抑制GnT-V表达诱导SMMC-7721细胞发生内质网应激的机制探讨—GLUT1结构和功能异常
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N-乙酰氨基葡萄糖基转移酶V(GnT-V)位于真核细胞的高尔基体中,它是N-连接糖蛋白糖链加工合成过程中的关键酶。GnT-V催化的反应是将供体UDP-GlcNAc中的GlcNAc转移至受体糖链中的α-1,6甘露糖苷臂,进而形成含有β-1,6分支结构(GlcNAcβ1,6 Manα1,6)的三或四天线的N-糖链。以往的研究显示,GnT-V与正常细胞的恶性转化和肿瘤细胞的转移密切相关。本课题组前期的研究表明,使用反义寡核苷酸和RNA沉默技术抑制GnT-V的表达(GnT-V的表达下降约56%),能够诱导人肝癌细胞株SMMC-7721发生内质网应激反应(Endoplasmic Reticulum Stress,ER stress)。在转染反义GnT-V的7721细胞(7721/AS)中,分子伴侣Bip在mRNA和蛋白水平均出现增高,同时出现XBP1mRNA的剪接。总蛋白的糖染色显示,7721/AS细胞糖蛋白的三、四天线的N-糖链明显减少。但对于ER stress出现的具体分子机制还不甚了解,可能与某些糖蛋白的糖链变化有关。本研究在前期研究的基础上,进一步探讨了GnT-V低表达导致7721细胞出现ER stress的具体分子机制;继而从另一侧面初步探讨了GnT-V过表达时对ER stress的影响。
     本研究分成四部分,以具有N-连接糖链的葡萄糖转运体1(GLUT1)为主要研究对象。首先我们观察了7721,7721/AS和7721/mock三种细胞中GLUT的表达类型,结果表明GLUT1成为三种细胞的主要葡萄糖转运体类型。接下来我们观察了7721/AS细胞的GLUT1糖链结构是否发生变化,结果显示GLUT1的分子量减小,且三、四天线的N-糖链成分减少。然后我们又发现7721/AS细胞中GLUT1转运葡萄糖的功能也显著降低。进一步的研究显示,GLUT1在7721/AS细胞中的分布并未受到影响。为了确认葡萄糖饥饿可以引起细胞发生ER stress,我们对7721细胞进行了葡萄糖饥饿的研究,结果显示,在葡萄糖饥饿的情况下,7721细胞发生了明显的ER stress。最后,受文献的启发,我们初步观察了GnT-V表达水平与内质网应激的关系:我们以自身存在ER stress的人肝癌细胞株—HuH7为对象,发现与其它自身无ER stress的肝癌细胞相比,HuH7的GnT-V表达水平较低,向HuH7细胞中转染GnT-V,发现HuH7的应激水平减弱。80
     综上所述,GLUT1结构和功能的异常导致7721/AS细胞出现葡萄糖缺乏,进而引起细胞发生ER stress。GnT-V低表达正是通过改变GLUT1的糖链结构而导致7721细胞出现应激反应。相反,GnT-V过表达减弱HuH7细胞中ER stress的现象更加从另一侧面证实了GnT-V表达水平与ER stress的相关性。
N-acetylglucosaminyltransferaseV (GnT-V, EC 2. 4. 1. 155), which localizes in Golgi apparatus, catalyzes the transfer of GlcNAc residue from UDP-GlcNAc to anα-1, 6 mannoside arm in the acceptor glycans to synthesize the GlcNAc-β1, 6-Man branching (GlcNAcβ1, 6 Manα1, 6), then forms tri-or tetra-antennary N-linked oligosaccharide chains. GnT-V is a key enzyme in the processing of N-glycans during synthesis of glycoproteins. It is well known that GnT-V is associated with tumorigensis of normal cells and metastasis of tumor cells. In our laboratory, using antisense oligonucleotide and RNAi techniques, it was found that down-regulating GnT-V could activate endoplasmic reticulum stress ( ER stress ) responses in 7721 cells, a human hepatocarcinoma cell line ( the expression of GnT-V was decreased about 56% ). There was an up-regulation of Bip at mRNA and protein levels, and appearance of the spliced form of XBP1mRNA in antisense GnT-V transfectant. In this study, we further investigated the molecular mechanism of ER stress induced by down-regulating GnT-V.
