydrate Res,1986,149:101-117.
    255. Ryan R P, Fouhy Y, Lucey J F, et al. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A,2006 103:6712-6717.
    256. Ryan R P, Fouhy Y, Lucey J F, Jiang B L, He Y Q, Feng J X, Tang J L, Dow J M. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol,2007,63:429-442.
    257. Ryan R P, Vorholter F J, Potnis N, Jones J B, Van Sluys M A, Bogdanove A J, Dow J M. Pathogenomics of Xanthomonas:understanding bacterium-plant interactions. Nat Rev Microbiol, 2011,9(5):344-355.
    258. Salzberg S L, Sommer D D, Schatz M C, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics,2008,9:204-221.
    259. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning:A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U S A.1989.
    260. Santangelo M P, et al. Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in Mycobacterium tuberculosis. Microbiology,2009,155: 2245-2255.
    261. Santangelo M P, et al. Study of the role of Mce3R on the transcription of mce genes of Mycobacterium tuberculosis. BMC Microbiol,2008,8:38.
    262. Say R F, Fuchs G Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature,2010,464:1077-1081.
    263. Scarpari L M, Lambais M R, Silva D S, et al. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro. FEMS Microbiology Letters,2003,222:83-92.
    264. Schell M A, Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol,2000,38:263-292.
    265. Schornack S, Meyer A, et al. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol,2006,163(3):256-272.
    266. Schulte R, Bonas U. A Xanthomonas pathogenicity locus is induced by sucrose and sulfur-containing amino acid. Plant Cell,1992,4:79-86.
    267. Schulte R, Bonas U. Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. J Bacteriol,1992,174:815-823.
    268. Sehmelzer E. Cell polarization, a crucial process in fungal defence. Trends Plant Sci,2002,7(9): 411-415.
    269. Seo Y S, Sriariyanun M, Wang L, Pfeiff J, Phetsom J, Lin Y, Jung K H, Chou H H, Bogdanove A, Roland P. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzsae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes. BMC Microbiol,2008,8:99.
    270. Seol W, Shatkin A J. Escherichia coli alpha-ketoglutarate permease is a constitutively expressed proton symporter. JBiol Chem,1992,267:6409-6413.
    271. Seol W, Shatkin A J. Escherichia coli kgtP encodes an alpha-ketoglutarate transporter. Proc Natl Acad Sci USA,1991,88:3802-3806.
    272. Seol W, Shatkin A J. Membrane topology model of Escherichia coli alpha-ketoglutarate permease by phoA fusion analysis. J Bacteriol,1993,175:565-567.
    273. Shekawat G S, Srivastava D N. Epidemiology of bacterial leaf streak of rice [J]. Annals of Phytopathological Society of Japan,1972,38(1):7-14.
    274. Shelburne S A, Musser J. Virulence gene expression in vivo. Curr Opin Microbiol,2004,7: 283-289.
    275. Shimaoka M, Takenaka Y, Kurahashi O, Kawasaki H, Matsui H. Effect of Amplification of Desensitized purF and prs on Inosine Accumulation in Escherichia coli. J Bacteriol,2007,103: 255-261.
    276. Slater H, Alvarez-Morales A, Barber C E, Daniels M J, Dow J M. A two-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol,2000,38:986-1003.
    277. Solomon P S, Tan K C, Oliver R P. The nutrient supply of pathogenic fungi; a fertile field for study. Mol Plant Pathol,2003,4(3):203-210.
    278. Somerville G A, Said-Salim B, Wiekman J M, et al. Correlation of acetate catabolism and growth yield in Stapylococcus aureus:implications for host-pathogen interactions. Infect Immun,2003,71: 4724-4732.
    279. Sonnleitner E, Hagens S, Rosenau F, et al. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa 01. Microb Pathog,2003,35:217-228.
    280. Soto-Suarez M, Gonzalez C, Piegu B, Tohme J, Verdier V. Genomic comparison between Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, using suppression-subtractive hybridization. FEMS Microbiol Lett,2010,308:16-23.
    281. Staslawicz B J, Mudgett M B, Dangl J L, Galan J E. Common and contrasting themes of plant and animal diseases. Science,2001,292:2285-2289.
    282. Stenson T H, Weiss A A. DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis. Infect Immun,2002,70:2297-2303.
    283. Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction. Ann Rev of Biochem,2000,69:183-215.
    284. Sugio A, Yang B, White F F. Characterization of the hrpF Pathogenicity Peninsula of Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact,2005,18:546-554.
