EAN脑保护与脑损伤修复三细胞模型系统中的星形胶质细胞形态特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:关于脑保护和脑损伤修复研究中,一般采用在体动物实验和体外细胞培养两种。在体实验虽然能保证与人体内环境的高度相似性,但由于其环境复杂,不可控因素较多,无法进行对单一干扰因素的分析。而单一的细胞培养忽略了脑内不同细胞(脑毛细血管内皮细胞、星形胶质细胞及神经元)之间的相互作用,因此共培养技术应运而生。但大多采用细胞系或来自不同种属动物的原代培养细胞共培养,已有文献指出这两种方式存在着许多不可避免的差异,这些差异往往会影响实验结果。为寻求一种更加客观有效的实验平台,本实验运用Transwell技术建立SD(Sprague-Dawley)大鼠的大脑毛细血管内皮细胞(Endothelial cell,E)、星形胶质细胞(Astrocyte,A)及神经元(Neuron, N)三细胞原代共培养模型系统。与以往实验相比,原代培养的细胞仍保留原有在体部分特性,可以实现模拟类似于血脑屏障结构及其客观微环境下的存活、生长、分化、功能、损伤、修复及相互作用。为将来脑保护与脑损伤修复研究提供了一个科学可信的新平台。
     方法:
     通过本实验室的经验积累以及参考大量文献的实验方法,作者对SD大鼠的大脑毛细血管内皮细胞、星形胶质细胞、神经元进行原代培养,用葡萄糖转运体1(Glucose Transport 1,GLUT-1)胶质原纤维酸性蛋白(Glial Fibrillary Acidic Protein ,GFAP)、微管相关蛋白2(Microtubule-Associated Protein 2,MAP-2)分别鉴定标记大脑毛细血管内皮细胞、星形胶质细胞及神经元,并计算其纯度。利用Transwell将三种细胞按一定时间和空间的顺序建立EAN三细胞共培养模型系统。当系统稳定后,利用激光共聚焦成像系统,分别拍摄单独培养和EAN系统中星形胶质细胞的GFAP免疫荧光图像直观描绘其形态学特征,利用图像分析软件Image-pro Plus6.0对其GFAP阳性结构中心聚集面积和投射周围的长度及面积进行测量,根据统计学方法客观分析其形态学特征,同时利用三维重建技术,分析星形胶质细胞GFAP阳性结构投射在Transwell半透膜微孔中的生长情况。
     结果:
     一、EAN模型中星形胶质细胞的GFAP阳性结构中心聚集面积为940.00±178.15μm2。单独培养的星形胶质细胞的GFAP阳性结构中心聚集面积为1946±173.01μm2。两者差异具有统计学意义(P<0.05)。
     二、EAN模型中星形胶质细胞的GFAP阳性结构投射周围长度为156.33±17.64μm,面积为2196.00±241.50μm2。单独培养的星形胶质细胞的GFAP阳性结构投射周围长度为108.48±13.33μm,面积为515.50±156.84μm2。两者GFAP阳性结构投射周围长度差异具有统计学意义(P<0.05),两者GFAP阳性结构投射周围面积差异具有统计学意义(P<0.05)。
     三、在Transwell中半透膜的微孔发现有星形胶质细胞的GFAP阳性结构存在。
     结论:
     一、在EAN三细胞共培养的模型系统中,星形胶质细胞GFAP阳性结构形态与单独培养条件下存在差异。与之比较,EAN模型中星形胶质细胞的GFAP阳性结构中心聚集面积减小,而GFAP阳性结构投射周围长度和面积均增大。
     二、EAN模型中星形胶质细胞GFAP阳性结构能够沿着Transwell中半透膜的微孔,向种植有大脑毛细血管内皮细胞方向生长。
Objective:During the research of the neuroprotection and the neuroregeneration, that often uses two different methods, which are in vitro experiment and in vivo experiment. The cell still retained similar original body characteristics in vivo experiment, but, its environment is complicated, which cannot control a several of factors, and it also cause the barrier of analysis to the interference of single factor. However, monoculture has neglected the interaction of different cells in the brain (such as, brain capillary endothelial cells, astrocytes and neurons). As a result, the co-culture technique has appeared. Generally, the primary culture cells introduce from the different species of animal to using the co-culture. According to several scientific references, those two methods have ineluctable discrepancy that usually affects an experiment result. In order to gain more objective and effective experiment platform, the Transwell technique of this experiment usage creates a three kind of the Sprague-Dawley (SD) rat’s primary culture cells (brain capillary endothelial cells, astrocytes and neurons--EAN) in the co–culture model system. From different previous studies, the primary culture cell still retained original partial characteristics in vivo and it also realizes the simulation to be similar under the blood brain barrier structure and the objective micro-environment survival, the growth, the differentiation, the function, the damage, the repair and the interaction. Therefore, it can enhance experiment's accuracy and the reliability, has provided a new scientific credible platform for the future neuroprotection and neuroregeneration research.