     We selected glucose transporter (GLUT) as the object of study, since GLUT was a glycoprotein containing an N-linked glycan chain and responsible for basic supply of cells with glucose. Glucose starvation has been shown to induce ER stress in tumor ells. Therefore we hypothesized that GnT-V change glycosylation of GLUT and further affect the function of GLUT. Furthermore, inspired by a literature, we observed the effect of GnT-V on ER stress existed in HuH7 hepatocarcinoma cell line. The results obtained from this study are as follows: (1) GLUT1 has become the predominant GLUT isoform of 7721 cells. (2) The content oftri-or tetra-antennary sugar chain of GLUT1 decreased in antisense GnT-V transfectant. (3) Glucose transport activity of GLUT1 in antisense GnT-V transfectant is at least 2-fold lower than that in mock tansfectant. (4) Modulation of GLUT1 glycosylation does not interfere with the distribution of GLUT1 protein within cells. (5) Glucose deprivation can activate ER stress responses in 7721 cells. (6) GnT-V overexpression attenuates the ER stress in HuH7 cells.
     In summary, the glucose transport activity and glycosylation of GLUT1 decreased in antisense GnT-V transfectant, which may be one possible mechanism of ER stress induced by down-regulating GnT-V, and GnT-V may contribute to the regulation of glucose uptake by modifying glycosylation of GLUT1 in some tumor cells.
引文
[1] Brockhausen I, Carver JP, Schachter H. Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, and Ⅵ in the biosynthesis of highly branched N-glycans by hen oviduct membranes[J]. Biochem Cell Biol, 1988, 66(10):1134-1151.
    [2] Cummings RD, Trowbridge IS, Komfeld S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase[J]. J Biol Chem, 1982, 257(22): 13421-13427.
    [3] Kamar M, Alvarez-Manilla G, Abney T, Azadi P, Kolli VSK, Orlando R, Pierce M. Analysis of the site-specific N-glycosylation of β1,6 N-acetylglucosaminyltransferase V[J]. Glycobiology, 2004, 14(7):583-592.
    [4] Dennis JW, Lafertes S, Waghorne C, Breitman ML, Kerbel RS. Betal-6 branching of Asn-linked oligosaccharides is directly associated with metastasis[J]. Science, 1987, 236(4801):582-588.
    [5] Fernandes B, Sagman U, Auger M, Demetriou M, Dennis JW. Betal-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia[J]. Cancer Res, 1991, 51 (2):718-723.
    [6] Pierce M, Buckhaults P, Chen L, Fregien N. Regulation of N-acetylglucosaminyltransferase V and Asn-linked oligosaccharide beta(1,6) branching by a growth factor signaling pathway and effects on cell adhesion and metastatic potential[J]. Glycoconj J, 1997, 14(5):623-630.
    [7] Ito Y, Miyoshi E, Sakon M, Takeda T, Noda K, Tsujimoto M, Ito S, et al. Elevated expression of UDP-N-acetylglucosamine: alphamannoside betal,6 N-acetylglucosaminyltransferase is an early event in hepatocarcinogenesis[J]. Int J Cancer, 2001, 91 (5):631-637.
    [8] Yamamoto H, Swoger J, Greene S, Saito T, Hurh J, Sweeley C, Leestma J, et al. Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity[J]. Cancer Res, 2000, 60(1): 134-142.
    [9] Chen L, Zhang WJ, Fregien N, Pierce M. The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products[J]. Oncogene, 1998, 17(16):2087-2093.
    [10] Yanagi M, Aoyagi Y, Suda T, Mita Y, Asakura H. N- acetylglucosaminyltransferase V as a possible aid for the evaluation of tumor invasiveness in patients with hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2001, 16(11):1282-1289.
    [11] Yao M, Zhou DP, Jiang SM, Wang QH, Zhou XD, Tang ZY, Gu JX. Elevated activity of N-acetylglucosaminyltransferase V in human hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 1998, 124(1):27-30.
    [12] Guo P, Wang QY, Guo HB, Shen ZH, Chen HL. N-acetylglucosaminyltransferase V modifies the signaling pathway of epidermal growth factor receptor [J]. Cell Mol Life Sci, 2004, 61(14):1795-1804.
    [13] Guo P, Zhang Y, Zhao JH, Wang LY, Guo HB, Zhang XY, Chen HL. Regulation on the expression and N-glycosylation of integrins by N-acetylglucosaminyltransferase V[J]. Biochem Biophys Res Commun, 2003, 310(2): 619-626.