    285. Sun Q H, Wu W, Qian W, Hu J, Fang R X, He C Z. High quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris pv. campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol Lett,2003,226:145-150.
    286. Suvendra K R, Rajeshwari R, Sonti R V. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol Plant-Microbe Interact,2000,13:394-401.
    287. Swings J, Van Den Mooter M, Vauterin L, Hoste B, Gillis M, Mew T W, Kersters K. Reclassification of the causal agents of bacterial blight Xanthomonas campestris pathovar oryzae and bacterial.1990.
    288. Szurek B, Rossier O, et al. Type Ⅲ-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol,2002,46(1):13-23.
    289. Takeuchi Y, Tohbaru M, Sato A. Polysaccharides in primary cell walls of rice cells in suspension culture. Phytochemistry,1994,35:361-363.
    290. Tamir-Ariel D, Navon N, Burdman S. Identification of genes in Xanthomonas campestris pv. vesicatoria induced during its interaction with tomato. JBacteriol,2007,189:6359-6371.
    291. Tamir-Ariel D, Rosenberg T, Burdman S. The Xanthomonas campestris pv. vesicatoria citH gene is expressed early in the infection process of tomato and is positively regulated by the TctDE two-component regulatory system. Mol Plant Pathol,2011,12(1):57-71.
    292. Tang D J, He Y Q, Feng J X, He B R, Jiang B L, Lu G T, Chen B, Tang J L. Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. J Bacteriol,2005,187:6231-6237.
    293. Tang J L, Feng J X, Li Q Q, Wen H X, Zhou D L, Wilson T J, et al. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae involvement in exopolysaccharide production and virulence to rice. Mol Plant-Microbe Interact,1996,9:664-666.
    294. Tang J L, Liu Y N, Barber C E, Dow J M, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellar enzymes and polysaccharide in Xanthomonas campestris pv. campestris. Mol Gen Genet,1991,226:409-417.
    295. Tang X, Lu B F, Pan S Q. A bifunctional transposon mini-Tn5 gfp-km which can be used to select for promoter fusions and report gene expression levels in Agrobacterium tumefaciens. FEMS Microbiol Lett,1999,179:37-42.
    296. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, Caldana, C, Gaigalat L, Goesmann A, Kay S, et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol, 2005,187:7254-7266.
    297. Tian M, Day B. Domain switching and host recognition. Mol Microbiol,2006,61(5):1091-1093.
    298. Timm J, Post F A, Bekker L G, et al. Differtial expression of iron, carbon-, and oxygen-responsibe mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA,2003,100:14321-14326.
    299. Tinsley C R, Voulhoux R, Beretti J L, Tommassen J, Nassif X. Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis:Effects on bacterial growth and biogenesis of functional type IV pili. J Biol Chem,2004,279: 27078-27087.
    300. Toledo M A, Schneider D R, Azzoni A R, Favaro M T, Pelloso A C, Santos C A, Saraiva A M, Souza A P. Characterization of an oxidative stress response regulator, homologous to Escherichia coli OxyR, from the phytopathogen Xylella fastidiosa. Protein Expr Purif,2011,75:204-210.
    301. Torres A G, Kaper J B. Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infect Immun,2003,71:4985-4995.
    302. Torres P S, Malamud F, Rigano L A, Russo D M, Marano M R, Castagnaro A P, Zorreguieta A, Bouarab K, et al. Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol,2007,9:2101-2109.
    303. Tran Van Nhieu G, Bourdet-Sicard R, Dumenil G, Blocker A, Sansonetti P J. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol,2000,2:187-193.
    304. Tsuge S, Furutani A, Fukunaka R, Oku T, Tsuno K, Ochiai H, Inoue Y, Kaku H, Kubo Y. Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium. J Gen Plant Pathol,2002,68:363-371.
    305. Tsuge S, Nakayama T, Terashima S, Ochiai H, Furutani A, Oku T, Tsuno K, Kubo Y, Kaku H. Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae. JBacteriol,2006,188:4158-4162.
    306. Tsuge S, Terashima S, Furutani A, Ochiai H, Oku T, Tsuno K, Kaku H, Kubo Y. Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv. oryzae. JBacteriol,2005,187:2308-2314.
    307. Tung S Y, Kuo T T. Requirement for phosphoglucose isomerase of Xanthomonas campestris in pathogenesis of citrus canker. Appl Environ Microbiol,1999,65(12):5564-5570.
    308. Turner P E. Phenotypic plasticity in bacterial plasmids. Genetics,2004,167:9-20.
    309. Urban A, Leipelt M, Eggert T, Jaeger K E. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. JBacteriol,2001,183:587-596.
