Pt基微纳结构无酶葡萄糖传感器的构建和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄糖酶传感器由于稳定性、重复性、灵敏度、选择性较差及外径较大的缺点使其应用受到限制,无酶葡萄糖传感器利用葡萄糖在电极表面直接发生电催化氧化对其进行检测,能够避免酶传感器的不足。因此,可植入式无酶葡萄糖传感器的发展为血糖监测提供了新的途径。
     采用恒电位沉积法制备Pt纳米花电极,Pt纳米花电极对葡萄糖具有很好的电催化性能,在含有氯离子的溶液中不会失活。构建的无酶葡萄糖传感器的线性响应范围为1mM–16mM,响应灵敏度为1.87μAcm~(-2)mM~(-1)(R=0.9993),最低检测限为48μM(S/N=3)。传感器具有很好的重现性、重复性、稳定性和选择性,表明纳米花结构能够改善裸Pt电极的不足,提高传感器的选择性、灵敏度、重复性以及稳定性。
     采用恒电流沉积法制备松树花状Pt–Pb纳米锥电极,该电极对葡萄糖具有很好的电催化性能,在含有氯离子的溶液中不会失活。对葡萄糖的电催化氧化过程遵守葡萄糖在Pt电极表面的反应机理,Pb对葡萄糖没有直接的电催化氧化活性,但是能够提高Pt电极的电催化性能。构建的无酶传感器对葡萄糖的线性检测范围为0.5mM–12mM,灵敏度为10.71μAcm~(-2)mM~(-1)(R=0.9997),最低检测限为8.4μM。传感器具有很好的选择性、稳定性和重复性。此外,在20oC到70oC的范围内,松树花状Pt–Pb纳米锥电极对葡萄糖的电催化活性随温度的升高而增大,当温度超过70oC之后,活性趋于稳定。因此,该无酶葡萄糖传感器的工作温度范围宽,相比酶传感器将有更加广泛的应用。
     采用电流置换反应制备Pt–Ag和Pt–Cu中空纳米颗粒电极,研究表明添加Ag与Cu能够提高Pt电极对葡萄糖的电催化氧化活性,同时会提高葡萄糖在电极表面的电催化氧化电位。Pt–Ag和Pt–Cu中空纳米颗粒修饰电极构建的无酶葡萄糖传感器的线性检测范围分别为0.5mM–16mM和0.5mM–14mM,响应灵敏度分别为7.64μAcm~(-2)mM~(-1)和8.04μAcm~(-2)mM~(-1),最低检测限分别为11.78μM和11.19μM,传感器对抗坏血酸和尿酸的响应电流是葡萄糖响应电流的15%和9%。
     用直径为0.35mm的不锈钢针灸针作为工作电极,基于Pt-Pb纳米颗粒电活性面积高、壳聚糖易成膜及生物相容性好的优势,用恒电流沉积法结合苯醌还原诱导壳聚糖沉积的方法构建针式酶葡萄糖传感器。针电极对葡萄糖具有很好的电催化氧化性能,说明苯醌电还原诱导壳聚糖与葡萄糖氧化酶共沉积制备针式酶电极的方法是可行的。构建的针式酶葡萄糖传感器的线性检测范围为0.03–9mM,响应灵敏度为0.4485μAcm~(-2)mM~(-1)(R=0.9995),最低检测限为200μM。
     用直径为0.35mm的不锈钢针灸针作为工作电极,用恒电流沉积法构建Pt-Pb纳米颗粒修饰不锈钢针式无酶葡萄糖传感器。构建的针式无酶传感器对葡萄糖的线性检测范围为1.5mM–24mM,响应灵敏度为3.33μAcm~(-2)mM~(-1)(R=0.9997),最低检测限为27μM。传感器具有很好的选择性、稳定性以及重复性。与针式酶葡萄糖传感器相比,针式无酶葡萄糖传感器具有高的稳定性、选择性和灵敏度。
The poor sensitivity, repeatability and stability of the enzymatic sensors remainas problems for real sensor applications. Direct electrocatalytic oxidation of glucose atan enzyme-free electrode would exhibit conveniences and advantages to avoid thedrawbacks of the enzymatic electrode. Therefore, the development of needle-typenonenzymatic glucose biosensor provides a promising method for glucose detection.
     Pt nanofowers were fabricated by using template-free ultrasonicelectrodeposition method. The Pt nanofowers electrode exhibited excellent catalyticactivity towards glucose oxidation in the present and in the absence of chloride ions.The results showed that the sensitivity of the electrode to glucose oxidation was1.87μAcm~(-2)mM~(-1)with a linear range from1mM to16mM and detection limit of48μM.In addition, the nonenzymatic glucose sensors exhibited excellent selectivity, stabilityand repeatability. This indicated that nanoflower structure exhibit advantages to avoidthe drawbacks of bare Pt electrode, and thus selectivilty, sensitivity, stability andrepeatability of the sensors can be improved.
     Pinecone–shaped Pt–Pb nanocone electrode was prepared on the bare Auelectrodes by electrochemical deposition. The synthesized pinecone–shaped Pt–Pbnanocone electrode exhibited strong and sensitive current responses to glucose at anegative potential in the present and in the absence of chloride ions. In the Pt–Pbbinary system, Pb can considerably accelerate glucose electrooxidation at Ptelectrodes but it exhibited no direct catalytic effect towards glucose. Therefore,glucose oxidation at the Pt–Pb mainly followed the reaction pathway of glucoseoxidation at Pt electrode. The sensitivity of the sensor was10.71μAmM1cm2withlinearity up to12mM and a detection limit of8.4μM. In addition, the as–preparednonenzyme glucose sensor exhibited acceptable repeatability, stability andreproducibility for determination of glucose. The response current increased with thetemperature in the range from20oC to70oC, and became stable when thetemperature was above70oC. Therefore, the sensor exhibited a wide range ofapplications compared with enzymatic biosensor.