     Methods:
     According to several scientific references and the laboratory work experience, the author chooses the SD rat brain capillary endothelial cells, astrocytes and neurons that can be primary cultured, through the GLUT-1, GFAP and MAP-2 to mark brain capillary endothelial cell, astrocyte and neuron separately to measure the purity of cells. These cells are planted at a regular time and space via the transwell in sequence to establish EAN three cell co–culture model system. When the system became stable, using the confocal microscopy system, photographs astrocyte's GFAP immunity fluorescence ICON to intuitively describe its change of morphological character in the monoculture and the EAN model system separately. By using Image-pro Plus6.0 software, it can measure the peripheral projection length and area of astrocyte's GFAP positive structure and the central complex area of astrocyte's GFAP positive structure. Basic on the statistics method, analysis its change of morphological character objectively. Simultaneously using the three dimensional reconstruction technology, analysis the astrocyte’s GFAP positive structure that projects on the Transwell semi-permeable membrane pore growth status.
     Results:
     1. The central complex area of astrocyte's GFAP positive structure is 940.00±178.15μm2 in the EAN model, while in monoculture is 1946±173.01μm2. Both difference has statistics significance (P<0.05).
     2. The peripheral projection length of astrocyte's GFAP positive structure is 156.33±17.64μm, and the area is 2196.00±241.50μm2 in the EAN model. The peripheral projection length of astrocyte's GFAP positive structure is 108.48±13.33μm, and the area is 515.50±156.84μm2 in monoculture. Both the peripheral projection length of GFAP positive structure difference has statistics significance (P<0.05), and also both the peripheral projection area of GFAP positive structure difference has statistics significance (P<0.05).
     3. During Transwell the semi-permeable membrane pore that discover the existence of the astrocyte's GFAP positive structure.
     Conclusions:
     1. Using the primary culture the brain capillary endothelial cell, the astrocyte and the neuron established in the EAN three cell co–culture model system, which the GFAP positive structure shape of astrocyte compare with the condition of the sole culture existing difference. Compare to monoculture of astrocyte, the astrocyte's GFAP positive structure center of complex area reduces in the EAN model, but the periphery of the GFAP positive structure projection the length and the area increase.
     2. In the EAN model the astrocyte’s GFAP positive structure can grow along Transwell in the semi-permeable membrane pore,which cultivates the direction of the brain capillary endothelial cell to growth.
引文
1.Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A. Astroglia in dementia and Alzheimer's disease. Cell Death Differ, 2009, 16(3):378–85.
    2.Reichenbach, A. & Wolburg, H. in Neuroglia 2nd edn (eds Kettemann, H. & Ransom, B. R.) 19–35 (Oxford Univ. Press, New York, 2004).
    3.Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood–brain barrier. Acta Neurobiol Exp (Wars), 2011, 71(1):113–28.