    [14] Guo HB, Liu F, Chen HL. Increased susceptibility to apoptosis of human hepatocarcinoma cells transfected with antisense N-acetylglucosaminyltransferase V cDNA[J]. Biochem Biophys Res Commun, 1999, 264(2):509-517.
    [15] Fang H, Huang W, Xu YY, Shen ZH, Wu CQ, Qiao SY, Xu Y, Yu L, Chen HL. Blocking of N-acetylglucosaminyltransferase V induces cellular endoplasmic reticulum stress in human hepatocarcinoma 7721 cells [J]. Cell Res, 2006, 16(1): 82-92.
    [16] Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum[J]. Nat Rev Mol Cell Biol, 2003,4(3): 181-191.
    [17] Ma YJ. Hendershot LM. ER chaperone function during normal and stress conditions[J]. J Chem Neuanat, 2004, 28(1-2):51-65.
    [18] Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to nucleus :the unfolded protein response in yeast and mammals[J]. Curr Opin Cell Biol, 2001, 13(3):349-356.
    [19] Jarosch E, Geiss-Friedlander R, Meusser B, Walter J, Sommer T. Protein dislocation from the endoplasmic reticulum-Pulling out the suspect[J]. Traffic, 2002, 3(8):530-536.
    [20] Shiu RPC, Pouyssegur J, Pastan I. Glucose depletion accounts for the induction of two transformation sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts[J]. Proc Natl Acad Sci, 1977, 74(9): 3840-3844.
    [21] Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, Hayakawa Y, Tsuruo T, Shin-ya K. Effect on Tumor Cells of Blocking Survival Response to Glucose Deprivation[J]. J Natl Cancer I, 2004, 96(17):1300-1310.
    [22] Scheepers A, Joost HG, Schumann A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function[J]. JPEN J Parenter Enteral Nutr, 2004,28(5): 364-371.
    [23] Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3): 654-662.
    [24] Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, et al. The role of N-glycosylation of GLUT1 for glucose transport activity. J Biol Chem, 1991,266(36):24632-24636.
    [25] Onetti R, Baulida J, Bassols A. Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1. FEBS Lett, 1997, 407(3): 267-270.
    [26] Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S, Lombardo D, Fayet G, El-Battari A. The impact of N- and O-glycosylation on the functions of Glut-1 transporter in human thyroid anaplastic cells [J]. Biochim Biophys Acta, 2003, 1621(1):92-101.
    [27] Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma:a possible involvement of the ER stress pathway in heptocarcinogenesis[J]. J Hepatol, 2003, 38(5):605-614.
    [1] Yanagi M, Aoyagi Y, Suda T, Mita Y, Asakura H. Nacetylglucosaminyltransferase V as a possible aid for the evaluation of tumor invasiveness in patients with hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2001,16(11):1282-1289.
    [2] Joost HG, Bell GI, Best JD, Bimbaum MJ, Charron MJ, Chen YT, Doege H, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators[J]. Am J Physiol Endocrinol Metab, 2002, 282(4):E974-E976.
    [3] Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3): 654-662.
    [4] Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S. Molecular biology of mammalian glucose transporters[J]. Diabetes Care, 1990, 13(3): 198-208.
    [5] Warburg O. On the origin of cancer cells[J]. Science, 1956, 123(3191):309-314.
    [6] Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth[J]. Proc Natl Acad Sci USA, 1997, 94(13):6658-6663.
    [7] Hatanaka M. Transport of sugars in tumor cell membranes[J]. Biochim Biophys Acta, 1974, 355(1):77-104.
    [8] Birnbaum MJ, Haspel HC, Rosen OM. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription[J]. Science, 1987, 235(4795): 1495-1498.
    [9] Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes[J]. Science, 1987,235(4795): 1492-1495.
    [10] Hennipman A, Smits J, Van Oirschot B, Van Houwelingen JC, Rijksen G, Neyt JP, Van Unnik JA, Staal GE. Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue[J]. Tumour Biol, 1987, 8(5):251—263.
    [11] Board M, Humm S, Newsholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells[J]. Biochem J 1990, 265(2):503-509.
    [12] Mazurek S, Grimm H, Boschek CB, Vaupel P, Eigenbrodt E. Pyruvate kinase type M2: A crossroad in the tumor metabolome[J]. Br J Nutr, 2002, 87(Suppl 1): S23-S29.
