纤维素酶产生菌的筛选及其在菌糠开发中的利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是自然界中存在最广泛的一类碳水化合物,是地球上最丰富且取之不尽的天然可再生资源。自然界中纤维素只有一小部分得到了利用,绝大多数纤维素不仅被白白浪费,而且还由于使用不当,造成环境污染。
     菌糠是食用菌培养料收获子实体后的下脚料,未处理菌糠的粗蛋白含量较低,纤维素、木质素等碳水化合物较高。
     为了探索利用微生物生产纤维素酶,将纤维素转化为人类急需的能源、食物和化工原料的方法,解决解决环境污染、食物短缺和能源危机问题,课题通过对来自土壤、牲畜粪便等处的微生物进行大量的筛选工作,分离出了能够高效利用菌糠纤维素的菌株,并通过筛选、对最佳发酵条件的探索以及混合发酵等手段,获得由菌糠出发,生产单细胞蛋白的材料与工艺。
     首先通过以纤维素为唯一碳源的固体培养基筛选,得到40株菌株,进而通过纤维素刚果红培养基筛选,获得8株菌株。最后通过菌糠培养基中筛选,获得A、B、E、F、G五株菌株。之后进行的纤维素分解菌的连续发酵,兼有筛选和确定发酵条件两个目的。这一步确定了F菌株为木屑菌糠最佳利用菌株,G菌株为棉籽壳菌糠最佳利用菌株,并且确定它们的最佳发酵时间为24h。通过载片培养法观察菌株形态,初步判断F菌株为毛霉,G菌株为根霉。
     F菌株和G菌株在30℃时,它们产生的发酵液酶活力最高。F菌株在pH=7时,产生的发酵液酶活力最高,而菌密度则是pH=6时最高;G菌株在pH=6时,产生的发酵液酶活力最高,菌密度也最高。实验中使用的各种金属离子使发酵液中的菌密度有了不同程度的下降,相应地,Co~(2+)、Mn~(2+)、Fe~(3+)、Zn~(2+)对应的酶的活力也随之下降;而Fe~(2+)虽然对菌株生长不利,但这种金属离子对纤维素酶有很强的激活作用,使得酶活力反而上升。F菌株与G菌株在2倍浓度营养液中有最高生长水平,并使发酵液有最高酶活力;两种菌株对于尿素、氯化铵不敏感。酶的提取实验证明,F菌株和G菌株产生的酶活力不次于购买得到的对照菌株。
     在确定了F、G菌株的最佳发酵产糖条件之后,通过在培养体系中使用F、G菌种与酵母菌的混合培养,获得了较高水平产蛋白的初步方法。与酵母菌的液态混合发酵使F菌株产蛋白水平提高了一倍左右,而使G菌株的产蛋白水平提高了二倍以上。F菌株与酵母混合发酵产蛋白峰值为5.46 g/L,是液态发酵的6.42倍;G菌株与酵母混合发酵产蛋白峰值为5.75 g/L,是液态发酵的6.05倍。
As the carbohydrate most broadly existing in the world, cellulose is a kind of abundant and sustainable resource. However, only a small part of the cellulose in the nature is used, with a large amount wasted, and even brings pollution to the world because of improper usage.
     The waste material from fungal culture (WMFC) is waste material after fruiting body harvest with remnant of edible fungi and carbohydrate such as cellulose, hemicellulose and lignin degraded by the edible fungi. Before desposal, WMFC has low level of raw protein, but high level of carbohydrate such as celloluse and lignin.
     In order to find a method to produce cellulase by microorganism, get energy resource, food and chemical material from cellulose, and solve problems such as the pollution to the environment, the lack of food and energy resource crisis, microorganisms from the soil are screened. After getting the strain that can make use of WMFC in high effect, the study of optimal fermentation condition and mixed culture fermentation are launched to get the technic producing single cell protein form WMFC.
     First, 40 strains are gained by the screening of medium with cellulose as only carbon resource, then, 8 strains a gotten from cellulose-Gango red medium. Finally, strains A, B, E, F, G are gotten from WMFC medium. By glass slide culture and observation, F is judged as Mucor, while G Rhizopus. Continuous fermentation with double purposes both screening and ascertaining the fermentation condition is launched later. Strain F is ascertained as the best strain for using wood bits WMFC, while strain G the best for cottonseed hull. The best fermention time is 24 hours.
