染料木素葡萄糖苷的合成及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为四个部分。
     第1章综述了近年来黄酮类化合物糖苷化修饰的研究进展情况,阐明了课题研究的意义及方向。
     第2章采用相转移催化法合成了染料木素葡萄糖苷化合物,并对合成及纯化条件进行了探讨,对产物进行了IR,~1H NMR,~(13)C NMR和MS结构表征。
     第3章分别采用Fenton反应-邻菲罗啉显色法、邻苯三酚自氧化法和紫外可见分光光度法,考察染料木素及其葡萄糖苷化学修饰物清除·OH、·O_2~-和DPPH自由基能力。结果显示,染料木素糖苷修饰物清除三种自由基能力与其母体相比无显著提高。
     第4章采用紫外、荧光、粘度等方法研究了染料木素及其葡萄糖苷化学修饰物与小牛胸腺DNA的作用。结果表明,在ctDNA存在下,染料木素及其葡萄糖苷的紫外吸收光谱产生明显的减色效应。另外,受试物均能有效猝灭EB-DNA体系的荧光,并使ctDNA溶液的粘度增大。据此推断,染料木素及其葡萄糖苷以部分插入及氢键作用与ctDNA结合。
This paper consists of four parts.
     Chapter 1 In this section, advances in glycosidation modification of flavoniodswere reviewed. The significance and direction of the research were elucidated.
     Chapter 2 The conditions for synthesis and purification of genistein glucosidesby phase transfer catalyzed method was investigated, and the structuralcharacterization of target compound was also conducted by IR, ~1H NMR, ~(13)C NMRand MS spectra in this part.
     Chapter 3 The abilities of genistein and their derivatives in free radicalscavenging of·OH and·O_2~- and DPPH were exploited by using Fenton reaction withO-phenanthroline chromogenic reaction, pyrogallol autoxidation method and UV-visspectrophotometry, respectively. The results show that the abilities of glycosidederivatives of genistein in scavenging of the three free radicals were not obviouslyimproved compared withgenistein.
     Chapter 4 The interactions of genistein, genistein glucoside and genistein7,4'-di-O-β- D- glucoside with calf thymus DNA(ctDNA) were investigated in thissection by using means of UV spectra, fluorescent spectra and viscosity, respectively.The results showed that the UV spectra of genistein and its glucosides showedobviously hypochromism under the presence of ctDNA. In addition, the testedcompounds could make the fluorescence intensity of EB-DNA system decreasedsharply, and also increased the relative viscosity of ctDNA aqueous. Theexperimental results suggested that genistein and its glucosides could bind to ctDNAby combination of partly intercalation and hydrogen bonding mode.
引文
[1] Bertozzi C R, Kiessling L L. Chemical glycobiology. Science, 2001, 291:2357-2364
    [2] 曹鸿志,李祖义.生物催化在非天然寡糖合成中的应用.有机化学,2002,22(1):11-22
    [3] 王超杰,宋金勇,赵瑾.二元酸茄呢醇乳糖和麦芽糖糖酯合成及生理活性测试研究.有机化学,2003,23(10):1102-1106
    [4] 付新梅,江涛,王奎旗,等.糖类对先导化合物的化学修饰及其在药学中的应用.中国海洋药物,2001,3:54-62
    [5] 赵晶,张致平,陈鸿珊,等.黄芩甙衍生物的合成及抗人免疫缺陷病毒活性研究.药学学报,1998,33(1):22-27
    [6] 高慧媛,隋安丽,陈艺虹,等.中药黄独的化学成分.沈阳药科大学学报,2003,3: 178-180
    [7] Ferte J, Kuhnel J M, Chapuis G, et al. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. J. Med. Chem., 1999, 42:478-489
    [8] Graf B A, Mullen W, Caldwell S T, et al. Disposition and metabolism of [2-~(14)C] quercetin-4'-glucoside in rats. Drug Metabolism and Disposition, 2005, 33:1036-1043
    [9] Lim S S, Jung S H, Ji J, et al. synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Journal of Pharmacy and Pharmacology, 2001, 53:653-668
    [10] 唐于平,楼凤昌,马雯,等.槐果皮中的异黄酮甙类成分.中国药科大学学报,2001,32(3):187-189
    [11] Lee C H, Yang L, Xu Z J, et al. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chemistry, 2005, 90:735-741
    [12] witczak Z J. Synthesis of C-glycosyl compounds and other natural products from levoglucosenone. Pure & Appl. Chem., 1994, 66:2189-2192.