    310. Urs J, Jacob M. Mechanisms of Cyclic di-GMP signaling in bacteria. Annu Rev of Genet,2006,40: 385-407.
    311. Van Gijsegem F. In planta regulation of phytopathogenic bacteria virulence genes:Relevance of plant-derived signals. Eur J Plant Pathol,1997,103:291-301.
    312. VandeBroek A, Vanderleyden J. The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions. Mol Plant-Microbe Interact,1995,8:800-810.
    313. Vincent-Sealy L V, Thomas J D, Commander P, Salmond G P. Erwinia carotovora DsbA mutants: Evidence for a periplasmicstress signal transduction system affecting transcription of genes encoding secreted proteins. Microbiology,1999,145:1945-1958.
    314. Viprey V, Del Greco A, Golinowski W, Broughton W J, Perret X. Symbiotic implications of type Ⅲ protein secretion machinery in Rhizobium. Mol Microbiol,1998,28:1381-1389.
    315. Visca P, Leoni L, Wilson M L, lamont I L. Iron transport and regulation, cell signaling and genomics:lessons from Escherichia coli and Pseudomonas. Mol Microbiol,2002,45:1177-1190.
    316. Vojnov A A, Zorreguieta A, Dow J M, Daniels M J, Dankert M A. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology,1998,144:1487-1493.
    317. Vdzquez-Bermudez M F, Herrero A, Flores E. Uptake of 2-oxoglutarate in Synechococcus strains transformed with the Escherichia coli kgtP gene. J Bacteriol,2000,182:211-215.
    318. Wang J S. Molecular Plant Pathology. Scientia Agricultura Press,2001. (In Chinese)
    319. Wang L F, Rong W, He C Z. Two Xanthomonas extracellular polygalacturonases, PghAxc and PghBxc, are regulated by type Ⅲ secretion regulators HrpX and HrpG and are required for virulence. Mol Plant-Microbe Interact,2008,21:555-563.
    320. Wang L H, He Y W, Gao Y F, et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Molecular Microbiology,2004,51:903-912.
    321. Wang L, Makino S, Subedee A, Bogdanove A J. Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Appl Environ Microbiol 73, 2007,73:8023-8027.
    322. Wang Y P, Zou L F, Zhou D, Chen G Y. Key roles of hrpE gene of Xanthomonas oryzae pv. oryzicola in formation of Hrp pilus and pathogenicity in rice. Acta Phytopathologica Sinica,2009, 39:392-398.
    323. Watt T F, Vucur M, Baumgarth B, Watt S A, Niehaus K. Low molecular weight plant extract induces metabolic changes and the secretion of extracellular enzymes, but has a negative effect on the expression of the type-Ⅲ secretion system in Xanthomonas campestris pv. campestris. J Biotechnol,2009,140(1-2):59-67.
    324. Weber E, Koebnik R. Domain Structure of HrpE, the Hrp Pilus Subunit of Xanthomonas campestris pv. vesicatoria. JBacteriol,2005,187:6175-6186.
    325. Wei K, Tang D J, He Y Q. HpaR, A Putative marR Family Transcriptional Regulator, Is Positively Controlled by HrpG and HrpX and Involved in the Pathogenesis, Hypersensitive Response, and Extracellular Protease Production of Xanthomonas campestris Pathovar campestris. J Bacteriol, 2007,189 (5):2055-2062.
    326. Wei Z M, Sneath B J, Beer S V. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol,1992,174:1875-1882.
    327. Wengelnik K, Bonas U. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol,1996,178:3462-3469.
    328. Wengelnik K, Rossier O, Bonas U. Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol,1999,181: 6828-6831.
    329. Wengelnik K, Van den Ackerveken G, Bonas U. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant-Microbe Interact,1996,9:704-712.
    330. White F F, Potnis N, Jones J B, Koebnik R. The type Ⅲ effectors of Xanthomonas. Molecular Plant Pathology,2009,10 (6):749-766.
    331. Whitfield C, Sutherland W I, Cripps R E. Glucose Metabolism in Xanthomonas campestris. Journal of General Microbiology,1982,128:981-985.
    332. Wilson J W, et al. Mechanisms of bacterial pathogenicity. Postgrad Med J,2002,78:216-224.
    333. Winans S C. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol, 1990,172:2433-2438.
    334. Worley M J, Ching K H, Heffron F. Salmonella SsrB activates a global regulon of horizontally acquired genes. Mol Microbiol,2000,36:749-761.