     Pt–Ag and Pt–Cu hollow nanoparticles were fabricated by galvanic replacement.Electrochemical results showed that Cu and Ag can considerably accelerate glucoseelectrooxidation at Pt electrodes, but the electrooxidation potential increased. Thesensitivity of the sensor based on Pt–Ag hollow nanoparticles was7.64μAmM1cm2 with linear range from0.5mM to16mM and a detection limit of11.78μM. Thesensitivity of the sensor based on Pt–Cu hollow nanoparticles was8.04μAmM1cm2with linear range from0.5mM to14mM and a detection limit of11.19μM. Thenonenzymatic sensors based on Pt–Ag and Pt–Cu hollow nanoparticles showedacceptable stability and repeatability.
     An enzymatic glucose biosensor was fabricated by electrodepositing chitosan–glucose oxidase biocomposite onto the stainless steel needle electrode modifed byPt–Pb nanoparticles. The linear range of the proposed biosensor was from0.03to9mM with a current sensitivity of0.4485μAmM1and a detection limit of200μM.This work confirmed that the fabrication method of the needle-type glucose biosensorwas feasible.
     A nonenzymatic glucose biosensor was fabricated by electrodepositing Pt–Pbnanoparticles onto the stainless steel needle electrode. The results showed that thesensitivity of the electrodes to glucose was3.33μAcm~(-2)mM~(-1)with liner range from1.5mM–24mM and detection limit of27μM. In addition, the nonenzymatic glucosesensors exhibited excellent selectivity, stability and repeatability. Compared with theenzymatic glucose biosensors, the nonenzyme sensors exhibited high stability,sensitility and repeatability.
引文
[1] Cass A E, Davis G, Francis G D, et al. Ferrocene-mediated enzyme electrode foramperometric determination of glucose, Anal. chem.,1984,56:667-671.
    [2] Wang X, Gu H, Yin F, et al. A glucose biosensor based on Prussian blue/chitosanhybrid film, Biosens. Bioelectron.,2009,24:1527-1530.
    [3] Zhao W, Xu J J, Shi C G, et al. Multilayer membranes via layer-by-layerdeposition of organic polymer protected Prussian blue nanoparticles and glucoseoxidase for glucose biosensing, Langmuir,2005,21:9630-9634.
    [4] Guo M, Fang H, Wang R, et al. Electrodeposition of chitosan-glucose oxidasebiocomposite onto Pt-Pb nanoparticles modified stainless steel needle electrode foramperometric glucose biosensor, J. Mater. Sci-Mater. M.,2011,22:1985-1992.
    [5] Luo X L, Xu J J, Du Y, et al. A glucose biosensor based on chitosan-glucoseoxidase-gold nanoparticles biocomposite formed by one-step electrodeposition, Anal.Biochem.,2004,334:284-289.
    [6] Anonymous. Epidemiology of severe hypoglycemia in the diabetes control andcomplications trial. The DCCT Research Group. Am. J. Med.,1991,90:450-459.
    [7] Girardin C M, Huot C, Gonthier M, et al. Continuous glucose monitoring: Areview of biochemical perspectives and clinical use in type1diabetes, Clin. Biochem.,2009,42:136-142.
    [8] Ritholz M D, Atakov-Castillo A, Beste M, et al. Psychosocial factors associatedwith use of continuous glucose monitoring, Diabetic Med.,2010,27:1060-1065.
    [9] Tubiana-Rufi N, Riveline J P, Dardari D. Real-time continuous glucosemonitoring using Guardian (R) RT: from research to clinical practice, DiabetesMetab.,2007,33:415-420.
    [10] Updike S J, Shults M C, Rhodes R K, et al. Enzymatic glucose sensors. Improvedlong-term performance in vitro and in vivo, ASAIO J.,1994,40:157-163.
    [11] Vadgama P. Biosensors in the Body. Continuous In Vivo Monitoring, Physiol.Meas.,1998,19: doi:10.1088/0967-3334/1019/1082/1019.
    [12]沙宪政,皮下植入式葡萄糖传感器的研究进展,国外医学生物医学工程分册,2003,26(1):42-47.
    [13] Sharkawy A A, Klitzman B, Truskey G A, et al. Engineering the tissue whichencapsulates subcutaneous implants. I. Diffusion properties, J. Biomed. Mater. Res.,1997,37:401-412.
    [14] Sharkawy A A, Klitzman B, Truskey G A, et al. Engineering the tissue whichencapsulates subcutaneous implants. II. Plasma-tissue exchange properties, J. Biomed.Mater. Res.,1998,40:586-597.
    [15] Sharkawy A A, Klitzman B, Truskey G A, et al. Engineering the tissue whichencapsulates subcutaneous implants. III. Effective tissue response times, J. Biomed.Mater. Res.,1998,40:598-605.
    [16] Takaoka H, Yasuzawa M. Fabrication of an Implantable Fine Needle-TypeGlucose Sensor Using gamma-Polyglutamic Acid, Anal. Sci.,2010,26:551-555.
    [17] Shen J, Dudik L, Liu C C. An iridium nanoparticles dispersed carbon based thickfilm electrochemical biosensor and its application for a single use, disposable glucosebiosensor, Sensor. Actuat. B-Chem.,2007,125:106-113.