     Both strains F and G have the highest enzyme activity and population at 30℃. Strain F has the best enzyme activity at pH=7, but highest population at pH=6; strain G has highest enzyme activity and population at pH=6. Every kind of metal ions used in the study brings bad effect to the strains’growth, accordingly, Co~(2+)、Mn~(2+)、Fe~(3+)、Zn~(2+) have the enzyme activity declined. However, Fe~(2+) is harmful to strains’growth, but it has strong activation to the enzyme activity, and makes it higher. Both strains F and G grow best in 2×nutrition concentration, and show highest enzyme activity. Over high concentration is not good for the growth of strain and fermention because of high filter pressure. Neither of the strains is sensitive to carbamide and ammonium chloride. The extract of enzyme proves that the enzyme activity of strains F and G are not lower than the strain bought.
     After the ascertaining of optimal sugar producing condition of strains F and G, how we can heighten the protein produce capability is to be studied. By mixed culture fermentation of strains F and G with yeast, we got the way to produce protein in higher level. The mixed culture fermentation with yeast hightened the production of protein of strain F by one time, while more than twice of strain G. The peak of protein production by solid mixed culture fermentation of strain F and yeast is 5.46 g/L, 6.42 times of liquid, while strain G and yeast 5.75 g/L, and 6.05 times.
引文
[1]李泓泉,微生物处理秸秆的进展,饲料博览,1992,(2):46~48
    [2]Cowling E. B,Structural features of cellulose that influence its susceptibility to enzymatic hydrolysis,“Advances in enzymatic hyolrolysis of cellulose and related”,Reese,E. J,Pergamon Press,London(1963)
    [3]上海植物生理研究所纤维素酶组,国外纤维素酶研究概况,应用微生物,1975,2:5~14
    [4]吴显荣等,纤维素酶分子生物学研究进展及趋向,生物工程进展,1994,14(4):25~27
    [5]加滕久明等,酶在果蔬加工中的应用,应用微生物,1986,2:19~21
    [6]那安,崔福绵,马建华,纤维素酶系中G1酶性质的研究,微生物学报,1982,22(4):333~338
    [7]陈侠甫,裴相元,纤维素酶曲添加对鹿茸产量及饲料消化率的影响,兽医大学学报,1990,(4):382~386
    [8]王冬,曲音波等,L-山梨糖提高木霉纤维素酶合成速率机制的研究,真菌学报,1995,14(2):143~147
    [9]阎伯旭,高培基,拟康氏木霉中内切葡聚糖苷水解酶的化学修饰,生物化学杂志,1997,13(3):302~306
    [10]Gama F. M.,Mota M.,Enzymatic hydrolysis of cellulose(Ⅱ)X-ray photo election spectroscopy studies on cellulase adsorption Biocatalysis Biotranstorm 1997,15(3):237~250
    [11]王沁,赵学慧,黑曲霉纤维素酶的化学组成,微生物学杂志,1994,14(1):6~8
    [12]Spiegelman,Nuclear and cytoplasmic factors controlling enzymatic constitution,Coldspring Harbor Symp,Quant. Biol.,1997,Ⅱ:256~259
    [13]Gallo B. J., et al,Biotechnology and Bioengineering,Symposium Biotechnology in energy production and consentration,Tohn wiley & Sons,1978,8:89~101
    [14]Mandels M.,F. W. Parrish and E. T. Reese,Sophorose as an inducer of cellulase in Trichoderma viride,J. Bacterial,1972,83:400~403