    335. Wren B W. Microbial genome analysis:Insights into virulence, host adaptation and evolution. Nat Rev Genet,2000,1:30-39.
    336. Wu X M, Li Y R, Zou L F, Chen G Y. Gene-for-Gene relationships between rice and diverse avrBs3lpthA avirulence genes in Xanthomonas oryzae pv. oryzae. Plant Pathology,2007,56: 26-34.
    337. Xiao Y L, Li Y R, Liu Z Y, Xiang Y, Chen G Y. Establishment of the hrp-inducing systems for the expression of the hrp genes of Xanthomonas oryzae pv. oryzicola. Acta Microbiologica Sinica, 2007,47 (3):396-401. (In Chinese)
    338. Xiao Y T, Xiao Y M, Zhou J M. Regulation of the Type Ⅲ Secretion System in Phytopathogenic Bacteria. Mol Plant-Microbe Interact,2006,19(11):1159-1166.
    339. Yan Q, Wang N. The ColR/ColS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri. J Bacteriol,2011,193(7):1590-1599.
    340. Yang B, White F F. Diverse members of the AvrBs3/PthA family of type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant-Microbe Interact,2004,17 (11): 1192-1200.
    341. Yang B, Zhu W, et al. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type Ⅲ secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proc Natl Acad Sci U S A,2000,97(17):9807-9812.
    342. Yang W, Liu Y, Chen L, Gao T, Hu B, Zhang D, Liu F. Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv. oryzae in rice. Curr Microbiol,2007,54: 307-314.
    343. Yang Y N, Gabriel D W. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant-Microbe Interact,1995,8:627-631.
    344. Yarosh O K, Charles T C, Finan T M. Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Mol Microbiol,1989,3:813-823.
    345. Ye J, McGinnis S, Madden T L. BLAST:Improvements for better sequence analysis. Nucleic Acids Res,2006,34:6-9.
    346. Yildiz F H. Cyclic dimeric GMP signaling and regulation of surface-associated developmental programs. JBacteriol 2008,2:781-783.
    347. Yoshimochi T, Hikichi Y, Kiba A, Ohnishi K. The global virulence regulator PhcA negatively controls the Ralstonia solanacearum hrp regulatory cascade by repressing expression of the PrhIR signaling proteins. JBacteriol,2009,191:3424-3428.
    348. Yuan L, LI Y R, Zhang X F, Guo W, Che Y Z, Chen G Y. Quick Identification of Pathogenicity-related Genes in Xanthomonas oryzae pv. oryzicola by Thermal Asymmetric Interlaced PCR (TAIL-PCR) and Tn5 Transposon Rescue. Journal of Agricultural Biotechnology, 2009,17:1089-1095.
    349. Yun M H, Torres P S, El Oirdi M, Rigano L A, Gonzalez-Lamothe R, Marano M R, Castagnaro A P, Dankert M A, Bouarab K, Vojnov A A. Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol,2006,141:178-187.
    350. Yurgel S N, Kahn M L. Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids. JBacteriol,2005,187:1161-1172.
    351. Zagallo A C, Wang C H. Comparative Glucose Catabolism of Xanthomonas Species. J Bacteriol, 1967,93:970-975.
    352. Zhang S S, He Y Q, Xu L M, Chen B W, Jiang B L, et al. A putative colR (XC1049)-colS (XC1050) two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses. Res Microbiol,2008,159 (7-8):569-578.
    353. Zhang Y, Bak D D, Heid H, Geider K. Molecular characterization of aprotease secreted by Erwinia amylovora. J Mol Biol,1999,289 (5):1239-1251.
    354. Zhao B Y, Ardales E A, Raymundo A, Bai J F, Trick H N, Leach J E, Hulbert S H. The avrRxol gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a non-host defense reaction on maize with resistance gene Roxl. Mol Plant Microbe Interact,2004b,7(7):771-779.
    355. Zhao B Y, Ardales E, Brasset E, Claflin L E, Leach J E, Hulbert S H. The Rxo1/Rba1 locus of maize controls resistance reaction to pathogenic and nonhost bacteria. Theor Appl Genet,2004a, 109:71-79.
    356. Zhao B Y, Lin X H, Poland J, et al. A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Aad Sci USA,2005,102 (25):15383-5388.
    357. Zhao K J, Li Y Q, Wang C L, Gao Y. Recent Findings in Plant Innate Immunity and Possible Impacts on Crop Disease-resistance Breeding. ACTA AGRONOMICA SINICA,2011,37(6): 935-942.