    [13] Guo HB, Liu F, Chen HL. Increased susceptibility to apoptosis of human hepatocarcinoma cells transfected with antisense N-acetylglucosaminyltransferase V cDNA[J]. Biochem Biophys Res Commun, 1999,264(2):509-517.
    [14] Noguchi Y, Okamoto T, Marat D, Yoshikawa T, Saitoh A, Doi C, Fukuzawa K, Tsuburaya A. Expression of facilitative glucose transporter 1 mRNA in coloncancer was not regulated by k-ras[J]. Cancer Lett, 2000, 154(2):137-142.
    [15] Fang H, Huang W, Xu YY, Shen ZH, Wu CQ, Qiao SY, Xu Y, Yu L, Chen HL. Blocking of N-acetylglucosaminyltransferase V induces cellular endoplasmic reticulum stress in human hepatocarcinoma 7721 cells[J]. Cell Res, 2006, 16(1): 82-92.
    [16] Ito S, Nemoto T, Satoh S, Sekihara H, Seyama Y, Kubota S. Human rhabdomyosarcoma cells retain insulin-regulated glucose transported activity through glucose transporter 1[J]. Archiv Biochem Biophys, 2000, 373(1):72-82.
    [17] Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J. Immunohistochemical detection of Glut3 in human tumors and normal tissues[J]. Anticancer Res, 1997,17(4A): 2747-2750.
    [18] Guo P, Wang QY, Guo HB, Shen ZH, Chen HL. N-acetylglucosaminyltransferase V modifies the signaling pathway of epidermal growth factor receptor [J]. Cell Mol Life Sci, 2004, 61(14):1795-1804.
    [19] Guo P, Zhang Y, Zhao JH, Wang LY, Guo HB, Zhang XY, Chen HL. Regulation on the expression and N-glycosylation of integrins by N-acetylglucosaminyltransferase V[J]. Biochem Biophys Res Commun, 2003, 310(2):619-626.
    [20] Su TS, Tsai TF, Chi CW, Han SH, Chou CK. Elevation of facilitated glucose-transporter messenger RNA in human hepatocellular carcinoma[J]. Hepatology, 1990, 11(1): 118-122.
    [21] Murakami T, Nishiyama T, Shirotani T, Shinohara Y, Kan M, Ishii K, Kanai F, Nakazuru S, Ebina Y. Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes[J]. J Biol Chem, 1992, 267(13):9300-9306.
    [22] Baron-Delage S, Mahraoui L, Cadoret A, Veissiere D, Taillemite JL, Chastre E, Gespach C, Zweibaum A, Capeau J, Brot-Laroche E, Cherqui G. Deregulation of hexose transporter expression in Caco-2 cells by ras and polyoma middle T oncogenes[J]. Am J Physiol, 1996, 270(2 Pt 1):G314-G323.
    [23] Au KK, Liong E, Li JY, Li PS, Liew CC, Kwok TT, Choy YM, Lee CY, Fung KP. Increase in mRNA levels of glucose transporters types 1 and 3 in Ehrlich ascites tumor cells during tumor development[J]. J Cell Biochem, 1997, 67(1): 131-135.
    [24] Rivenzon-Segal D, Rushkin E, Polak-Charcon S, Degani H. Glucose transporters and transport kinetics in retinoic acid-differentiated T47D human breast cancer cells[J]. Am J Physiol Endocrinol Metab, 2000, 279(3):E508-E519.
    [25] Board M, Humm S, Newsholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells[J]. Biochem J, 1990, 265(2):503-509.
    [26] Gould GW, Holman GD. The glucose transporter family: structure, function and tissue-specific expression[J]. Biochem J, 1993,295(Pt2):329-341.
    [1] Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, et al. The role of N-glycosylation of GLUT1 for glucose transport activity[J]. J Biol Chem, 1991, 266(36):24632-24636.
    [2] Samih N, Hovsepian S, Notel F, Prorok M, Zattara-Cannoni H, Mathieu S, Lombardo D, Fayet G., El-Battari A. The impact of N- and O-glycosylation on the functions of Glut-1 transporter in human thyroid anaplastic cells[J]. Biochim Biophys Acta, 2003, 1621(1):92-101.
    [3] Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol, 2005, 202(3): 654-662.