    [18] Yonemori Y, Takahashi E, Ren H, et al. Biosensor system for continuous glucosemonitoring in fish, Anal. Chim. Acta,2009,633:90-96.
    [19] Endo H, Takahashi E, Murata M, et al. Wireless monitoring of blood glucoselevels in flatfish with a needle biosensor, Fisheries Sci.,2010,76:687-694.
    [20]张学记,鞠熀先,约瑟夫王,电化学与生物传感器–原理、设计及其在生物医学中的应用,北京:化学工业出版社,2009.314.
    [21] Hecht H J, Schomburg D, Kalisz H, et al. The3D structure of glucose oxidasefrom Aspergillus niger. Implications for the use of GOD as a biosensor enzyme,Biosens. Bioelectron.,1993,8:197-203.
    [22] Pazur J H, Kleppe K, Cepure A. A glycoprotein structure for glucose oxidasefrom Aspergillus niger, Arch. Biochem. Biophys.,1965,111:351-357.
    [23] Badia A, Carlini R, Fernandez A, et al. Intramolecular electron-transfer rates inferrocene-derivatized glucose oxidase, J. Am. Chem. Soc.,1993,115:7053-7060.
    [24] Martin A F, Nimen T A. Glucose quantitation using an immobilized glucosedehydrogenase enzyme reactor and a tris (2,2'-bipyridyl) ruthenium (II)chemiluminescent sensor, Anal. chim. acta,1993,281:475-481.
    [25] Martin A F, Nimen T A. Chemiluminescence biosensors using tris (2,2'-bipyridyl) ruthenium (II) and dehydrogenases immobilized in cation exchangepolymers, Biosens. Bioelectron.,1997,12:479-489.
    [26] Leland C. Clark J, Champ L. Electrode systems for continuous monito ring incardiovascular surgery, Ann. NY. Acad. Sci.,1962,102:29-45.
    [27] Updike S J, Hicks G P. Reagentless substrate analysis with immobilized enzymes,Science,1967,158:270-272.
    [28] Nilsson H, Akerlund A C, Mosbach K. Determination of glucose, urea andpenicillin using enzyme-pH-electrodes, BBA-Gen Subjects,1973,320:529-534.
    [29]伍林,曹淑超,易德莲等,酶生物传感器的研究进展,传感器技术,2005,24(7):4-9.
    [30] Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors,Anal. Chim. Acta,2006,556:46-57.
    [31] Carr P W, Bowers L D. Immobilized enzymes in analytical and clinicalchemistry: Fundamentals and applications, New York, Wiley,1980.460.
    [32] Cass A E G, Davis G, Green M J, et al. Ferricinium ion as an electron acceptorfor oxido-reductases, J. Electroanal. Chem.,1985,190:117-127.
    [33] Baker M D, Zhang J, McBrien M, et al. Silver Zeolite-Modified Electrodes:Electron-Transport Mechanism and Ion-Exchange Kinetics for Partially SilverExchanged Zeolite Y, J. Phys. Chem.,1995,99:6635-6639.
    [34] Wang J, Palecek E, Nielsen P E, et al., Peptide Nucleic Acid Probes forSequence-Specific DNA Biosensors, J. Am. Chem. Soc.,1996,118:7667-7670.
    [35] Kreibig U, Genzel L. Optical absorption of small metallic particles, Surf. Sci.,1985,156:678-700.
    [36] Salimi A, Compton R G, Hallaj R. Glucose biosensor prepared by glucoseoxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolyticgraphite electrode, Anal. Biochem.,2004,333:49-56.
    [37] Zhao H T, Ju H X. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase, Anal. Biochem.,2006,350:138-144.
    [38] Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system forelectrochemical sensing based on dehydrogenase enzymes, Anal. Chem.,2004,76:5045-5050.
    [39] Balasubramanian K. Burghard M. Biosensors based on carbon nanotubes, Anal.Bioanal. Chem.,2006,385:452-468.
    [40] Degani Y, Heller A. Direct electrical communication between chemicallymodified enzymes and metal electrodes. I. Electron transfer from glucose oxidase tometal electrodes via electron relays, bound covalently to the enzyme, J. Phys. Chem.C,1987,91:1285-1289.
    [41] Heller A. Electrical connection of enzyme redox centers to electrodes, J. Phys.Chem.1992,96:3579-3587.
    [42] Liu J Q, Chou A, Rahmat W, et al. Achieving direct electrical connection toglucose oxidase using aligned single walled carbon nanotube arrays, Electroanal.,2005,17:38-46.
    [43] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemicalsensors, Science,2000,287:622-625.
    [44] Ren G, Xu X, Liu Q, et al. Electrospun poly(vinyl alcohol)/glucose oxidasebiocomposite membranes for biosensor applications, React. Func. Polym.,2006,66:1559-1564.
    [45] Wu Z, Feng W, Feng Y, et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties, Carbon,2007,45:1212-1218.
    [46] Yang L, Ren X, Tang F, et al. A practical glucose biosensor based on Fe(3)O(4)nanoparticles and chitosan/nafion composite film, Biosens. Bioelectron.,2009,25:889-895.
    [47]张国林,潘献华,阂锦晴,导电复合材料葡萄糖氧化酶传感器的研究,物理化学学报,2003,19(6):533-537.
    [48] Zheng B Z, Xie S P, Qian L, et al. Gold nanoparticles-coated eggshell membranewith immobilized glucose oxidase for fabrication of glucose biosensor, Sensor. Actuat.B-Chem.,2011,152:49-55.