    [13] Kumazawa T, Kimura T, Matsuba S, et al. Synthesis of 8-C-glucosylflavones. Carbohydrate Research, 2001, 334:183-193
    [14] Furuta T, kimura T, Kondo S, et al. Concise total synthesis of flavone C-glycoside having potent anti-inflammatory activity. Tetrahedron, 2004, 60:9375-9379
    [15] Lee Y W D, Zhang W Y, Vardhanet V R K, et al. Total synthesis of puerarin, an isoflavone C-glycoside. Tetrahedron Letters, 2003, 44:6857-6859
    [16] Sato S, Hiroe k, Kumazawa T, et al. Total synthesis of two isoflavone C-glycosides: genistein and orobol 8-C-β-D-glucopyranosides. Carbohydrate Research, 2006, 341: 1091-1095
    [17] Sato S, Akiya T, Nishizawa H, et al. Total synthesis of three naturally occurring 6,8-di-C-glycosylflavonoids: phloretin, naringenin, and apigenin bis-C-β-D-glucosides. Carbohydrate Research, 2006, 341:964-970
    [18] Caldwell S T, Crozier A, Hartley R C. Isotopic labelling of quercetin 4'-O-β-D- glucoside. Tetrahedron, 2000, 56:4101-4106
    [19] 徐鲁斌,罗爱民,曹正白.黄酮-4′-O-糖苷的合成.苏州大学学报(自然科学版),2003, 19(2):95-100
    [20] 孙昌俊,王义贵,胡为峰,等.糖苷合成研究(V)2-O-烷基-5-氟脲嘧啶-O-葡萄糖醛酸苷的合成及其抗肿瘤活性研究.合成化学,1994,2(3):246-250
    [21] 孙昌俊,孙义,王义贵,等.糖苷合成研究(Ⅶ)——芳磺酰基氟脲嘧啶糖苷的合成及其抗肿瘤活性研究,山东大学学报,1997,32(4):443-447
    [22] 李润涛,王永富,朱茜,等.相转移催化法在糖苷化反应中的应用.化学通报,1999,3:6-11
    [23] Cao S D, Tropper F D, Roy R. Stereoselective phase transfer catalyzed syntheses of giycosyloxysuccinimides and their transformations into glycoprobes. Tetrahedron, 1995, 51 (24): 6679-6686
    [24] Bornaghi L F, Poulsen S A. microwave-accelerated fischer glycosylation. Tetrahedron Letters, 2005, 46:3485-3488
    [25] Ruiz J M J, Oβwald G, Petersen M, et al. The "natural strategy" for the glycosidase-assisted synthesis of simple glycosides Journal of molecular catalysis B: enzymatic, 2001, 11: 189-197
    [26] Alluis B, Dangles O. Quercetin (=2(3,4-dihydroxypheny)-3,5,7-trihydroxy-4H-1-benzopyran-4-one) glycosides and sulfate: chemical synthesis, complexation, and antioxidant properties. Helvetica Chimica Acta, 2001, 84:1133-1156
    [27] Demetzos C, Skaltsounis A L, Tillequin F, et al. Phase-transfer-catalyzed synthesis of flavonoid glycosides. Carbohydrate Research, 1990, 207:131-137
    [28] Watanabe Y, Shiozki M, Kamegai R, et al. Synthesis and biological activity of 4',8-dihydroxyisoflavon-7-yl D-hexopyranosides. Carbohydrate Research, 2001, 335: 283-289
    [29] Li M, Han X W, Yu B. Facile Synthesis of Flavonoid 7-O-Glycosides. J. Org. Chem., 2003, 68 (17): 6842-6845
    [30] 周杰,胡永洲.陆地棉苷与金丝桃苷的合成研究浙江大学学报.浙江大学学报,2002,31(6):410-413
    [31] Li M, Han X W, Yu B. Synthesis of quercetin 3-O-(2"-galloyl)-α-L-arabinopyranoside. Tetrahedron Letters, 2002, 43:9467-9470
    [32] Peng W J, Li Y W, Zhu C S, et ai. Synthesis of tamarixetin and isorhamnetin 3-O-neohesperidoside. Carbohydrate Research, 2005, 340:1682-1688
    [33] Du Y G, Wei G H, Linhardt R J. Total synthesis of quercetin 3-sophorotriside. J Org Chem, 2004, 69, 2206-2209
