急性重度失血性休克条件下大鼠血浆和肝脏蛋白质组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
失血性休克(hemorrhagic shock)是因急性血液或血浆的大量丢失导致循环血量骤减而引起。失血性休克是战时阵亡和伤死的首要因素,也是平时1-44岁人群死亡的第一要因。目前临床治疗失血性休克主要的措施是恢复血压、调节微循环、恢复重要脏器的血液灌流等,但对急性重度失血性休克的救治效果不是很理想。原因在于失血性休克是一种全身性、多系统、多器官参与的严重的综合症,其生理病理机制还需要不断补充和完善。各种疾病的治疗现均转向以疾病的分子机制的阐明为救治依据的研究,而蛋白质组技术的出现使高通量筛选疾病的诊断标志物和疾病的药物靶标等成为可能,利用蛋白质组学技术所获得的高通量差异蛋白质信息也成为解析疾病生理病理机制的重要基础。目前还未见有关失血性休克时血浆和肝脏蛋白质组学的研究报道。
     近年来的研究发现,失血性休克时体内的迷走神经及其递质Ach与免疫系统相互作用,参与抗炎,并将之命名为胆碱能抗炎通路,而ACTH是此通路的重要激活因素。目前ACTH参与胆碱能抗炎通路救治失血性休克的研究主要是在延长动物的存活时间方面,极少涉及对ACTH参与胆碱能抗炎通路发挥抗休克作用机制的研究。
     本研究通过蛋白质组学技术,研究在急性重度失血性休克(acute severe hemorrhagic shock,ASHS)条件下以及给予ACTH作为干涉条件治疗后,大鼠血浆蛋白质组及肝脏蛋白质组的差异表达,并初步鉴定和分析差异表达蛋白质的功能,以及它们在失血性休克发生发展过程中所起的作用,以期从蛋白质整体水平上探讨失血性休克的生理病理机制,找出失血性休克诊断的新靶标和治疗的新方法。
     ASHS大鼠模型的建立和ACTH抗失血性休克作用的研究ASHS大鼠模型:手术后让大鼠在手术台上静躺10 min,模型0-15min快速失血使平均动脉压降至35 mmHg,随后15 min调整失血量使血压维持在这一水平,血压35-45mmHg平台期50 min,失血量为总血量的40-45%,模型80 min时处死大鼠。通过检测正常对照组(sham hemorrhage shock,SHS)(n=10)和ASHS组(n=10)大鼠血浆中SOD、MDA、AST、ALT、GST、LDH和TNF-α等生化指标及观察肝脏组织的形态学改变和HSP70的含量变化,表明建立的ASHS模型稳定性好,符合ASHS的要求,可以作为ASHS的动物模型。在模型50 min时,ACTH组(n=10)在1 min内以3 ug·kg~(-1)静脉注射ACTH;NS组(n=10)静脉注射ACTH的等体积数的生理盐水。通过观察大鼠的存活时间及以上各项指标及形态学的变化表明ACTH对ASHS有一定的救治效果。在本节实验中还发现血浆中SOD活性和MDA含量的变化与目前报道认为二者总是负相关变化不一致,在ASHS时二者的变化是正相关的,即均呈逐渐上升趋势。
     ASHS大鼠血浆蛋白质组学差异分析由于血浆中白蛋白、IgG、α1-抗胰糖蛋白和α2-巨球蛋白等高丰度的蛋白的含量占80%,严重影响2-DE中低丰度蛋白的分离和鉴定,所以在本节实验2-DE前预先去除了这类高丰度蛋白中的大部分。实验结果显示SHS组、ASHS组和ACTH组去除高丰度蛋白的血浆的2-DE图谱分别平均识别到570±0.88、578±1.45和578±0.88个有意义的蛋白质斑点。SHS组与ASHS组两胶进行蛋白点匹配,匹配了493对,匹配率为85.4%;ASHS组与ACTH组两胶进行蛋白点匹配,匹配了493对,匹配率为85.2%。在SHS组和ASHS组去除高丰度蛋白的血浆2-DE凝胶图谱中共发现8个差异有意义的蛋白质点,通过MALDI-TOF-MS鉴定出了7个蛋白质斑点共3类蛋白(白蛋白、甲状腺激素结合蛋白-D链蛋白和信号素-3D前体)。ACTH治疗后发现8个斑点中有5个发生了显著性差异表达,鉴定出4个蛋白质斑点共2类蛋白(白蛋白和信号素-3D前体)。
     ASHS大鼠肝脏总蛋白质组学差异分析SHS组、ASHS组和ACTH组肝脏组织总蛋白质的2-DE图谱分别平均识别到698±11、700±13并H696±18个有意义的蛋白质斑点。SHS组与ASHS组两胶进行蛋白点匹配,匹配了641对,匹配率为91.7%;ASHS组与ACTH组两胶进行蛋白点匹配,匹配了637对,匹配率为91.3%。SHS组与ASHS组肝脏总蛋白质组学研究发现并鉴定出10个差异显著的蛋白质斑点,共8种蛋白{肿瘤抑制性抗原gp96、葡萄糖调节蛋白58(glucose regulated protein, 58 kDa, GRP58)、ATP合成酶β亚单位、二磷酸果糖酶B、三磷酸甘油醛脱氢酶、谷光苷肽转移酶、过氧还蛋白Ⅰ和细胞色素B5}。ACTH治疗后发现并鉴定出2个显著性差异表达的蛋白质斑点(肿瘤抑制性抗原gp96和GRP58)。
     GRP58在ASHS中的初步研究GRP58是发现的7个表达差异有显著性的蛋白质斑点中肽段匹配分值最高(224),氨基酸序列覆盖率最高(41%)的蛋白。对其进行Western-blot、MALDI-TOF-MS、免疫荧光组化及RT-PCR实验,结果显示在ASHS时,GRP58发生了150位丝氨酸残基的去磷酸化。给予ACTH治疗后,150位丝氨酸残基又向磷酸化方向变化。
     综上研究结果表明,本研究发现在ASHS时,血浆中SOD活性与MDA含量的变化均呈逐渐上升趋势,血浆和肝脏蛋白质中分别有白蛋白和GRP58等许多蛋白发生了显著性的差异表达,GRP58在这一过程中发生了150位丝氨酸残基的去磷酸化,提示白蛋白和GRP58可能是失血性休克诊断和治疗的新靶标。
Hemorrhagic shock is one of the severe hypovolemia shocks, induced by extensive blood loss, or sudden and unexpected depletion of the circulating blood. Hemorrhagic shock is a major independent risk factor of the pathogenesis of trauma-related multiple organ failure and death. It is one of the most common causes of death all over the world today. There are various treatments on shock now. For example, the doctor can boost pressure, regulat microcirculation and re-perfuse the several important organs including heart, liver, spleen, lung, kidney and brain. They are not effective, however, hemorrhagic shock develops refractory hemorrhagic