    [4] Gould GW, Thomas HM, Jess TJ, Bell GI. Expression of human glucose transporters in Xenopus oocytes: Kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms[J]. Biochemistry, 1991, 30(21):5139-5145.
    [5] Onetti R, Baulida J, Bassols A. Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1[J]. FEBS Lett, 1997, 407(3):267-270.
    [6] Masumi A, Akamatsu Y, Kitagawa T. Alteration by transforming growth factor-beta 1 of asparagines-linked sugar chains in glucose transporter protein in Swiss 3T3 cells[J]. Biochim Biophys Acta, 1994, 1221(3): 330-338.
    [7] Chen L, Zhang WJ, Fregien N, Pierce M. The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products [J]. Oncogene, 1998, 17(16):2087-2093.
    [8] Yanagi M, Aoyagi Y, Suda T, Mita Y, Asakura H. N- acetylglucosaminyltransferase V as a possible aid for the evaluation of tumor invasiveness in patients with hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2001, 16(11):1282-1289.
    [9] Suzuki K, Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site[J]. Proc Natl Acad Sci USA, 1980, 77(5):2542-2545.
    [10] Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD. Dietary and Genetic Control of Glucose Transporter 2 Glycosylation Promotes Insulin Secretion in Suppressing Diabetes[J]. Cell, 2005, 123(7):1307-1321.
    [11] Ito S, Nemoto T, Satoh S, Sekihara H, Seyama Y, Kubota S. Human rhabdomyosarcoma cells retain insulin-regulated glucose transported activity through glucose transporter 1[J]. Archiv Biochem Biophys, 2000, 373(11):72-82.
    [12] McMahon RJ, Hwang JB, Frost SC. Glucose deprivation does not affect GLUT1 targeting in 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun, 2000, 273(3): 859-864.
    [13] Ahmed N, Berridge MV. N-Glycosylation of glucose transporter-1 (Glut-1) is associated with increased transporter affinity for glucose in human leukemic cells[J]. Leukemia Res, 1999, 23(4):395-401.
    [14] Kitagawa T, Tsuruhara Y, Hayashi M, Endo T, Stanbridge EJ. A tumor-associated glycosylation change in the glucose transporter GLUT1 controlled by tumor suppressor function in human cell hybrids [J]. J Cell Sci, 1995, 108(Pt12):3735-3743.
    [15] Guo P, Wang QY, Guo HB, Shen ZH, Chen HL. N-acetylglucosaminyltransferase V modifies the signaling pathway of epidermal growth factor receptor[J]. Cell Mol Life Sci, 2004, 61(14):1795-1804.
    [16] Guo P, Zhang Y, Zhao JH, Wang LY, Guo HB, Zhang XY, Chen HL. Regulation on the expression and N-glycosylation of integrins by N-acetylglucosaminyltransferase V[J]. Biochem Biophys Res Commun, 2003, 310(2):619-626.
    [17] Yao M, Zhou DP, Jiang SM, Wang QH, Zhou XD, Tang ZY, Gu JX. Elevated activity of N-acetylglucosaminyltransferase V in human hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 1998,124(1):27-30.
    [18] Ito Y, Mivoshi E, Sakon M, Takeda T, Noda K, Tsujimoto M, Ito S, et al. Elevated expression of UDP-N-acetylglucosamie: alphamannoside beta1, 6 N-acetylglucosaminyltransferase is an early event in hepatocarcinogenesis[J]. Int J Cancer, 2001, 91(5): 631-637.
    [19] Rogers S, Macheda ML, Docherty SE, Carty MD, Henderson MA, Soeller WC Gibbs EM, James DE, Best JD. Identification of a novel glucose transporter-like protein-GLUT-12[J]. Am J Physiol Endocrinol Metab, 2002, 282(3): E733-E738.
    [20] Chandler JD, Williams ED, Slavin JL, Best JD, Rogers S. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma[J]. Cancer, 2003, 97(8):2035- 2042.
    [21] KC S, Carcamo JM, Golde DW. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury[J]. FASEB J, 2005, 19(12):1657-1667.
    [1] Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth[J]. Proc Natl Acad Sci USA, 1997, 94(13):6658-6663.
    [2] Warburg O. On the origin of cancer cells[J]. Science, 1956,123(3191):309-314.
    [3] Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to nucleus: the unfolded protein response in yeast and mammals[J]. Curr Opin Cell Biol,2001,13(3):349-356.