    [49] Noorbakhsh A, Salimi A, Sharifi E. Fabrication of glucose biosensor based onencapsulation of glucose-oxidase on sol-gel composite at the surface of glassy carbonelectrode modified with carbon nanotubes and celestine blue, Electroanal.,2008,20:1788-1797.
    [50]王荣,郭晓明,吴霞琴,基于普鲁士蓝(PB)膜修饰铂电极的葡萄糖传感器的研究,化学研究与应用,2001,13(4):380-382.
    [51] Ozcan L, Sahin Y, Turk H. Non-enzymatic glucose biosensor based onoveroxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyaninetetrasulfonate, Biosens. Bioelectron.,2008,24:512-517.
    [52] Salimi A, Roushani M. Non-enzymatic glucose detection free of ascorbic acidinterference using nickel powder and nafion sol-gel dispersed renewable carbonceramic electrode, Electrochem. Commun.,2005,7:879-887.
    [53] Ernst S, Heitbaum J, Hamann C H. The Electrooxidation of Glucose inPhosphate Buffer Solutions: Kinetics and Reaction Mechanism, Ber. Bunsenges. Phys.Chem.,1980,84:50-55.
    [54] Feng L, Feng Y, Yang L, et al. A selective novel non-enzyme glucoseamperometric biosensor based on lectin–sugar binding on thionine modified electrode,Biosens. Bioelectron.,2011,26,2489-2494.
    [55] Gebhardt U, Luft G, Richter G J, et al.253-Development of an implantableelectrocatalytic glucose sensor, Bioelectrochemistry,1978,5:607-624.
    [56] Gough D A, Anderson F L, Giner J, et al. Effect of coreactants onelectrochemical glucose oxidation, Anal. Chem.,1978,50:941-944.
    [57] Vassilyev Y B, Khazova O A, Nikolaeva N N. Kinetics and mechanism ofglucose electrooxidation on different electrode-catalysts: Part I. Adsorption andoxidation on platinum, J. Electroanal. Chem.,1985,196:105-125.
    [58] Taylor R F. Protein immobilization: fundamentals and applications, New York,Dekker,1991.120.
    [59] Prabhu S V, Baldwin R P. Constant potential amperometric detection ofcarbohydrates at a copper-based chemically modified electrode, Anal. Chem.,1989,61:852-856.
    [60] You T Y, Niwa O, Chen Z L, et al. An amperometric detector formed of highlydispersed Ni nanoparticles embedded in a graphite-like carbon film electrode forsugar determination, Anal. Chem.,2003,75:5191-5196.
    [61] Yeo I H, Johnson D C. Anodic response of glucose at copper-based alloyelectrodes, J. Electroanal. Chem.,2000,484:157-163.
    [62] Zhuang Z, Su X, Yuan H, et al. An improved sensitivity non-enzymatic glucosesensor based on a CuO nanowire modified Cu electrode, Analyst,2008,133:126-132.
    [63] Liu H, Su X, Tian X, et al. Preparation and electrocatalytic performance offunctionalized copper-based nanoparticles supported on the gold surface, Electroanal.,2006,18:2055-2060.
    [64] Xu Q, Zhao Y, Xu J Z, et al. Preparation of functionalized copper nanoparticlesand fabrication of a glucose sensor, Sensor. Actuat. B-Chem.,2006,114:379-386.
    [65] Wang G, Wei Y, Zhang W, et al. Enzyme-free amperometric sensing of glucoseusing Cu-CuO nanowire composites, Microchim. Acta,2010,168:87-92.
    [66] Zhao J, Wang F, Yu J, et al. Electro-oxidation of glucose at self-assembledmonolayers incorporated by copper particles, Talanta,2006,70:449-454.
    [67] Reitz E, Jia W, Gentile M, et al. CuO Nanospheres Based Nonenzymatic GlucoseSensor, Electroanal.,2008,20:2482-2486.
    [68] Zhang W D, Chen J, Jiang L C, et al. A highly sensitive nonenzymatic glucosesensor based on NiO-modified multi-walled carbon nanotubes, Microchim. Acta,2010,168:259-265.
    [69] Ding Y, Wang Y, Su L, et al. Preparation and characterization of NiO-Agnanofibers, NiO nanofibers, and porous Ag: towards the development of a highlysensitive and selective non-enzymatic glucose sensor, J. Mater. Chem.,2010,20:9918-9926.
    [70] Lu L M, Zhang L, Qu F L, et al. A nano-Ni based ultrasensitive nonenzymaticelectrochemical sensor for glucose: Enhancing sensitivity through a nanowire arraystrategy, Biosens. Bioelectron.,2009,25:218-223.
    [71] Zhang X, Chan K Y, Tseung A C C. Electrochemical oxidation of glucose byPt/WO3electrode, J. Electroanal. Chem.,1995,386:241-243.
    [72] Zhang X, Chan K Y, You J K, et al. Partial oxidation of glucose by a Pt|WO3electrode, J. Electroanal. Chem.,1997,430:147-153.
    [73] Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochem. Commun.,2004,6:66-70.
    [74] Wilson R, Turner A P F. Glucose oxidase: an ideal enzyme, Biosens.Bioelectron.,1992,7:165-185.
    [75] Park S, Chung T D, Kim H C. Nonenzymatic glucose detection usingmesoporous platinum, Anal. Chem.,2003,75:3046-3049.
    [76] Turner A P F, Karube I, Wilson G S. Biosensors-Fundametals and Applications,Oxford, Oxford University Press,1987.390-408.
    [77] Cosnier S. Biosensors based on electropolymerized films: new trends, Anal.Bioanal. Chem.,2003,377:507-520.