shock. The reason is that hemorrhagic shock is characterized by a loss in circulatory volume, which results in decreased venous return, decreased filling of the cardiac chambers, and hence a decreased cardiac output which leads to increase in the systemic vascular resistance. Hemorrhagic shock is one of four major categories of the syndrome of shock based on cardiovascular characteristics. It's pathomechanism is not clear, and need to be replenished in order to make perfect. Nowadays, the therapise of many kinds of diseases are being adjusted to research their molecule mechanisms. Proteomic approach is considered to be a powerful technology in the global analysis of protein expression and has been widely used in disease proteomics fields.
     Some of the latest studies propose that, vagus nerve and Ach interact with immune system to resist inflammatory responses. It is called the cholinergic anti-inflammatory pathway. Adrenocorticotrophin (ACTH) is one of the important activation agents in the pathway. Nowadays, there are not any reports, which investigate plasma and liver proteomic analysis in hemorrhagic shock, and which research proteomic analysis with ACTH in hemorrhagic shock.
     This study was to screen the differential expression proteins by proteome analysis technology in the rat plasma and liver under acute severe hemorrhagic shock (ASHS) and post-treatment with using ACTH. The differential expression proteins were cut from the gels, analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and identified through searching Swiss-prot database with Mascot software. These results provided scientific datum for screening the molecular biomarker used to diagnose and treat hemorrhagic shock, as well as seek out new target to elevate the patient's prognosis and provide new clue for the research on pathogenic mechanism of hemorrhagic shock.
     Establish rat model in ASHS and treatment method with using ACTH ASHS (?)t model: After lying quietly for 10 minutes, ASHS rats were induced by being withdrawn blood through the femoral arterial catheter in 15 minutes. The mean arterial blood pressure (MABP) decreased to 35-40 mmHg and stabilized MABP for 15 minutes. The MABP was maintained at this level for 1 hour. The total amount of blood withdrawn then was about 40-45% of rat blood volume. The animals were sacrificed at 80 minutes. The activity of SOD, MDA, AST, ALT, GST, LDH and TNF-αin plasma and HSP70 in liver were measured respectively by using the their test kits. And pathological changes of liver were observed by microscopy. These results suggested ASHS rat model had satisfactory stability. Then this model could be operated in ASHS research. At 50 minutes of ACTH model, we administered ACTH (3 ug·kg~(-1)) intravenous injection, while we administered normal saline (equality volum of ACTH) in normal saline (NS) model. The results of survival time of SHS, ASHS, NS and ACTH suggested ACTH could remedy ASHS in some extent. Furthermore, the changes of the activity of SOD and the level of MDA in ASHS plasma might be positive correlation.