    4.Terasaki T, Hosoya K. Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol Pharm Bull, 2001, 24(2):111–8.
    5.Roux F, Couraud PO. Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol Neurobiol, 2005, 25(1):41–58.
    6.Schlageter KE, Molnar P, Lapin GD. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc. Res, 1999,58:312–328.
    7.Kim JH, Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW. Blood–neural barrier: intercellular communication at glio–vascular interface. J Biochem Mol Biol, 2006,39(4):339–45.
    8.Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat, 2002, 200(6):629–38.
    9.Abbott NJ, R?nnb?ck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier, Nat Rev Neurosci, 2006, 7(1):41–53.
    10.Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol, 2004, 204(4):428–37.
    11.Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP–thirty–one years (1969–2000). Neurochem Res, 2000, 25(9–10):1439–51.
    12.Pekny M. Astrocytic intermediate filaments: lessons from GFAP and vimentin knock–out mice. Prog Brain Res, 2001, 132:23–30.
    13.Brenner M, Goldman JE, Quinlan RA, Messing A. Alexander disease: a genetic disorder of astrocytes. In Astrocytes in pathophysiology of the nervous system. V.H. Parpura and P.G. Haydon, editors, 2008, Boston, Massachusetts, USA. 591–648.
    14.Quinlan RA, Brenner M, Goldman J, and Messing A. GFAP and its role in Alexander disease. Exp. Cell Res, 2007, 313:2077–2087.
    15.Yang J, Mutkus LA, Sumner D, Stevens JT, Eldridge JC, Strandhoy JW, Aschner M. Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated byastrocyte–conditioned medium. Brain Res Mol Brain Res, 2001, 97(1):43–50.
    16.Tan KH, Dobbie MS, Felix RA, Barrand MA, Hurst RD. A comparison of the induction of immortalized endothelial cell impermeability by astrocytes. Neuroreport, 2001, 12(7):1329–34.
    17.Leybaert L, Paemeleire K, Strahonja A, Sanderson MJ. Inositol–trisphosphate–dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia, 1998, 24(4):398–407.
    18.Kanda T. Peripheral neuropathy and blood–nerve barrier. Rinsho Shinkeigaku, 2009, 49(11):959–62.
    19.Choi YK, Kim KW. Blood–neural barrier: its diversity and coordinated cell–to–cell communication. BMB Rep, 2008, 31(5):345–52.
    20.Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev, 2005, 57(2):173–85.
    21.Bauer HC, Bauer H. Neural induction of the blood–brain barrier: still an enigma. Cell Mol Neurobiol, 2000, 20(1):13–28.
    22.Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, Terasaki T, Kanda T. Peripheral nerve pericytes modify the blood–nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol, 2011, 226(1):255–66.
    23.Sch?ller K, Trinkl A, Klopotowski M, Thal SC, Plesnila N, Trabold R, Hamann GF, Schmid–Elsaesser R, Zausinger S. Characterization of microvascular basal lamina damage and blood–brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res, 2007, 20(1142)237–46.
    24.Tilling T, Engelbertz C, Decker S, Korte D, Hüwel S, Galla HJ. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res, 2002, 310(1):19–29.
    25.Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood–brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol, 2001, 153(5):933–46.
    1.Nakazawa K, Kalassy M, Sahuc F , et al. Pigmented human skin equivalent2 as a model of the mechanisms of control of cell-cell and cell-matrix interactions. Med Biol Eng Comput, 1998, (6):813– 820
    2.Bhandari RN , Riccalton LA , Lewis AL , et al. Liver tissue engineering : a role for co-culture systems in modifying hepatocyte function and viability. Tissue Eng, 2001, 7(3):345– 357
    3.Zhu L , Wei W, Zheng YQ , et al. Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis. Inflamm Res, 2005, 54(5):211– 220
    4.Yassini PR , Stickler DL , Bloomfield SM et al. Glioma-stimulated chemoattraction of endothelial cells and fibroblasts in vitro : a model for the study of glioma-induced angiogenesis. Metab Brain Dis, 1994, 9(4):391 -399.