    [4] Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell, 2001,107(7):881-891.
    [5] Raden D, Hildebrandt S, Xu P, Bell E, Doyle FJ, Robinson AS. Analysis of cellular response to protein overexpression[J]. Syst Biol (Stevenage), 2005, 152(4):285-289.
    [6] Shiu RPC, Pouyssegur J, Pastan I. Glucose depletion accounts for the induction of two transformation sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts[J]. Proc Natl Acad Sci, 1977, 74(9): 3840-3844.
    [7] Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, Hayakawa Y, et al. Effect on Tumor Cells of Blocking Survival Response to Glucose Deprivation[J]. J Natl Cancer I, 2004,96(17):1300-1310.
    [8] Namba T, Ishihara T, Tanaka K, Hoshino T, MizushimaT. Transcriptional activation of ATF6 by endoplasmic reticulum stressors[J]. Biochem Biophys Res Commun, 2007, 355(2):543-548.
    [9] Yu MS, Ho YS, So KF, Yuen WH, Chang RC. Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum [J]. Int J Mol Med, 2006,17(6): 1157-1161.
    [10] Liu F, Inageda K, Nishitai G, Matsuoka M. Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells[J]. Environ Health Perspect, 2006, 114(6):859-864.
    [11] Copanaki E, Schurmann T, Eckert A, Leuner K, Muller WE, Prehn JH, Kogel D. The amyloid precursor protein potentiates chop induction and cell death in response to ER Ca2+ depletion[J]. Biochim Biophys Acta, 2007, 1773(2):157-165.
    [12] Fang H, Huang W, Xu YY, Shen ZH, Wu CQ, Qiao SY, Xu Y, Yu L, Chen HL. Blocking of N-acetylglucosaminyltransferase V induces cellular endoplasmic reticulum stress in human hepatocarcinoma 7721 cells[J]. Cell Res, 2006,16(1): 82-92.
    [13] Wang Q, He ZZ, Zhang JH, Wang YY, Wang T, Tong SP, Wang LJ, Wang SJ, Chen YH. Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance [J]. Cancer Detect Prev, 2005,29(6):544-551.
    [14] Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum[J]. Nat Rev Mol Cell Biol, 2003, 4(3): 181-191.
    [15] Li B, Gao B, Ye L, Han X, Wang W, Kong L, Fang X, Zeng Y, Zheng H, Li S, Wu Z, Ye L. Hepatitis B virus X protein (HBx) activated ATF6 and IRE1-XBP1 pathways of unfolded protein response[J]. Virus Res, 2007,124(1-2):44-49.
    [16] Semenza GL. Angiogenesis in ischemic and neoplastic disorders[J]. Annu Rev Med, 2003, 54:17-28.
    [17] Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ. IRE1-mediated unconventional mRNA splicing and S2P mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response[J]. Genes Dev, 2002,16(4):452-466.
    [18] Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy[J]. Cancer Res, 1998, 58(7):1408-1416.
    [19] Yu JL, Coomber BL, Kerbel RS. A paradigm for therapy-induced microenvironmental changes in solid tumors leading to drug resistance[J]. Differentiation, 2002, 70(9-10): 599-609.
    [20] Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal[J]. Cancer Sci, 2003, 94(1):15-21.
    [21] Acker T, Plate KH. A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology [J]. J Mol Med, 2002, 80(9):562-575.
    [22] Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response[J]. Cell, 2001, 107(7):827-830.
    [23] Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcritional and translational control in the mammalian unfolded protein response[J]. Annu Rev Cell Dev Biol, 2002, 18:575-599.
    [24] Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM. The unfolded protein response in nutrient sensing and differentiation[J]. Nat Rev Mol Cell Biol, 2002, 3(6):411-421.
    [25] Guarnaccia SP, Shaper JH, Schnaar RL. Tunicamycin inhibits ganglioside biosynthesis in neuronal cells [J]. Proc Natl Acad Sci USA, 1983, 80(6):1551-1555.
    [26] Tkacz JS, Lampen 0. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes[J]. Biochem Biophys Res Commun, 1975, 65(1):248-257.
    
    [27] Lehle L. Tanner W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives [J]. FEBS Lett, 1976,72(1): 167-170.
    [28] Kadowaki H, Nishitoh H, Ichijo H. Survival and apoptosis signals in ER stress: the role of protein kinases[J]. J Chem Neuroanat, 2004,28(1-2):93-100.