     Plasma proteomic analysis in ASHS Albumin, IgG,α1-Antitrypsin and a2-Macroglobulin count above 80 % in all the proteins of plasma, so we depleted them before 2-DE. About 570±0.88, 578 + 1.45 and 578 + 0.88 protein spots were respectively detected by Image Master analysis software in SHS, ASHS and ACTH. It was 85.4 % (493 pairs) that the ratio of protein spots matched between SHS and ASHS. There was 85.2 % (493 pairs) between ASHS and ACTH. Eight protein spots with significant difference were found, and upregulated or downregulated after ASHS. Seven of eight differential proteins were identified, and they were albumin, chain D of rat tansthyretin and semaphoring-3D precursor. With ACTH treating, there were five significant difference protein spots. Four of five differential proteins were identified, and they were albumin and semaphoring-3D precursor.
     Liver proteomic analysis in ASHS The 2-DE results of livers showed about 698±11, 700±13 and 696±18 protein spots were respectively detected in SHS, ASHS and ACTH. It was 91.7 % (641 pairs) that the ratio of protein spots matched between SHS and ASHS. There was 91.3 % (637 pairs) between ASHS and ACTH. Ten protein spots with significant difference were found, and upregulated or downregulated, or appeared after ASHS. All of ten differential proteins were successfully identified. These proteins included tumor rejection antigen gp96, glucose regulated protein, 58 kDa (GRP58), ATP synthase beta subunit, aldob protein, gapd protein, glutathione transferase, peroxiredoxin I , cytochrome B5 etc. With ACTH treating, there were two significant difference protein spots. The both of differential proteins were identified, and they were tumor rejection antigen gp96 and GRP58.
     Original research of GRPS8 in ASHS There were seven significant difference protein spots in plasma and liver proteomic analysis in ASHS with ACTH treating. GRP58 is the biggest (224) in paired protein score, and is the most (41 %) in sequence coverage. So GRP58 was chosen to investigate profoundly with western-blot, MALDI-TOF-MS, immunohistochemistry and RT-PCR. The results indicated that Ser150 of GRP58 was dephosphorylation after ASHS, while Ser150 was phosphorylation after treating with ACTH.
     In summary, we showed the changes of the activity of SOD and the level of MDA in ASHS plasma might be positive correlation. There were many of significant difference protein spots in plasma and liver proteomic analysis in ASHS. And Ser150 of GRP58 was dephosphorylation after ASHS. Therefore, all of these indicated albumin and GRP58 could be used as two new targets in diagnosing and treating hemorrhagic shock.
引文
1 Simon D, Taylox M J, Elrifai A M, et al. Hypothermic blood substitution enables resuscitation after hemorrhagic shock and 2 hours of cardiac arrest [J]. ASAIO J, 1995, 41(3): M297-3000.
    2 Poggette R S, Moore F A, Moore E E, et al. Simultaneous liver and lung injury following gut ischemia is mediated by xanthine oxidate [J]. J Trauma, 1992, 32: 723-727.
    3 Souza A L, Pogetti R S, Fontes B, et al. Gut ischemia/reperfusion actives lung macrophages for tumor necrosis factor and hydrogen peroxide production [J]. Trauma, 2000, 49(2): 232~236.
    4 罗正曜,金惠铭,唐朝枢编。休克学[M]。天津:科学技术出版社,2001。
    5 蒋荣成,吕志诚。失血性休克液体复苏研究的新进展[J]。中国急救医学,2004,24(6):432-433。
    6 郑伟,黄灵芝,赵莲等。失血性休克大鼠肝脏蛋白质差异分析[J]。中国生物化学与分子生物学报,2007,23(4):316-322。
    7 Stem S A, Zink B J, Mertz M, et al. Effect of initially limited resuscitation in a combined model of fluid percussion brain injury and severe uncontrolled hemorrhagic shock [J]. J Neurosurg, 2000, 93(2): 305-314.
    8 姚璐,周虹。ACTH(1-24)的应用研究进展[J]。医学分子生物学杂志,2005,2(6):444-447。
    9 Domenica A, Antonino S, Salvatore G, et al. Oxidative stress causes nuclear factor-κB activation in acute hypovolemic hemorrhagic shock [J]. Free Radical Biology & Medicine, 2001, 30(10): 1055-1066.
    10 Theoharides T C, Cochrane D E. Critical role of mast cells in inflammatory diseases and the effect of acute stress [J]. J Neuroimmunology, 2004, 146: 1-12.