    [34] Lewis P T, Wahala K. Synthesis of the deuterium labeled isoflavone-O-gllucoside 8-3'-5'-D_3odaidzin. Molecules Online, 1998, 2:137-139
    [35] Lewis P, Kaltia S, Wahala K. The phase transfer catalyzed synthesis of isoflavone-O-glucoside. J. Chem. Soc. Perkin Trans, 1998, 1:2481-2484
    [36] Lewis P T, Wahala K. Regiospecific 4'-O-β-glucosidation of isoflavones. Tetrahedron Letters, 1998, 39:9559-9562
    [37] 朱运平,江正强,李里特,等.烷基木糖苷的酶法合成及其纯化.过程工程学报,2004,4(6):572-576
    [38] 孙家莉,褚婕,丁晓琴.酶底物对硝基苯-α-D吡喃葡糖苷的合成.化学试剂,2005,27(2),97-98
    [39] Kren V, Ulrichova J, Kosina P, et al. Chemoenzymaticpreparation of silybin b-glucuronides and their biological evaluation. Drug Metabolism And Disposition, 2000, 28 (12): 1513-1517
    [40] Kadereit D, Waldmann H. Enzymatic protecting group techniques. Chem. Rew., 2001, 101: 3367-3396
    [41] 姜忠义.天然产物分子结构的酶催化修饰改性.化学通报,2002,65:1-7
    [42] Du Y G, Wei G H, Linhardt R J. The first total synthesis of calabricoside A. Tetrahedron Letters, 2003, 44:6887-6890
    [43] Zhu C S, Peng W J, Li Y W, et al. Synthesis of 3-O-(β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl)-3'-O-(β-D-glucopyranosyl) tamarixetin, the putative structure of aescuflavoside A from the seeds of aesculus chinensis. Carbohydrate Research, 2006, 341: 1047-1051
    [44] Oyama K, Kondo T. Total synthesis of apigenin 7,4'-di-O-b-glucopyranoside,a component of blue flower pigment of salvia patens and seven chiral analogues Tetrahedron, 2004, 60: 2025-2034
    [45] Barnes S, Kim H, Victor D, et al. Beyond ER alpha and ER beta: estrogen receptor binding is only part of the isoflavone story. J Nutr, 2000, 130: 656S-657S
    [46] Fritz W, Coward L, Wang J, et al. Dietary genistein: perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. CarCinogenesis, 1998, 19:2151-2158
    [47] Hwang J L, Hodis H N, Sevanian A. Soy and alfalfa phytoestrogen extracts become potent low-density lipoprotein antioxidants in the presence of acerola cherry extract. J. Agric. Food Chem, 2001, 49 (1): 308-314
    [48] Lamartiniere C A, Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr, 2000, 71 (6): 1705S-1707S
    [49] Kang J L, Lee H W, Kim H J, et al. Inhibition of SRC tyrosine kinases suppresses activation of nuclear factor-kappaB, and serine and tyrosine phosphorylation of lkappaB-alpha in lipopolysaccharide-stimulated raw 264.7 macrophages. J Toxicol Environ, Health, 2005, 68: 1643-1662
    [50] Krzysztof P, Joanna P, Piotr K, et al. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Letters, 2004, 203:59-69
    [51] 阎祥华,顾景范,孙存普.大豆异黄酮的抗癌作用机制研究进展.生理科学进展,1997,28(4):362-364
    [1] 马磊,楼凤昌.槐角中的抗癌活性成分.中国天然药物,2006,4(2):151-153
    [2] 唐于平,楼凤昌,马雯,等.槐果皮中的异黄酮甙类成分.中国药科大学学报,2001,32(3):187-189
    [3] 王景华,李明慧,王亚琳,等.槐种子化学成分研究(Ⅱ).中草药,2002,33(7):586-588
    [4] Barnes S, Kim H, Victor D, et al. Beyond ER alpha and ER beta: estrogen receptor binding is only part of the isoflavone story. J. Nutr, 2000, 130: 656S-657S
    [5] Fritz W, Coward L, Wang J, et al. Dietary genistein: perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis, 1998, 19:2151-2158