    5.Mahmoodzadeh S, Dworatzek E, Fritschka S, Pham TH, Regitz-Zagrosek V. 17beta-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovasc Res, 2010, 85(4):719-28.
    6.Hong H, Stegemann JP. 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells. J Biomater Sci Polym Ed, 2008, 19(10):1279-93.
    7.Chen Y, Zhou H, Sarver AL, Zeng Y, Roy-Chowdhury J, Steer CJ, Sahin MB. Hepatic differentiation of liver-derived progenitor cells and their characterization by microRNA analysis. Liver Transpl, 2010, 16(9):1086-97.
    8.Tizon B, Sahoo S, Yu H, Gauthier S, Kumar AR, Mohan P, Figliola M, Pawlik M, Grubb A, Uchiyama Y, Bandyopadhyay U, Cuervo AM, Nixon RA, Levy E. Induction of autophagy by cystatin C: a mechanism that protects murine primary cortical neurons and neuronal cell lines. PLoS One, 2010, 5(3):9819.
    9.Mortier L, Delesalle F, Formstecher P, Polakowska R. Human umbilical cord blood cells form epidermis in the skin equivalent model. Exp Dermatol, 2010, 19(10):929-30.
    10.Berggreen E, Nyl?kken K, Delaleu N, Hajdaragic-Ibricevic H, Jonsson MV. Impaired vascular responses to parasympathetic nerve stimulation and muscarinic receptor activation in the submandibular gland in nonobese diabetic mice. Arthritis Res Ther, 2009, 11(1):R18.
    11.Chugh S, Suen C, Gramolini A. Proteomics and mass spectrometry: what have we learned about the heart? Curr Cardiol Rev, 2010, 6(2):124-33.
    12.Taylor KL, Leaman DW, Grane R, Mechti N, Borden EC, Lindner DJ. Identification of interferon-beta-stimulated genes that inhibit angiogenesis in vitro. J Interferon Cytokine Res,2008, 28(12):733-40.
    13.Folkman J , Haudenschild CC , Zetter BR. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA, 1979, 76(10):5217 - 5221.
    14.Darland DC ,D’Amore PA. Blood vessel maturation : vascular development comes of age. J Clin Invest , 1999, 103(2):157 - 158.
    15.Yassini PR , Stickler DL , Bloomfield SM, et al. Glioma-stimulated chemoattraction of endothelial cells and fibroblast in vitro : a model for the study of glioma-induced angiogenesis. Metab Brain Dis, 1994, 9(4):391 - 399.
    16.Rasheed S, Yan JS, Hussain A, Lai B. Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathways. J Transl Med, 2009, 7:75.
    17.Hashizume H, Falcón BL, Kuroda T, Baluk P, Coxon A, Yu D, Bready JV, Oliner JD, McDonald DM. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res, 2010, 70(6):2213-23.
    18.Ohno M, Motojima K, Okano T, Taniguchi A. Maturation of the extracellular matrix and cell adhesion molecules in layered co-cultures of HepG2 and endothelial cells. J Biochem, 2009, 145(5):591-7.
    19.Xue Y, Xing Z, Hellem S, Arvidson K, Mustafa K. Endothelial cells influence the osteogenic potential of bone marrow stromal cells. Biomed Eng Online, 2009, 17; 8:34.
    20.Grellier M, Bordenave L, Amédée J. Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol, 2009, 27(10):562-71.
    21.Zhang Y, Schedle A, Matejka M, Rausch-Fan X, Andrukhov O. The proliferation and differentiation of osteoblasts in co-culture with human umbilical vein endothelial cells: An improved analysis using fluorescence-activated cell sorting. Cell Mol Biol Lett, 2010, 15(4):517-29.