    11 单闯。失血性休克的病理生理及治疗[J]。现代实用医学,2002,14(11):620-622。
    12 Chiao H, Foster S, Thomas R, et al. Alpha-melanocyte-stimulating hormone reduces endotoxin-induced liver inflammation [J]. J Clin Invest, 1996, 97(9): 2038-2044.
    13 Guarini S, Cainazzo M M, Giuliani D, et al. Adrenocorticotropin reverses hemorrhagic shoch in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway [J]. Cardiovascular Research, 2004, 63(2): 357-365.
    14 Blalock J E. Hamessing a neural-immune circuit to control inflammation and shock [J]. J. Exp. Med., 2002, 195(6): F25-28.
    15 Lyudmila V, Boroviko V A, Svetlana L, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin [J]. Nature, 2000, 405: 458-461.
    16 Bussone G L, Boiardi. Naloxone in ischemia preliminary data [J]. Ital. J. Neural., 1996, 6: 89
    17 盛树力主编。多肽激素的当代理论和应用[M]。北京:科学技术文献出版社,1998,161-162。
    18 田玉。促肾上腺皮质激素在类风湿关节炎中的作用[J]。国际检验医学杂志,2006,27(1):40-42。
    19 Johnson E W, Hughes T K Jr, Smith E M. ACTH receptor distribution and modulation among murine mononuclear leukocyte populations [J]. J Biol Regul Homeost Agents, 2001, 15(2): 156-162.
    20 孟云霄,纪祥瑞,李玉军等。ACTH受体在人淋巴组织中的表达[J]。中华同分泌代谢杂志,2004,20(3):259-262。
    21 Boss B, Neeck G Gorrlation of IL-6 with the classical humoral disease activity parameters ESR and CRP and with serum cortisol, reflecting the activity of the HPA axis i active rheumatoid arthritis [J]. Z Rheumatol, 2000, 59(suppl 2): Ⅱ/62-64.
    22 白继昌,肿瘤坏死因子-α、白细胞介素-6、促肾上腺皮质激素与类风湿关节炎[J]。国际检验医学杂志,2006,27(8):729-730。
    23 Ludbrook J, Ventura S. ACTH(1-24) blocks the decompensatory phase of the haemodynamic response to acute hypovolaemia in conscious rabbits [J]. European Journal of Pharmacology, 1995, 275: 267-275.
    24 Guarini S, Cainazzo M M, Giuliani D, et al. Adrenocorticotropin reverses hemorrhagic shoch in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway [J]. Cardiovascular Research, 2004, 63(2): 357-365.
    25 Salvatore G, Domenica A, Maria-Michela C, et al. Efferent vagal fibre stimulation blunts NF-κB activation and protects against hypovolemic hemorrhagic shock [J]. Circulation, 2003, 107: 1189-1194.
    26 曹贇杰,何小舟。ACTH治疗肾脏疾病高脂血症的研究进展[J]。实用临床医 学,2003,4(5):14-20。
    27 Kailash P, Patti L.Role of oxyradicals in the pathophysiology of hemorrhagic shock [J]. Inter.J.Angiology, 2002,11:113-128.
    28 Rsnic F S, Wainstein M, Lee M K, et al. No-reflow is an independent predictor of death and myocardial infarction after percutaneous coronary intervention [J]. Am Heart J, 2003, 145(1): 42-46.
    29 陈惠孙,刘良明,赵克森主编。现代创伤休克基础与临床[M]。北京:人民军医出版社,1999,146。
    30 Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 45: 837-846.
    31 Tirumalai R S, Chan K C, Prieto D A, et al. Characterization of the low molecular weight human serum proteome [J]. Mol. Cell. Proteomics, 2003, 2: 1096-1103.
    32 O'Farrell P G High resolution two-dimensional electrophoresis of proteins [J]. J Bio Chem, 1975, 26: 231-243.
    33 Liu H, Lin D, Yates J R 3rd. Multidimensional separations for protein/peptide analysis in the post-genomic era [J]. Biotechniques, 2002, 32: 898-902.
    34 Manabe T. Capillary electrophoresis of proteins for proteomic studies [J]. Electrophoresis, 1999, 20: 3116-3121.
    35 Figeys D. Adapting arrays and lab-on-a-chip technology for proteomics [J]. Proteomics, 2002, 2: 373-382.
    36 Yates J R 3rd. Mass espectral analysis in proteomics [J]. Annu Rev Biophys Biomol Struct, 2004, 33: 297-316.
    37 Anderson N L, Anderson N G The human plasma proteome: history, characte, and diagnostic prospects [J]. Mol Cell Proteomics, 2002, 1: 845-867.
    38 Alam H B, Stegalkina S, Rhee P, et al. cDNA array analysis of gene expression following hemorrhagic shock and resuscitation in rats [J]. Resuscitation, 2002, 54(2): 195-206.