    [6] Hwang J L, Hodis H N, Sevanian A. Soy and alfalfa phytoestrogen extracts become potent low-density lipoprotein antioxidants in the presence of acerola cherry extract. J Agric Food Chem, 2001, 49 (1): 308-314
    [7] Lamartiniere C A, Protection against breast cancer with genistein: a component of soy. Am. J. Clin. Nutr, 2000, 71 (6): 1705S-1707S
    [8] Krzysztof P, Joanna P, Piotr K, et al. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Letters, 2004, 203:59-69
    [9] 阎祥华,顾景范,孙存普.大豆异黄酮的抗癌作用机制研究进展.生理科学进展,1997,28(4):362-364
    [10] 李雯,罗德林,刘宏民.葡萄糖香草醛的相转移催化合成法.河南科学,1999,17(3):250-253
    [11] 王克军,李化军,赵毅民.天然黄酮苷的合成研究进展.化学通报,2005,7:490-496
    [12] Du Y G, Wei H, Robert L J. The first total synthesis of calabricoside A. Tetrahedron Letters, 2003. 44:6887-6890
    [13] Zhu C S, Peng W J, Li Y W, et al. Synthesis of 3-O-(β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl)-3'-O-(β-D-glucopyranosyl) tamarixetin, the putative structure of aescuflavoside A from the seeds of Aesculus chinensis. Carbohydrate Research, 2006, 341: 1047-1051
    [14] Lewis P, Kaltia S, Wahala K K. The phase transfer catalysed synthesis of isoflavone-O-glucosides. J Chem Soc Perkin Trans, 1998, 1:2481-2484
    [15] Oyama K, Kondo T. Total synthesis of apigenin 7,4'-di-O-β-glucopyranoside, a component of blue flower pigment of Salvia patens, and seven chiral analogues. Tetrahedron, 2004, 60: 2025-2034
    [1] Marian V, Dieter L, Jan M, et al. Free radicals and antioxidants in normal physiological functions and human disease. IJBCB, 2007, 39:44-84
    [2] Yasser FMK, Hanan MAA. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT, 2007, 40:270-277
    [3] 郑荣梁.自由基生物学.北京:高等教育出版社,1992
    [4] Axel K, Hans L, Edda K. Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase. J Theor Bio, 2006, 238:828-840
    [5] Cao G H, Sofic E, Prior R L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Biology & Medicine, 1997, 22 (5): 749-760
    [6] Manuel P, Lara M, Maria JN, et al. Solvent effect on quercetin antioxidant capacity. Food Chem, 2004, 88:201-207
    [7] Richard AD, Daneel F. Molecules of interest genistein, Phytochem, 2002, 60:205-211
    [8] Jacek Z, Jerzy G, grzegorz G. Radical scavenging properties of genistein. Free radical biology & medicine, 2003, 35(8): 958-965
    [9] Jacques F, Kuhnel J M, Chapuis G. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. J Med chem, 1999, 42, 478-489
    [10] Zhang H Y, Wang L F, Sun Y M. Why B-ring is the active center for genistein to scavenge peroxyl radical: A DET study. Bioorganic & Medicinal Chemistry Letters, 2003, 12: 909-911
    [11] 刘建文,季光,魏东芝.药理实验方法学,北京:化学工业出版社,2003,97-98
    [12] 覃事栋,冯思思,张红梅,等.配合物[Ni(EDTB)]·2Cl·CH_3OH·C_2H_5OH的合成、晶体结构及SOD模拟活性的研究.化学学报,2005,63(13):1155-1160
    [13] Chung HL, Lin Y, Jin ZX, et al. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem, 2005, 90: 735-741.
    [14] 武荣兰,封顺,王吉德.黄芩苷及其金属配合物的抗氧化性研究.科技导报,2006,24(2):36-37.