    [15]朱雨生,谭常,木霉纤维素酶的诱导形成及其调节(Ⅲ)葡萄糖母液和槐豆荚根提取液对纤维素酶诱导效应的分析,植物生理学报,1978,4(1):19~26
    [16]Mandels M. and E. T. Reese,Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals,J. Bacterial,1977,73:269~272
    [17]马桂荣,张玉臻,孔健,固态发酵淀粉渣生产蛋白饲料的研究,食品与发酵工业,1996(11):26~28
    [18]Bisaria V. S.,and Glose T. K.,Bio degradation of cellulosic materials microorganisms,enzymes,substrates and products, Enzyme uicrob Technology,1981,3:90~104
    [19]B. Gallo,R. Andreotti,C. Roche,Ryu and Mandels,Cellulase production by a new mutant strain of Trichoderma reesei MCG 77,Biotechnology Bioengineer 1978,8:89~101
    [20]朱雨生,谭常,木霉纤维素酶的诱导形成及其调节(Ⅰ)槐糖对木霉EA3-867洗涤菌丝体纤维素酶形成的诱导作用及降解物阻遏现象,植物生理学报,1978,4(1):1~17
    [21]Zahner H. and W. K. Maas,Biology of Antibiotics,Springer-verlag New York, Heidelberg,Berlin,1972:86~89
    [22]王冬,曲音波等,L-山梨糖提高木霉纤维素酶合成速率机制的研究,真菌学报,1995,14(2):143~147
    [23]Reese E. T.,J. E. Lola and F. W. Parrish,Modified substrates and modified products as inducers of carbohydrases,J. Bacterial,1969,100:1151~1158
    [24] L. P. Walker and D. B. Wilson,Enzymatic Hydrolysis of Cellulose,ELSVIER SCIENCE PUBLISHERS LTD 1991
    [25]Eveleigh D. E.,The cellulase:a Perpective,Pbil. Trans. R. Soc. Lond A,1987:321~435
    [26]Wood T. M,The cellulase of fusarium solani purification and specificity of theβ-(1,4)-glucanase and theβ-D-glucosidase components,Biochem. J.,1971,121:353~356
    [27]Child J. S. et al.,Determination of cellulase activity using Hydroxyl cellulase assubstrats,Can. J. Biochem,1973,51:39~41
    [28]高培基,绿色木霉产生的葡萄糖苷酶类,生物化学杂志,1992,8(6):735~736
    [29]Wood T. M.,Cellulolytic enzyme system of T. Koningii,Biochem. J.,1968:109~217
    [30]杨庆尧,食用菌生物学基础,上海:上海科学技术出版社,1982,3~5
    [31]河南食用菌协会主编,食用菌贮藏与加工,郑州:河南科学技术出版社, 1994,l~31
    [32]黄年来,我国食用菌产业的现状与未来,中国食用菌,2000,19(4):3~4
    [33]林长升,从可持续发展战略看菌草业发展,福建农业大学学报,1997,26(增刊):137~143
    [34]福建统计局,福建统计年鉴,2000,中国统计出版社:164
    [35]刘晋平等,平菇菌糠常规营养成分及氨基酸含量分析,畜牧兽医杂志,1996,15(1):33~34
    [36]李相成等,用菌糠饲喂北京中鸭试验,饲料工业,1994,(4):35~36
    [37]莫月华等,香菇菌糠饲喂黑白花小母牛试验,饲料与畜牧,1991(3):22~23
    [38]邹霞青等,几种菌糠营养成分及瘤胃降解率的研究,福建农业大学学报,1999,28(4):477~482
    [39]Cabriellal A. Uargs and Erie S. Koloer著,魏宏阳译,微生物和动物对粗纤维消化和利用的限制,国外畜牧学——饲料,1998(4):18~21
    [40]刘敏雄,反当动物消化生理学,1990,北京农业大学出版社:45~77
    [41]Y W HAN,Microbiol Fermentation of Rice Straw: Nutritive Compos1tion and Invitro Digestion of the Fermentation Products,APPLIED MICROBIOLOGY,1975,VOL.29,NO4:510~514
    [42] Y W HAN and C. D. Callihan,Cellulose Fermentation: Effect of Substrate Pretreatment on Microbial Growth,APPLIED MICROBIOLOGY,1974,VOL.27,NO.l:159~165
    [43]余伯良编著,微生物饲料生产技术,1993,中国轻工业出版社,北京:95~109
    [44]韩建林等,利用白腐真菌提高秸杆利用率的研究进展,饲料博览,1997,(l):19~20