    [78] Palmisano F, Zambonin P G, Centonze D. Amperometric biosensors based onelectrosynthesised polymeric films, Fresenius J. Anal. Chem.,2000,366:586-601.
    [79] Mano N, Heller A. Detection of glucose at2fM concentration, Anal. chem.,2005,77:729-732.
    [80] Katakis I, Ye L, Heller A. Electrostatic Control of the Electron-TransferEnabling Binding of Recombinant Glucose Oxidase and Redox Polyelectrolytes, J.Am. Chem. Soc.,1994,116:3617-3618.
    [81] Kim S J, Ah C S, Jang D J. Optical fabrication of hollow platinum nanospheresby excavating the silver core of Ag@Pt nanoparticles, Adv. Mater.,2007,19:1064-1068.
    [82] Tong X L, Lin K, Lv D J, et al. Optical properties of PMN-PT thin filmsprepared using pulsed laser deposition, Appl. Surf. Sci.,2009,255:7995-7998.
    [83] Tian N, Zhou Z Y, Sun S G, et al. Electrochemical preparation of platinumnanothorn assemblies with high surface enhanced Raman scattering activity, Chem.Commun.,2006,4090-4092.
    [84] Delaunay J J, Hayashi T, Tomita M, et al. Effects of Pt addition on the magneticand microstructural properties of CoC granular films, Ieee T. Magn.,1998,34:1627-1629.
    [85] Li T, Yan H, Wang H, et al. CoPt/C nanogranular magnetic thin film, Int. J. Mod.Phy. B,2005,19:2261-2271.
    [86] Delin A, Tosatti E. Emerging magnetism in platinum nanowires, Surf. Sci.,2004,566:262-267.
    [87] Zhang H T, Ding J, Chow G M. Morphological control of synthesis andanomalous magnetic properties of3-D branched Pt nanoparticles, Langmuir,2008,24:375-378.
    [88] Mayrhofer K J J, Blizanac B B, Arenz M, et al. The impact of geometric andsurface electronic properties of Pt-catalysts on the particle size effect inelectocatalysis, J. Phys. Chem. B,2005,109:14433-14440.
    [89] Colmati F, Antolini E, Gonzalez E R. Pt-Sn/C electrocatalysts for methanoloxidation synthesized by reduction with formic acid, Electrochim. Acta,2005,50:5496-5503.
    [90] Maillard F, Eikerling M, Cherstiouk O V, et al. Size effects on reactivity of Ptnanoparticles in CO monolayer oxidation: The role of surface mobility, FaradayDiscuss.,2004,125:357-377.
    [91] Mazurek M, Benker N, Roth C, et al. Binary mixtures of carbon supported Pt andRu catalysts for PEM fuel cells, Fuel Cells,2006,6:208-213.
    [92] Gotz M, Wendt H. Binary and ternary anode catalyst formulations including theelements W, Sn and Mo for PEMFCs operated on methanol or reformate gas,Electrochim. Acta,1998,43:3637-3644.
    [93] He C Z, Kunz H R, Fenton J M. Electro-oxidation of hydrogen with carbonmonoxide on Pt/Ru-based ternary catalysts, J. Electrochem. Soc.,2003,150: A1017-A1024.
    [94] Wang J, Holt-Hindle P, MacDonald D, et al. Synthesis and electrochemical studyof Pt-based nanoporous materials, Electrochim. Acta,2008,53:6944-6952.
    [95] Wu G, Adams B, Tian M, et al. Synthesis and electrochemical study of novel Pt-decorated Ti nanowires, Electrochem.Commun.2009,11:736-739.
    [96] Ghosh T, Matsumoto F, McInnis J, et al. PtPb nanoparticle electrocatalysts:control of activity through synthetic methods, J. Nanopart. Res.,2009,11:965-980.
    [97] Liang Y, Zhang H, Zhong H, et al. Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells, J. Catal.,2008,260:392-392.
    [98] Lamy C, Rousseau S, Belgsir E M, et al. Recent progress in the direct ethanolfuel cell: development of new platinum-tin electrocatalysts, Electrochim. Acta,2004,49:3901-3908.
    [99] Leger J M. Preparation and activity of mono-or bi-metallic nanoparticles forelectrocatalytic reactions, Electrochim. Acta,2005,50:3123-3129.
    [100] Park S, Xie Y, Weaver M J. Electrocatalytic pathways on carbon-supportedplatinum nanoparticles: Comparison of particle-size-dependent rates of methanol,formic acid, and formaldehyde electrooxidation, Langmuir,2002,18:5792-5798.
    [101] Chen M, Kim J, Liu J P, et al. Synthesis of FePt nanocubes and their orientedself-assembly, J. Am. Chem. Soc.,2006,128:7132-7133.
    [102] Roychowdhury C, Matsumoto F, Zeldovich V B, et al. Synthesis,characterization, and electrocatalytic activity of PtBi and PtPb nanoparticles preparedby borohydride reduction in methanol, Chem. Mater.,2006,18:3365-3372.
    [103] Tang H, Chen J H, Huang Z P, et al. High dispersion and electrocatalyticproperties of platinum on well-aligned carbon nanotube arrays, Carbon,2004,42:191-197.
    [104] Xiong L, Kannan A M, Manthiram A. Pt-M (M=Fe, Co, Ni and Cu)electrocatalysts synthesized by an aqueous route for proton exchange membrane fuelcells, Electrochem. Commun.,2002,4:898-903.