    39 郑伟,周虹。刺激迷走神经抗炎的研究进展[J]。中国急救医学,2005,25(12):910-912。
    40 Tracey K J. The inflammatory reflex [J]. Nature, 2002, 420(6917): 853-859.
    41 李建国,胡正芳,杜朝暈等。胆碱能抗炎通路对失血性休克大鼠保护作用的研究[J]。中国危重病急救医学,2005,17(1):24-27。
    42 赵超英,郑成竹,闻兆章等。失血性休克犬模型的改进[J]。第二军医大学学 报,1999,20(11):918-919。
    43 吴勤,王鹏巨,王玲等。创伤家兔应激激素及血糖的变化与急性皮肤压伤的关系[J]。解放军护理杂志,2001,18(3):5-6。
    44 王钢,赵敏,任广成。大白鼠出血性休克和多脏器功能障碍模型的建立[J]。中国医科大学学报,2003,32(6):500-502。
    45 Rocha-e-Silva M, Loureiro M I, Velasco I T, et al. Uncontrolled pressure-driven hemorrhage: a new concept in the experimental study of hemorrhagic shock [J]. Eur. Surg. Res, 1990, 22(2): 309.
    46 尤家騄,罗涵。休克动物实验模型复制。见:潘世宬,罗正曜主编。休克[M]。北京:人民卫生出版社,1982,491-496。
    47 Velasco I T, Pontier V, Rocha-e-Silva M, et al. Hyperosmotic NaCl and severe hemorrhagic shock [J]. Am J Physiol, 1980, 239(5): H664.
    48 Wisner D H, Battistella F D, Freshman S P, et al. Nuclear magnetic resonance as a measure of cerebral metabolism: effects of hypertonic saline resuscitation [J]. J Trauma, 1992, 32(3): 351.
    49 吴敏范,滕国玺。电刺激中央中核诱发猫丘脑后核群单位放电的观察[J]。针刺研究,1994,19(2):39-41。
    50 Snider R S, Niemer W T. A stereotaxic atlas of the cat brain [M]. Chicago: University of Chicago Press, 1961.
    51 王钢,赵敏,任广成。大白鼠出血性休克和多脏器功能障碍模型的建立[J]。中国医科大学学报,2003,32(6):500-502。
    52 Onarheim H, Missavage A E, Kramer G C, et al. Effectiveness of hypertonic saline-dextran 70 for initial fluid resuscitation of major burns [J]. J Trauma, 1990, 30(5): 597.
    53 Backman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly [J]. Am J Physiol, 1996, 271(1): c1424-c1437.
    54 Cuzzocrea S, Riley D P, Achille P, et al. Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury [J]. Pharmacol Rev, 2001, 53(1): 135-159.
    55 刘艳,吴伟康,杨成梯等。从氧自由基、一氧化氮探讨四逆汤抗急性失血性休克的肝脏机制[J]。中国病理生理杂志,2003,19(6):810-815。
    56 Lantos J, Temes G, Gobolos L, et al. Is peripheral blood a reliable indicator of acute oxidative stress following heart ischemia and reperfusion? [J]. Med Sci Monit, 2001, 7: 1166.
    57 Ilhan N, Halifeoglu I, Qzercan H I, et al. Tissue malondialdehyde and adenosine triphosphatase level after experimental liver ischemia-reperfusion damage [J]. Cell Biochem Funct, 2001, 19: 207.
    58 王鹏,张燕,田玉科等。血液稀释和川芎嗪在缺血再灌注损伤中对心肌SOD、MDA及超微结构的影响[J]。华中科技大学学报(医学版),2004,33(4):485-487。
    59 徐立新,何绘敏,曲云霞等。新生大鼠缺血性脑病脑组织内脂质过氧化改变及丹参的保护作用探讨[J]。新生儿科杂志,2000,15(2):63-65。
    60 金正勇,许春花,池永学等。PGE_1对缺氧缺血新生大鼠脑组织中SOD、MDA的影响[J]。中华实用中西医杂志,2004,4(17):2430-2431。
    61 王昕。归芪胶囊对家兔心肌缺血—再灌注损伤中SOD MDANOS影响的实验研究[J]。中医药学刊,2004,22(10):1815-1816。
    62 李士泽,任宝波,杨焕民等。不同强度冷应激对大鼠肌肉、脾脏和肝脏中HSP70表达的影响[J]。应用与环境生物学报,2006,12(2):235-238。
    63 Rockett J C, Mapp F L, Garges J B, et al. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice [J]. Biol Reprod. 2001, 65: 229-239.