    [29] Elyaman W, Terro F, Suen KC, Yardin C, Chang RC, Hugon J. BAD and Bcl-2 regulation are early events linking neuronal endoplasmic reticulum stress to mitochondria-mediated apoptosis [J]. Brain Res Mol Brain Res, 2002, 109(1-2):233-238.
    [30] Mandic A, Hansson J, Linder S, Shoshan MC. Cisplatin induces endoplasmic reticulum stress and nucleus independent apoptotic sigaling[J]. J Biol Chem, 2003,278(11):9100-9106.
    [31] Chen L, Gao X. Neuronal apoptosis induced by endoplasmic reticulum stress [J]. Neurochem Res, 2002, 27(9):891-898.
    [32] Guo HB, Liu F, Chen HL. Increased susceptibility to apoptosis of human hepatocarcinoma cells transfected with antisense N-acetylglucosaminyltransferase V cDNA[J]. Biochem Biophys Res Commun, 1999,264(2):509-517.
    [1] Fang H, Huang W, Xu YY, Shen ZH, Wu CQ, Qiao SY, Xu Y, Yu L, Chen HL. Blocking of N-acetylglucosaminyltransferase V induces cellular endoplasmic reticulum stress in human hepatocarcinoma 7721 cells[J]. Cell Res, 2006, 16(1): 82-92.
    [2] Shuda M. Kondoh N. Imazeki N. Tanaka K, Okada T, Mori K, Hada A, et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma:a possible involvement of the ER stress pathway in heptoearcinogenesis[J]. J Hepatol, 2003, 38(5):605-614.
    [3] Yao M, Zhou DP, Jiang SM, Wang QH, Zhou XD, Tang ZY, Gu JX. Elevated activity of N-acetylglucosaminyltransferase V in human hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 1998, 124(1):27-30.
    [4] Inaamori K, Gu J, Ohira M, Kawasaki A, Nakamura Y, Nakagawa T, Kondo A, Miyoshi E, Nakagawara A, Taniguchi N. High expression of N-acetylglucosaminyltransferase V in favorable neuroblastomas: Involvement of its effect on apoptosis[J]. FEBS Lett, 2006, 580(2):627-632.
    [5] Kim YS, Kang HY, Kim JY, Oh S, Kim CH, Ryu CJ, Miyoshi E, Taniguchi N, Ko JH. Identification of target proteins of N-acetylglucosaminyl transferase V in human colon cancer and implications of protein tyrosine phosphatase kappa in enhanced cancer cell migration[J]. Proteomics, 2006, 6(4): 1187-1191.
    [6] Blais J, Bell JC. Novel therapeutic target: the PERKs of inhibiting the integrated stress response[J]. Cell Cycle, 2006, 5(24):2874-2877.
    [7] Van den Beucken T, Koritzinsky M, Wouters BG. Translational control of gene expression during hypoxia[J]. Cancer Biol Ther, 2006, 5(7):749-755.
    [8] Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal[J]. Cancer Sci, 2003, 94(1):15-21.
    [9] Acker T, Plate KH. A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology [J]. J Mol Med, 2002, 80(9):562-575.
    [10] Yang Q, Kim YS, Lin Y, Lewis J, Neckers L, Liu ZG. Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK[J]. EMBO Rep, 2006, 7(6):622-627.
    [11] Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis[J]. J Biol Chem, 2006,281(23): 16016-24.
    [12] Chen L, Zhang WJ, Fregien N, Pierce M. The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products [J]. Oncogene, 1998, 17(16):2087-2093.
    [13] Murata K, Miyoshi E, Ihara S, Noura S, Kameyama M, Ishikawa O, Doki Y. et al. Attachment of Human Colon Cancer Cells to Vascular Endothelium Is Enhanced by N-Acetylglucosaminyltransferase V[J]. Oncology, 2004, 66(6):492-501.
    [1] Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum[J]. Nat Rev Mol Cell Biol, 2003, 4(3):181-191.
    [2] Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines[J]. Cell, 1998, 92(3):351-366.
    [3] Ma YJ, Hendershot LM. ER chaperone function during normal and stress conditions[J]. J Chem Neuanat, 2004, 28(1-2):51-65.
    [4] Helenius A. Markus A. Intracellular functions of N-linked glycans[J]. Science, 2001, 291(5512):2364-2369.