    [105] Shimizu K, Cheng I F, Wai C M. Aqueous treatment of single-walled carbonnanotubes for preparation of Pt-Fe core-shell alloy using galvanic exchange reaction:Selective catalytic activity towards oxygen reduction over methanol oxidation,Electrochem. Commun.,2009,11:691-694.
    [106] Sun Y P, Buck H, Mallouk T E. Combinatorial discovery of alloyelectrocatalysts for amperometric glucose sensors, Anal. Chem.,2001,73:1599-1604.
    [107] Masala O, Seshadri R. Synthesis routes for large volumes of na noparticles,Annu. Rev. Mater. Res.,2004,34:41-81.
    [108] Holt-Hindle P, Nigro S, Asmussen M, et al. Amperometric glucose sensor basedon platinum-iridium nanomaterials, Electrochem. Commun.,2008,10:1438-1441.
    [109] Chen S, Adams B D, Chen A. Synthesis and electrochemical study ofnanoporous Pd-Ag alloys for hydrogen sorption, Electrochim. Acta,2010,56:61-67.
    [110] Chen L, Lu G. Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTsnanocomposites for methanol electro-oxidation, Electrochim. Acta,2008,53:4316-4323.
    [111] Wang J, Asmussen R M, Adams B, et al. Facile Synthesis and ElectrochemicalProperties of Intermetallic PtPb Nanodendrites, Chem. Mater.,2009,21:1716-1724.
    [112] Jayat F, Lembacher C, Schubert U, et al. Catalytic NOx reduction in lean burnexhaust over Pt silica catalysts with controlled Pt particle size, Appl. Catal. B-Environ.,1999,21:221-226.
    [113] Facchin G, Carturan G, Campostrini R, et al. Sol-gel synthesis andcharacterisation of TiO2-anatase powders containing nanometric platinum particlesemployed as catalysts for4-nitrophenol photodegradation, J. Sol-Gel. Sci. Techn.,2000,18:29-59.
    [114] Gustavsson M, Fredriksson H, Kasemo B, et al. Nanostructured platinum-on-carbon model electrocatalysts prepared by colloidal lithography, J. Electroanal. Chem.,2004,568:371-377.
    [115] Yu K M K, Thompsett D, Tsang S C. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor, Chem. Commun.,2003,1522-1523.
    [116] Bass R J, Dunn T M, Lin Y C, et al. Syngas production from catalytic partialoxidation of n-butane: Comparison between incipient wetness and sol-gel preparedPt/Al2O3, Ind. Eng. Chem. Res.,2008,47:7184-7189.
    [117] Rabat H, Andreazza C, Brault P, et al. Carbon/platinum nanotextured filmsproduced by plasma sputtering, Carbon,2009,47:209-214.
    [118] You T, Niwa O, Horiuchi T, et al. Co-sputtered thin film consisting of platinumnanoparticles embedded in graphite-like carbon and its high electrocatalytic propertiesfor electroanalysis, Chem. Mater.,2002,14:4796-4799.
    [119] Inkson B J, Dehm G, Peng Y. Dynamical growth of Cu-Pt nanowires with ananonecklace morphology, Nanotechnology,2007,18:415601.
    [120] Penate-Quesada L, Mitra J, et al. Non-linear electronic transport in Pt nanowiresdeposited by focused ion beam, Nanotechnology,2007,18:215203.
    [121] Rakshit R K, Bose S K, Sharma R, et al. Correlations between morphology,crystal structure, and magnetization of epitaxial cobalt-platinum films grown withpulsed laser ablation, J. Appl. Phys.,2008,103:023915.
    [122] Kawabata S, Naono Y, Taguchi Y, et al. Designable formation of metalnanoparticle array with the deposition of negatively charged nanoparticles, Appl. Surf.Sci.,2007,253:6690-6696.
    [123] Fukuoka A, Higashimoto N, Sakamoto Y, et al. Preparation and catalysis of Ptand Rh nanowires and particles in FSM-16, Micropor. Mesopor. Mater.,2011,48:171-179.
    [124] Park J E, Atobe M, Fuchigami T. Sonochemical synthesis of conductingpolymer-metal nanoparticles nanocomposite, Electrochim. Acta,2005,51:849-854.
    [125] Yamamoto H, Hirakawa K, Abe T. Surface modification of carbon nanofiberswith platinum nanoparticles using a "Polygonal barrel-sputtering" system, Mater. Lett.,2008,62:2118-2121.
    [126] Plank H, Gspan C, Dienstleder M, et al. The influence of beam defocus onvolume growth rates for electron beam induced platinum deposition, Nanotechnology,2008,19:485302.
    [127] Liao Z M, Xu J, Zhang X Z, et al. The relationship between quantum transportand microstructure evolution in carbon-sheathed Pt granular metal nanowires,Nanotechnology,2008,19:305402.
    [128] Chen A, Holt-Hindle P. Platinum-Based Nanostructured Materials: Synthesis,Properties, and Applications, Chem. Rev.,2010,110:3767-3804.
    [129] Guo J W, Zhao T S, Prabhuram J, et al. Preparation and characterization of aPtRu/C nanocatalyst for direct methanol fuel cells, Electrochim. Acta,2005,51:754-763.
    [130] Metz K M, Goel D, Hamers R J. Molecular monolayers enhance the formationof electrocatalytic platinum nanoparticles on vertically aligned carbon nanofiberscaffolds, J. Phys. Chem. C,2007,111:7260-7265.
    [131] Cui H F, Ye J S, Zhang W D, et al. Selective and sensitive electrochemicaldetection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbonnanotube nanocomposites, Anal. Chim. Acta,2007,594:175-183.