    64 秦丽娟,曹宇。局部热应激预处理对肝脏缺血/再灌注损伤的防护作用的机制[J]。中国应用生理学杂志,2005,21(3):285-289。
    65 罗东林,周继红,刘宝华等。热休克蛋白70对严重创伤休克后肝脏的作用[J]。中华急诊医学杂志,2005,14(11):907-909。
    66 Fukuda A, Osawa T, Oda H, et al. Oxidative stress response in ironinduced acute nephrotoxicity: enhanced expression of heat shock protein 90 [J]. Biochem Biophys Res Commun. 1996, 219(1): 76-81.
    67 Vanitallie T B. Stress: a risk factor for serious illness [J]. Metabolism. 2002, 51(suppl 1): 40-45.
    68 Willoughby D S, Priest J W, Nelson M. Expression of the stress proteins, ubiquitin, heat shock protein 72, and myofibrillar protein content after 12 weeks of leg cycling in persons with spinal cord injury [J]. Arch Phys Med Rehabil. 2002, 83(5): 649-654.
    69 Planas A M, Soriano M A, Estrada A, et al. The heat shock stress response after brain lesions: induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition [J]. Prog Neurobiol. 1997, 51(5): 607-636.
    70 孙丽梅,张丽红,王恩华。非小细胞肺癌中谷胱甘肽S-转移酶的表达[J]。中国医科大学学报,2000,29(2)。
    71 Batist G, Tulpule A, Sinha B K, et al. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells [J]. J Biol chem, 1986, 261(24): 15544-15549.
    72 Toffoli G, Viel A, Tumiotto L, et al. Expression of glutathione-S-transferase in human tumors [J]. Eur J Cancer, 1992, 28A: 441.
    73 Sehgal P B, Crieninger G, Tostato G. Regulation of the acute phase and immune response [J]. Ann NY Acad Sci, 1989, 557: 1.
    74 韩红彦,王翠姣,陈辉霖等。失血性休克患者白介素1、白介素6和肿瘤坏死因子变化与分析[J]。中国厂矿医学,2001,14(4):274-275。
    75 马秋平,白坚石。人血浆蛋白质组研究方法及其应用[J]。中国生物制品学杂志,2006,19(2):208-211。
    76 Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver [J]. Electrophoresis. 1997, 18(3-4): 533-537.
    77 Kawamoto S, Matsumoto Y, Mizuno K, et al. Expression profiles of active genes in human and mouse livers [J]. Gene. 1996, 174(1): 151-158.
    78 郭淑杰,周文霞,张永祥。血浆蛋白质组学的研究进展[J]。中国药理学与毒理学杂志。2004,18(6):466-470。
    79 Petricoin E E, Paweletz C P, Liotta L A. Clinical applications of proteomics: proteomic pattern diagnostics [J]. J Mammary Gland Biol Neoplasia, 2002, 7(4): 433-440.
    80 罗小云,吴庆华。双向凝胶电泳在临床蛋白质组学研究中的技术难点和解决方法[J]。北京生物医学工程,2006,25(4):434-437。
    81 Anderson N L, Anderson N G. The human plasma proteome: history, character, and diagnostic prospects [J]. Mol Cell Proteomics, 2002, 1(11): 845-867.
    82 Anderson N L. High resolution two-dimensional electrophoretic mapping of immunoglobulin light chains [J]. Immunol Lett, 1981, 2: 195-199.
    83 Harrison H H. Patient-specific microheterogeneity patterns of monoclonal immunoglobulin light chains as revealed by high resolution, two-dimensional electrophoresis [J]. Clin Biochem, 1992, 25: 235-243.
    84 Vu D H, Schneider P, Tissot J D. Electrophoretic characteristics of monoclonal immunoglobulin G of different subclasses [J]. J Chromatogr B Anal Technol Biomed Life Sci, 2002, 771: 355-368.
    85 Chan K C, David A. Analysis of the human serum proteome [J]. Clin proteomics, 2004, 1: 101-225.
    86 Wang Y Y, Cheng P, Chan D W. A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis [J]. Proteomics, 2003, 3(3): 243-248.
    87 Shaw M M, Riederer B M. Sample preparation for two-dimensional gel electrophoresis [J]. Proteomics, 2003, 3: 1408-1417.
    88 Govarukhina N T, Keizer G A, Vander Z A G, et al. Sample preparation of human serum for the analysis of tumor markers: Comparison of different approaches for albumin and gamma-globulin depletion[J]. J Chromatog, 2003, 1009: 171-178.
    89 Gennough C, Jenkins R E, Heringham N R, et al. A method for the rapid depletion of albumin and immunoglobulin from human plasma [J]. Proteomics, 2004, 4: 3107-3111.
    90 Bjorhall K, Miliotis T, Davidsson P. Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples [J]. Proteomics, 2005, 4: 307-317.
    91 Anderson N L, Steiner S. Multi-component immunoaffinity subtraction chromatography: An innovative step towards a comprehensive survey of the human plasma proteome[J]. Proteomics, 2003, 3: 422-432.