    [5] Meunier L, Usherwood YK, Chung KT, Hendershot LM. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins[J]. Mol Biol Cell, 2002,13(12):4456-4469.
    [6] Pahl HL. Signal transduction from the endoplsmic reticulum to the cell nucleus[J]. Physiol Rev, 1999,79(3):683-700.
    [7] Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to nucleus:the unfolded protein response in yeast and mammals[J]. Curr Opin Cell Biol, 2001, 13(3):349-356.
    [8] Sidrauski C, Cox JS, Walter P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response[J]. Cell, 1996, 87(3):405-413.
    [9] Kadowaki H, Nishitoh H, Ichijo H. Survival and apoptosis signals in ER stress: the role of protein kinases [J]. J Chem Neuanat, 2004, 28(1-2):93-100.
    [10] Yohida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell, 2001,107(7):881-891.
    [11] Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP1 mRNA[J]. Nature, 2002,415(6867):92-96.
    [12] Chen X, Shen JS, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum stress and causes translocation of ATF6 from the ER to the Golgi[J]. J Biol Chem, 2002, 277(15): 13045-13052.
    [13] Yoshida H, Okada T, Haze K,Yanagi H, Yura T, Negishi M, Mori K. ATF6 activated by proteolysis binds in the presence of NF-Y(CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response [J]. Mol Cell Biol, 2000, 20(18):6755-6767.
    [14] Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, Hovanessian AG. Molecular cloning and characterization of the human doublestranded RNA- activated protein kinase induced by interferon[J]. Cell, 1990, 62(2):379-390.
    [15] Iwakoshi NN, Lee AH, Glimcher LH. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein responsefJ]. Immunol Rev, 2003, 194:29-38.
    [16] Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma:a possible involvement of the ER stress pathway in heptocarcinogenesis[J]. J Hepatol, 2003,38(5):605-614.
    [17] Jarosch E, Geiss-Friedlander R, Meusser B, Walter J, Sommer T. Protein dislocation from the endoplasmic reticulum-Pulling out the suspect[J]. Traffic, 2002, 3(8):530-536.
    [18] Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase [J]. Science, 1996, 272(5266): 1347-1349.
    [19] Barone MV, Crozat A, Tabaee A, Philipson L, Ron D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest[J]. Genes Dev, 1994, 8(4):453-464.
    [20] Friedman AD. GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res. 1996. 56(14), 3250-3256.
    [21] Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription[J]. Genes Dev, 1992, 6(3):439-453
    [22] McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state[J]. Mol Cell Biol, 2001, 21(4): 1249-1259.
    [23] Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity byamyloid-beta[J]. Nature, 2000,403(6765): 98-103.
    [24] Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 2000,150(4): 887-894.
    [25] Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress[J]. J Biol Chem, 2001, 276(17): 13935-13940.
    [26] Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, Del Rio G, Gibson BW, Ellerby HM, Bredesen DE. Molecular components of a cell death pathway activated by endoplasmic reticulum stress[J]. J Biol Chem, 2004, 279(1): 177-187.
    [27] Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, Del Rio G, Bredesen DE, Ellerby HM. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1 -independent intrinsic pathway [J]. J Biol Chem, 2002, 277(24): 21836-21842.
    [28] Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms[J]. Nature, 2004, 429(6987): 75-79.
    [29] Fischer H, Koenig U, Eckhart L, Tschachler E. Human caspase 12 has acquired deleterious mutations [J]. Biochem Biophys Res Commun, 2002, 293(2):722-726.
    [30] Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, et al. Involvement of caspase-4 in endoplasmic reticulum stess[J]. J Cell Biol, 2004, 165(3):347-356.
    [31] Wang NS, Unkila MT, Reineks EZ, Distelhorst CW. Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death[J]. J Biol Chem, 2001, 276(47):44117-44128.
    [32] Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways[J]. Nat Cell Biol, 2001, 3(11):E255-E263.
    [33] Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis[J]. Science, 2003, 300(5616):135-139.
    [34] Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death[J]. Science, 2001,292(5517):727-730.
    [35] Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats[J]. Genes Dev, 2002, 16(11):1345—1355.
    [36] Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M[J]. Mol Cell Biol, 1999,19(12):8469- 8478.
    [37] Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B. JNK-mediated BIM phosphorylation potentiates AX-dependent apoptosis [J]. Neuron, 2003, 38(6):899-914.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700