    22.Schwartz Z, Olivares-Navarrete R, Wieland M, Cochran DL, Boyan BD. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces. Biomaterials, 2009, 30(20):3390-6.
    23.Paxton JZ, Donnelly K, Keatch RP, Baar K, Grover LM. Factors affecting the longevity and strength in an in vitro model of the bone-ligament interface. Ann Biomed Eng, 2010, 38(6):2155-66.
    24.Wan LQ, Jiang J, Arnold DE, Guo XE, Lu HH, Mow VC. Calcium Concentration Effects on the Mechanical and Biochemical Properties of Chondrocyte-Alginate Constructs. Cell Mol Bioeng,2008, 1(1):93-102.
    25.Clarkin CE, Emery RJ, Pitsillides AA, Wheeler-Jones CP. Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J Cell Physiol, 2008, 214(2):537-44.
    26.Grellier M, Ferreira-Tojais N, Bourget C, Bareille R, Guillemot F, Amédée J. Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. J Cell Biochem, 2009, 106(3):390-8.
    27.Sakamoto N, Ohashi T, Sato M. Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model. Ann Biomed Eng, 2006, 34(3):408-15.
    28.Sakai J, Karino T, Niwa K. Flow-dependent accumulation of LDL in co-cultures of endothelial and smooth muscle cells in the presence of filtration flow through the cell layer. Clin Hemorheol Microcirc, 2008, 38(4):245-56.
    29.Rainger GE , Stone P , Morland CM, et al. A novel system for investigating the ability of smooth muscle cells and fibroblasts to regulate adhesion of flowing leukocytes to endothelial cells. J lmmunol Methods, 2001, 255 (1P2) :73 - 82.
    30.Wallace CS, Truskey GA. Direct-contact co-culture between smooth muscle and endothelial cells inhibits TNF-alpha-mediated endothelial cell activation. Am J Physiol Cell Physiol, 2007, 293(6):C1824-33.
    31.Sorrell JM, Baber MA, Caplan AI. Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions. Am J Physiol Heart Circ Physiol, 2010, 299(2):H338-46.
    32.Sekiya S, Muraoka M, Sasagawa T, Shimizu T, Yamato M, Okano T. Three-dimensional cell-dense constructs containing endothelial cell-networks are an effective tool for in vivo and in vitro vascular biology research. Wound Repair Regen, 2008, 16(2):300-9.
    33.Qi Y, Qian L, Sun B, Chen C, Cao Y. Circulating CD34(+) cells are elevated in neonates with respiratory distress syndrome. Inflamm Res, 2010, 59(10):889-95.
    34.Xu HP, Gou L, Dong HW. Study glial cell heterogeneity influence on axon growth using a new coculture method. J Vis Exp, 2010, 6 (43).
    35.Melero-Martin JM, De Obaldia ME, Allen P, Dudley AC, Klagsbrun M, Bischoff J. Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo. Tissue Eng Part A, 2010, 16(8):2457-66.
    36.Delic J, Zimmermann H. Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells. Purinergic Signal, 2010, 6(4):417-28.
    37.Vazin T, Chen J, Lee CT, Amable R, Freed WJ. Assessment of stromal-derived inducing activityin the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells, 2008, 26(6):1517-25.
    38.Meyer M, Johansen J , Gramsbergen JB , et al. Improved survival of embryonic porcine dopaminergic neurons in coculture with a conditionally immortalized GDNF-producing hippocampal cell line. Exp Neurol, 2000, 164 (1) :82 - 93.
    39.Bochev I, Elmadjian G, Kyurkchiev D, Tzvetanov L, Altankova I, Tivchev P, Kyurkchiev S. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol Int, 2008, 32(4):384-93.
    40.Bigdeli N, Karlsson C, Strehl R, Concaro S, Hyllner J, Lindahl A. Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells, 2009, 27(8):1812-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700