    92 Ahmer N, Barker G, Oliva K, et al. An approach to remove albumin for the proteomic amalysis of low abundance biomarkers in human serum [J]. Proteomics, 2003, 3: 1980-1987.
    93 Kaiser V L, Sifri Z C, Senthil M, et al. Albumin peptide: A molecular marker for trauma/hemorrhagic-shock in rat mesenteric lymph [J]. Peptides, 2005, 26: 2491-2499.
    94 Hanash S. Disease proteomics [J]. Nature, 2003, 422(6928):226-232
    95 葛文松,朱木梁,谢谓芬。肝脏蛋白质组学研究进展[J]。胃肠病学和肝病学 杂志,2006,15(3):314-317。
    96 Paulson L, Martin P, Persson A, et al. Comparative genome and proteome analysis of cerebral cortex from MK-801 treated rats [J]. Journal of Neuroscience Research, 2003, 71(4): 526-533.
    97 Shaw M M, Riederer B M. Sample preparation for two-dimensional gel electrophoresis [J]. Proteomics, 2003, 3(8): 1408-1417.
    98 陈奕,丁健。热休克蛋白90—癌症治疗的新靶点[J]。癌症,2004,23(8):968-974。
    99 欧阳涓,姜傥。热休克蛋白90与类固醇激素受体功能的研究进展[J]。国外医学,2005,26(4):217-219。
    100 Guo G G, Patel K, Kumar V, et al. Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes [J]. Journal of Interferon & Cytokine Research, 2002, 22(5): 555-563.
    101 Celli C M, Jaiswal A K Role of GRP58 in mitomycin C-induced DNA cross-linking [J]. Journal of Cancer Research, 2003, 63(18): 6016-6025.
    102 Antoniou A N, Ford S, Alphey M, et al. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class Ⅰ molecules [J]. The EMBO Journal, 2002, 21(11): 2655-2663.
    103 Coppari S, Altieri F, Ferraro A, et al. Nuclear localization and DNA interaction of protein disulfide isomerase ERp57 in mammalian cells [J]. Jounal of Cellular Biochemistry, 2002, 85(2): 325-333.
    104 Wyse B, Ali N, Ellison D H. Interaction with grp58 increases activity of the thiazide-sensitive Na-Cl cotransporter [J]. American Journal of Physiology Renal Physiology, 2002, 282(3): F424-F430.
    105 Muhlenkamp C R, Gill S S. A glucose-regulated protein, GRP58, is down-regulated in C57B6 mouse liver after diethylhexyl phthalate exposure [J]. Toxicology and Applied Pharmacology, 1998, 148(1): 101-108.
    106 Rhee S G, Kang S W, Chang T S, et al. Peroxiredoxin, a novel family of peroxidases [J]. IUBMB Life, 2001, 52(1-2): 35-41.
    107 Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein [J]. Redox Report, 2002, 7(3): 123-130.
    108 Tien N N, Knoops B. Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat [J]. FEBS Letters, 2003, 544(1-3): 148-152.
    109 Chang T S, Jeong W, Choi S Y, et al. Regulation of peroxiredoxin Ⅰ activity by Cdc2-mediated phosphorylation [J]. The Journal of Biological Chemistry, 2002, 277(28): 25370-25376.
    110 章波,向渝梅,白云等。小鼠peroxiredoxin基因家族的生物信息学分析[J]。第三军医大学学报,2005,27(9):847-849。
    111 狄军艳,冯甲棣,张玉霞等。大鼠肝微粒体细胞色素b5对细胞色素P450在体温调节中作用影响的探讨[J]。中国医科大学学报,2003,32(5):403-407。
    112 Vila M R, Nicolas A, Morote J, et al. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction [J]. Cancer, 2000, 89(1): 152-164.
    113 Blackstock W P, Weir M P. Proteomics: Quantitative and physical mapping of cellular proteins [J]. Trends Biotechnol, 1999, 17: 121-127.
    114 芮伟,汤健。蛋白质组及其在医学研究中的应用[J]。中华医学杂志,2001,81:1146-1149。
    115 刘建军,黄海燕,庄志雄。利用蛋白质组学技术研究三氯乙烯刺激肝细胞后蛋白质差异表达[J]。中华劳动卫生职业病杂志,2005,23(6):431-434。
    116 Claudio H, Milene R C, Sebastien W, et al. The Disulfide Isomerase Grp58 Is a Protective Factor against Prion Neurotoxicity [J]. The Journal of Neuroscience, 2005, 25(11): 2793-2802.
    117 Turano C, Coppari S, Altieri F, et al. Proteins of the PDI family: unpredicted non-ER locations and functions [J]. J Cell Physiol, 2002, 193(2): 154-163.