    [132] Zhao G Y, Li H L. Electrochemical oxidation of methanol on Pt nanoparticlescomposited MnO2nanowire arrayed electrode, Appl. Surf. Sci.,2008,254:3232-3235.
    [133] Penner R M, Martin C R. Controlling the morphology of electronicallyconductive polymers, J. Electrochem. Soc.,1986,133:2206-2207.
    [134]苏轶坤,王臻,力虎林,低频交流电沉积金纳米线阵列的AFM研究,高等学校化学学报,2002,23(5):944-946.
    [135] Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres intonanobelts and triangular nanoplates through a thermal process, Nano Lett.,2003,3:675-679.
    [136] Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres: Facile synthesisand enhanced electrocatalysts, Angew. Chem. Int. Edit.,2004,43:1540-1543.
    [137] Chou C H, Chen J C, Tai C C, et al. A nonenzymatic glucose sensor usingnanoporous platinum electrodes prepared by electrochemical alloying/dealloying in awater-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid,Electroanal.,2008,20:771-775.
    [138] Song Y Y, Zhang D, Gao W, et al. Nonenzymatic glucose detection by using athree-dimensionally ordered, macroporous platinum template, Chem-Eur J.,2005,11:2177-2182.
    [139] Park S, Boo H, Kim Y, et al. pH-sensitive solid-state electrode based onelectrodeposited nanoporous platinum, Anal. Chem.,2005,77:7695-7701.
    [140] Bard A J, Faulkner L R. Electrochemical Methods: Funda-mentals andApplications, New York, Academic Press,1980. Chapter12.
    [141] Aoun S B, Bang G S, Koga T, et al. Electrocatalytic oxidation of sugars onsilver-UPD single crystal gold electrodes in alkaline solutions, Electrochem.Commun.,2003,5:317-320.
    [142] Aoun S B, Dursun Z, Koga T, et al. Effect of metal ad-layers on Au(111)electrodes on electrocatalytic oxidation of glucose in an alkaline solution, J.Electroanal. Chem.,2004,567:175-183.
    [143] Li L H, Zhang W D, Ye J S. Electrocatalytic Oxidation of Glucose at CarbonNanotubes Supported PtRu Nanoparticles and Its Detection, Electroanal.,2008,20:2212-2216.
    [144] Bai Y, Sun Y, Sun C. Pt-Pb nanowire array electrode for enzyme-free glucosedetection, Biosens. Bioelectron.,2008,24:579-585.
    [145] Liu Y, Teng H, Hou H, et al. Nonenzymatic glucose sensor based on renewableelectrospun Ni nanoparticle-loaded carbon nanofiber paste electrode, Biosens.Bioelectron.,2009,24:3329-3334.
    [146] Liu Y, Wang M K, Zhao F, et al. The direct electron transfer of glucose oxidaseand glucose biosensor based on carbon nanotubes/chitosan matrix, Biosens.Bioelectron.,2005,21:984-988.
    [147] Zhu H, Lu X, Li M, et al. Nonenzymatic glucose voltammetric sensor based ongold nanoparticles/carbon nanotubes/ionic liquid nanocomposite, Talanta,2009,79:1446-1453.
    [148] Wang J, Thomas D F, Chen A, Nonenzymatic electrochemical glucose sensorbased on nanoporous PtPb networks, Anal. Chem.,2008,80:997-1004.
    [149] Yuan J H, Wang K, Xia X H. Highly ordered platinum-nanotubule arrays foramperometric glucose sensing, Adv. Funct. Mater.,2005,15:803-809.
    [150] Holt-Hindle P, Yi Q, Wu G, et al. Electrocatalytic activity of nanoporous Pt-Irmaterials toward methanol oxidation and oxygen reduction, J. Electrochem. Soc.,2008,155: K5-K9.
    [151] Zheng L, Xiong L, Sun J, et al. Capping agent free synthesis of PtSn bimetallicnanoparticles with enhanced electrocatalytic activity and lifetime over methanoloxidation, Catal. Commun.,2008,9:624-629.
    [152] Demazeau G. Solvothermal reactions: an original route for the synthesis ofnovel materials, J. Mater. Sci.,2008,43:2104-2114.
    [153] Kim J Y, Yang Z G, Chang C C, et al. A sol-gel-based approach to synthesizehigh-surface-area Pt-Ru catalysts as anodes for DMFCs, J. Electrochem. Soc.,2003,150: A1421-A1431.
    [154] Yang M H, Yang Y H, Liu Y L, et al. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosens.Bioelectron.,2006,21:1125-1131.
    [155] Kawasaki H, Yonezawa T, Watanabe T, et al. Platinum nanoflowers forsurface-assisted laser desorption/ionization mass spectrometry of biomolecules, J.Phys. Chem. C,2007,111:16278-16283.
    [156] Hu X Y, Cahill D G, Averback R S. Nanoscale pattern formation in Pt thinfilms due to ion-beam-induced dewetting, Appl. Phys. Lett.,2000,76:3215-3217.
    [157] Rashidi A M, Amadeh A. The effect of current density on the grain size ofelectrodeposited nanocrystalline nickel coatings, Surf. Coat. Techn.,2008,202:3772-3776.
    [158]刘宇星,郭占成,卢维昌,电沉积制备镍箔的SEM形貌和抗拉强度,过程工程学报,200444):341-346.
    [159] Zhang H, Zhou W, Du Y, et al. One-step electrodeposition of platinumnanoflowers and their high efficient catalytic activity for methanol electro-oxidation,Electrochem. Commun.,2010,12:882-885.