    [45]吴绵斌,虞炳钧,薯类原料发酵生产蛋自强化饲料,饲料工业,1994,15(l0):10~14
    [46]Ek M,and Eriksson K. E.,Utilization of the white rot fungus Sporotriehum Pulverulentum for water purification and protein production on mixed lignocelluloses wastewaters,Biotechnol. Bioeng,1980,22:2237~2248
    [47]Basker T. W. and Worgan J. T.,Theutilization of plant processing effluents as substrates for microbial protein production by the fungus as pergillusoryzae,Eur. J. APPl. Microbiol. Blotechnol.,1981,11:234~240
    [48]Sandhu E. K. and Waraich M. K.,Conversion of cheese whey to single cell protein,Biotechnol Bioeng,1983,(27):797~808
    [49]Matteau P. P.,Bone D. H. Solid state fermentation of maple wood by polyporus anceps,Biotechnol. Lett.,1985,2(2):127~132
    [50]Abdullah A. L., Tengerdy R. P.,Optimization of solid substrate fermentation of wheat straw,Biotechnol Bioeng,1985,27(l):20~27
    [51]Durand A,Chereau D,,A new pilot reactor for solid state fermentation: application to the protein enrichment of sugar beet pulp, Bioteehnol Bioeng, 1988,31(5):476~486
    [52]Grajek W.,Production of protein by thermophilic fungi from sugar beet pulp in solid-state fermentation,Bioteehnol Bioeng,1988,32(2):255~260
    [53]Xue Maojie,Liu Deming,Zhang Hongxun,Qi Hongyan,Lei Zhifang,A pilot proeess of solid state fermentation from sugar beet pulp for the production of microbial protein,J. Ferment Bioeng,1992,73(3):203~205
    [54]Kaholn S. S,Dass S. K.,Biological Conversion of Paddy Straw into Feed, Biological Wastes,1987(22):11~21
    [55]中科院纤维素酶研究小组,纤维素酶水解糠醛渣生产酵母,微生物学报, 1977,17(3):231~238
    [56]马桂荣,甜菜渣转化成单细胞蛋白饲料,山东大学学报,1987,22(2):106~113
    [57]赵小立,李永泉,贺筱蓉,周红军,翁醒华,高产复合酶菌株HD-1选育的研究,真菌学报,1995,14(4):289~295
    [58]王义甫,邹邦基,葛英华等,高活性纤维素酶菌株778-1的筛选及产酶条件,微生物学报,1983,22(2):143~149
    [59]中国科学院上海植物生理研究所纤维素酶组,二株高活力纤维素分解菌EA3-867和NZ-78的获得及其特性的比较,微生物学报,1978,18(1):27~38
    [60]中国科学院上海植物生理研究所纤维素酶组,纤维分解菌与伴生菌的分离鉴定及其协同作用,微生物学报,1978,18(2):147~152
    [61]张宪武,韩静淑,林佩真,王廷惠,高温嫌气纤维素分解细菌发酵纤维素的研究,微生物学报,1981,21(2):214~217
    [62]宋桂经,王冬,孙彩云,高培基,芽抱杆菌074碱性纤维素酶的研究:1.菌种的分离、筛选及发酵条件,微生物学报,1995,35(1):38~44
    [63]A. S. Ball,W. B. Betts,and A. J. Mocarthy,Degradation of Lignin-Related Compounds by Actinomycetes,Applied and Environmental Microbiology,1989,55(6):1642~1644
    [64]徐文玉,木质纤维素的混合菌发酵法,微生物学通报,1991,18(2):103~106
    [65]陈庆森,刘剑虹,潘建阳等,利用多菌种混合发酵转化玉米秸秆的研究,生物技术,1999,9(4):15~20
    [66]欧阳平凯,陈育如,植物纤维素原料的水解及应用,第1版,北京:中国科学技术出版社,1995
    [67]Kawamori M.,Preparation of mutants resistant to catabolite repression of Triehoderma reesei,Agric Biol Chem,1985,49(10):2875~2879
    [68]Mandels M.,Physical and chemical pretreatments for enhancing cellulose saccharification,Biochem Soc Trans,1985,13:414~418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700