    118 方欢,申宗候。内质网应激[J]。医学分子生物学杂志,2004,1(1)36-39。
    119 Kita K, Okumura N, Takao T, et al. Evidence for phosphorylation of rat liver glucose-regulated protein 58, GRP58/ERp57/ER-60, induced by fasting and leptin [J]. FEBS Letters, 2006, 580(1): 199-205.
    120 Wyse B, Ali N, Ellison D H. Interaction with grp58 increases activity of the thiazide-sensitive Na-C1 cotransporter [J]. Am J Physiol Renal Physiol, 2002, 282(3): F424-F430.
    121 Bourdi M, Demady D, Martin J L, et al. cDNA cloning and baculovirus expression of the human liver endoplasmic reticulum P58: characterization as a protein disulfide isomerase isoform, but not as a protease or a carnitine acyltransferase [J]. Arch. Biochem. Biophys. 1995, 323(2):397-403.
    
    122 Koivunen P, Horelli K N, Helaakoski T, et al. Structures of the human gene for the protein disulfide isomerase-related polypeptide ERp60 and a processed gene and assignment of these genes to 15q15 and 1q21 [J]. Genomics. 1997, 4(2):397-404.
    
    123 Briquet L V, Xia Y R, Rooke K, et al. Mapping of three members of the mouse protein disulfide isomerase family. Mammalian Genome [J]. 1998, 9(2):176-177.
    
    124 Frickel E M, Frei P, Bouvier M, et al. ERp57 Is a Multifunctional Thiol-Disulfide Oxidoreductase [J]. The Journal of Biological Chemistry, 2004, 279(18):18277-18287.
    
    125 Antoniou A N, Powis S J. Characterization of the ERp57-Tapasin complex by rapid cellular acidification and thiol modification [J]. Antioxid Redox Signal, 2003, 5(4):375-379.
    
    126 Alanen H I, Salo K E, Pekkala M, et al. Defining the domain boundaries of the human protein disulfide isomerases [J]. Antioxid. Redox Signal, 2003, 5(4):367-374.
    
    127 Oliver J D, Roderick H L, Llewellyn D H, et al. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin [J]. Mol. Biol. Cell, 1999, 10(8):2573-2582.
    
    128 Lee A S. The glucose-regulated protein: stress induction and clinical applications [J]. Trends Biochem Sci, 2001, 26(8):504-510.
    
    129 Qian Y, Tiffany C E. Lead-induced endoplasmic reticulum ( ER) stress responses in the nervous system [J]. Neurochem Res, 2003, 28(1):153-162.
    
    130 Caspersen C, Pedersen P S, Treiman M. The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein [J]. J Biol Chem, 2000, 275(29):22363-22372.
    
    131 Lee A S. The glucose-regulated protein: stress induction and clinical applications [J]. Trends Biochem Sci, 2001, 26(8):504-510.
    
    132 Qian Y, Tiffany C E. Lead-induced endoplasmic reticulum ( ER) stress responses in the nervous system [J]. Neurochem Res, 2003, 28(1): 153-162.
    
    133 Ellgaard L, Frickel E M. Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding [J]. Cell Biochem Biophys, 2003, 39(3):223-247.
    
    134 Molinari M, Galli C, Piccaluga V, et al. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER [J]. J Cell Biol, 2002, 158(2): 247-257.
    135 Daniels R, Kurowski B, Johnson A E, et al. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin [J]. Mol Cell, 2003, 11(1): 79-90.
    136 Bouvier M. Accessory proteins and the assembly of human class Ⅰ MHC molecules: a molecular and structural perspective [J]. Mol. Immunol, 2003, 39(12): 697-706.
    137 Antoniou A N, Powis S J, Ellott T. Assembly and export of MHC class Ⅰ peptide ligands [J]. Curt. Opin. Immunol, 2003, 15(1): 75-81.
    138 Coppari S, Aleieri F, Ferraro A, et al. Nuclear localization and DNA interaction of protein disulfide isomerase ERp57 in mammalian cells [J]. J. Cell. Biochem, 2002, 85(2): 325-333.
    139 Guo G G, Patel K, Kumar V, et al. Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes [J]. J. Interferon Cytokine Res, 2002, 22(5): 555-563.
    140 Sehgal P B, Guo G G, Shah M, et al. Cytokine signaling: STATS in plasma membrane rafts [J]. J. Biol. Chem, 2002, 277(14): 12067-12074.
    141 F.M_奥斯伯等著,马学军等译。精编分子生物学实验指南[M]。科学出版社,2005第四版。
    142 王京兰,钱小红。磷酸化蛋白质分析技术在蛋白质组研究中的应用[J]。分析化学评述与进展,2005,33(7):1029-1035。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700