    [160] Eftekhari A. Fractal dimension of electrochemical reactions, J. Electrochem.Soc.,2004,151: E291-E296.
    [161] Xiao F, Zhao F, Mei D, et al. Nonenzymatic glucose sensor based on ultrasonic-electrode position of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbonnanotubes-ionic liquid composite film, Biosens. Bioelectron.,2009,24:3481-3486.
    [162] Xiao F, Zhao F, Zhang Y, et al. Ultrasonic Electrodeposition of Gold-PlatinumAlloy Nanoparticles on Ionic Liquid-Chitosan Composite Film and Their Applicationin Fabricating Nonenzyme Hydrogen Peroxide Sensors, J. Phys. Chem. C,2009,113:849-855.
    [163] Baranski A S, Krogulec T, Nelson L J, et al. High-frequency impedancespectroscopy of platinum ultramicroelectrodes in flowing solutions, Anal. Chem.,1998,70:2895-2901.
    [164] Song M J, Hwang S W, Whang D. Non-enzymatic electrochemical CuOnanoflowers sensor for hydrogen peroxide detection, Talanta,2010,80:1648-1652.
    [165] Joo S, Park S, Chung T D, et al. Integration of a nanoporous platinum thin filminto a microfluidic system for non-enzymatic electrochemical glucose sensing, Anal.Sci.,2007,23:277-281.
    [166] Chen X, Pan H, Liu H. Nonenzymatic glucose sensor based on flower-shapedAu@Pd core-shell nanoparticles-ionic liquids composite film modified glassy carbonelectrodes, Electrochim. Acta,2010,56:636-643.
    [167] Liu X, Shi L, Niu W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns, Biosens. Bioelectron.,2008,23:1887-1890.
    [168] Ai H, Huang X, Zhu Z, et al. A novel glucose sensor based on monodispersedNi/Al layered double hydroxide and chitosan, Biosens. Bioelectron.,2008,24:1048-1052.
    [169] Zhou M, Shang L, Li B, et al. Highly ordered mesoporous carbons as electrodematerial for the construction of electrochemical dehydrogenase-and oxidase-basedbiosensors, Biosens. Bioelectron.,2008,24:442-447.
    [170] Liu Y, Feng X, Shen J, et al. Fabrication of a novel glucose biosensor based ona highly electroactive polystyrene/polyaniline/Au nanocomposite, J. Phys. Chem. B,2008,112:9237-9242.
    [171] Xu X H, Guo M Q, Lu P, et al. Development of amperometric laccase biosensorthrough immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix, Mater. Sci. Eng. C-Mater.,2010,30:722-729.
    [172] Yang J, Deng S, Lei J, et al. Electrochemical synthesis of reduced graphenesheet-AuPd alloy nanoparticle composites for enzymatic biosensing, Biosens.Bioelectron.,2011,29:159-166.
    [173] Seo H K, Park D J, Park J Y. Fabrication and characterization of platinum blackand mesoporous platinum electrodes for in-vivo and continuously monitoringelectrochemical sensor applications, Thin Solid Films,2008,516:5227-5230.
    [174] Guo M Q, Wang R, Xu X H. Electrosynthesis of pinecone-shaped Pt-Pbnanostructures based on the application in glucose detection, Mater. Sci. Eng. C-Mater.,2011,31:1700-1705.
    [175] Wang M J, Wang L Y, Wang G, et al. Application of impedance spectroscopyfor monitoring colloid Au-enhanced antibody immobilization and antibody-antigenreactions, Biosens. Bioelectron.,2004,19:575-582.
    [176] Cui H F, Ye J S, Liu X, et al. Pt-Pb alloy nanoparticle/carbon nanotubenanocomposite: a strong electrocatalyst for glucose oxidation, Nanotechnology,2006,17:2334-2339.
    [177] Antolini E, Salgado J R C, da Silva R M, et al. Preparation of carbon supportedbinary Pt-M alloy catalysts (M=first row transition metals) by low/mediumtemperature methods, Mater. Chem. Phys.,2007,101:395-403.
    [178] Antolini E, Salgado J R C, Gonzalez E R. Carbon supported Pt75M25(M=Co,Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells, J.Electroanal. Chem.,2005,580:145-154.
    [179] Paulus U A, Wokaun A, Scherer G G, et al. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts, J. Phys. Chem. B,2002,106:4181-4191.
    [180] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheres andtheir successful application to the recyclable heterogeneous catalyst for Suzukicoupling reactions, J. Am. Chem. Soc.,2002,124:7642-7643.
    [181] Crofford M D O B. Diabetes control and complications, Annu. Rev. Med.,1995,46:267-279.
    [182] Luo X L, Xu J J, Wang J L, et al. Electrochemically deposited nanocompositeof chitosan and carbon nanotubes for biosensor application, Chem. Commun.,2005,2169-2171.
    [183] Liu X, Zeng X, Mai N, et al. Amperometric glucose biosensor with remarkableacid stability based on glucose oxidase entrapped in colloidal gold-modified carbonionic liquid electrode, Biosens. Bioelectron.,2010,25:2675-2679.
    [184] Shervedani R K, Mehrjardi A H, Zamiri N. A novel method for glucosedetermination based on electrochemical impedance spectroscopy using glucoseoxidase self-assembled biosensor, Bioelectrochemistry,2006,69:201-208.
    [185] Zeng X, Li X, Xing L, et al. Electrodeposition of chitosan-ionic liquid-glucoseoxidase biocomposite onto nano-gold electrode for amperometric glucose sensing,Biosens. Bioelectron.,2009,24:2898-2903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700