    358. Zhao Y C, Qian G L, Yin F Q, Fan J Q, Zhai Z W, Liu C H, Hu B S, Liu F Q. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microb Pathog,2011,50:48-55.
    359. Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science,1998,279:1718-1721.
    360. Zhou Y L, Xu M R, Zhao M F, Xie X W, Zhu L H, Fu B Y, Li Z K. Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxol to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola. BMC Genomics,2010,11:78.
    361.Zhu P L, Zhao S, Tang J L, Feng J X. The rsmA-like gene rsmAXoo of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor. Mol Plant Pathol, 2011,12(3):227-237.
    362. Zhu W, Magbanua M M, White F F. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. JBacteriol,2000,182:1844-1853.
    363. Zou H S, Yuan L, Guo W, Li Y R, Che Y Z, Zou L F, Chen G Y. Construction of a Tn5-Tagged Mutant Library of Xanthomonas oryzae pv. oryzicola as An Invaluable Resource for Functional Genomics. Curr Microbiol,2011,62:908-916.
    364. Zou L F, Chen G Y, Wu X M, Wang J S. Cloning and sequence analysis of diverse members of avrBs3/PthA family of Xanthomonas oryzae pv. oryzicola. Scientia Agricultura Sinica,2005,38: 929-935.
    365. Zou L F, Wang X P, Xiang Y, Zhang B, Li Y R, Xiao Y L, Wang J S, Walmsley A R, Chen G Y. Elucidation of the hrp Clusters of Xanthomonas oryzae pv. oryzicola That Control the Hypersensitive Response in Nonhost Tobacco and Pathogenicity in Susceptible Host Rice. Appl Environ Microbiol,2006,72:6212-6224.
    366.车亦舟.2011.博士学位论文,南京农业大学.
    367.管文静,吴茂森,何晨阳.c-di-GMP信号途径对细菌致病性的调控作用.微生物学报,2009,36(3):427-431.
    368.管文静.2009.硕士学位论文,中国农业科学院.
    369.姬广海,许志刚,张世光,水稻细菌性条斑病菌DNA多态性与致病性研究,华中农业大学学报,2000,19(5):430-433.
    370.姜佳.2009.硕士学位论文,南京农业大学.
    371.李玉蓉.2010.博士学位论文,南京农业大学.
    372.梁传永,李大春,易建平等.中国水稻条斑病毒力型的研究[J].南京农业大学学报,1994,17(3):48-52.
    373.刘希玲.2009.硕士学位论文,南京农业大学.
    374.刘友勋,成国英,涂立超等.中南4省水稻细菌性条斑病菌致病型的比较[J].华中农业大学学 报,2004,23(5):504-506.
    375.农秀美.广西水稻条斑病菌致病力分化研究[J].西南农业学报,1992,4(2):94-97.
    376.孙蕾,吴茂森,陈华民,何晨阳.水稻白叶枯病菌△rpfxoo基因缺失突变体DSF信号产生和毒性表达.微生物学报,2010,50(6):717-723.
    377.孙蕾.2009.博士学位论文,中国农业科学院.
    378.谭旖宁,马增凤,陆光涛,唐纪良.野油菜黄单胞菌6-磷酸葡萄糖脱氢酶基因的初步分析.广西生物科学.2007,26:3.
    379.谭旖宁,彭方印,安世琦,陆光涛,何勇强,唐纪良.野油菜黄单胞菌2-酮-3-脱氧-6-磷酸葡萄糖酸醛缩酶基因的突变分析.广西生物科学,2008,27:4.
    380.王金生.分子植物病理学.北京:中国农业出版社,2001,7:160-162.
    381.王镜岩等.生物化学.高等教育出版社,2001.
    382.王磊.2010.硕士学位论文,中国农业科学院.
    383.夏怡厚,林维英,陈藕英.水稻细菌性条斑病菌的致病力变异和菌系鉴别[J].福建农学院学报,1992,21(3):278-282.
    384.肖友伦.2007.硕士学位论文,南京农业大学.
    385.谢学文,于晶,徐建龙,周永力,黎志康.玉米细菌性条斑病非寄主抗性基因Rxol转化水稻的研究.生物工程学报,2007,23(4):607-611.
    386.袁亮.2009.硕士学位论文,南京农业大学.
    387.曾建敏,林文雄.水稻细菌性条斑病及其抗性研究进展.分子植物育种,2003(2):257-263.
    388.张鼎鼎.2010.硕士学位论文,南京农业大学.
    389.邹丽芳.2006.博士学位论文,南京农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700