    [15] 张红雨.黄酮类抗氧化剂结构-活性关系的理论解释.中国科(B辑),1999,29(1):91-96
    [16] 胡春,丁霄霖.黄酮类化合物在不同氧化体系中的抗氧化作用研究.食品与发酵工业,1996.3:46-53
    [1] 张礼和.以核酸为作用靶的药物研究.北京大学学报(医学版),2002,418-426
    [2] 陈锦灿,李俊,吴文娟,等.系列异构配合物Ru(azpy)_2Cl_2的结构与抗癌活性,物理化学学报,2006,22(4):391-396
    [3] Kelloff G J, Growell J A, Hank E J, et al. Strategy and planning for chemopreventive drug development: clinical development plans Ⅱ. J Cell Biochem, 1996, 26:54-71
    [4] Richard A D, Daneel F. Genistein. Phytochem, 2002, 60(3): 205-211
    [5] Barnes S, Kim H, Victor D, et al. Beyond ER alpha and ER beta: estrogen receptor binding is only part of the isoflavone story J. Nutr, 2000, 130:656S-657
    [6] Lamartiniere C A. Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr, 2000, 71(6): 1705S-1707S
    [7] Hwang J L, Hodis H N, Sevanian A. Soy and alfalfa phytestrogen extracts become potent low-density lipoprotein antioxidants in the presence of acerola cherry extract. J Agric Food. Chem, 2001, 49(1): 308-314
    [8] Kang J L, Lee H W, Kim H J, et al. Inhibition of SRC tyrosine kinases suppresses activation of nuclear factor-kappaB, and serine and tyrosine phosphorylation of lkappaB-alpha in lipopolysaccharide-stimulated raw 264.7 macrophages. J Toxicol Environ, Health, 2005, 68: 1643-1662
    [9] 金永生,刘超美,吴秋业,等.新型金雀异黄素衍生物5-羟基-4′-硝基-7-取代酰氧基异黄酮的合成及抗肿瘤活性研究.第二军医大学学报,2005,26(2):182-185
    [10] Alessandra R, Venera C, Laura L, et al. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cell. J Nutr Biochem, 2006, 17(2): 103-108
    [11] Suk H K, Myung J K, Jin S H, et al. Comparison of oral bioavailability of genistein and genistin in rats. Int J Pharmaceut, 2007, doi: 10.1016/j.ijpharm.2006.12.046
    [12] 唐于平,楼凤昌,马雯,等.槐果皮中的异黄酮甙类成分.中国药科大学学报,2001,32(3):187-189
    [13] Joanna P, Krzysztof P, Janusz S S, et al. In vitro toxicity evaluation in the development of new anticancer drugs-genistein glycosides. Cancer Letters, 2005, 229:67-75
    [14] 刘彩红,李红,李洪清,等.Cu(phen)22+与6-羟基嘌呤及DNA的相互作用.化学通报,2005.9:702-708
    [15] 郭玉华,陈晓岚,张婷,等.7-羟基黄酮及磷酰化7-羟基黄酮与DNA的弱相互作用荧光法研究.光谱学与光谱分析,2006,26(3):475-479
    [16] 周庆华,杨频.1,3-双(2-苯并咪唑基)-2-氧杂丙烷与锌配合物的合成、晶体结构及其与DNA作用方式的研究.光谱化学学报,2006,64(8):793-798
    [17] 吴宝燕,高丽华,王科志.一个新型钌(Ⅱ)配合物的合成、表征与DNA的键合及溶剂变色性质.高等学校化学学报.2005,26(7):1206-1209
    [18] 徐宏,邓洪,胡红雨,等.多毗啶钌(Ⅱ)配合物的合成及其与RNA相互作用的光谱学研究.高等化学学报,2003,24(1):25-27
    [19] 王平红,张岐,袁文兵,等。鬼臼酰肼金属Ni(Ⅱ),Co(Ⅱ),Zn(Ⅱ)配合物与DNA分子作用机制的研究.光谱学与光谱分析,2006,26(7):1298-1302
    [20] 高恩君,赵淑敏,刘祁涛,等.三元配合物钯(Ⅲ)-联喹啉-丙二酸根的合成及其生物活性研究.化学学报,2004,62:593-597
    [21] Usha S, Johnson I M, Malathi R. Modulation of DNA intercalation by resveratrol and genistein. Mol. Cell. Biochem, 2006, 284:57-64
    [22] Chao H, Mei W J, Huang Q W, et al. J Inorg. Biochem, 2002, 92:165-170
    [24] 李来生,黄伟东,王瑞琼,等.荧光法研究抗癌药物更生霉素D与小牛胸腺DNA的作用机理.化学学报,1999,57:572-577
    [25] 雷英杰,杨易成,史小凤.抗癌活性天然化合物金雀异黄酮的量子化学研究.天津理工大学学报,2006,22(3):52-54
    [26] Usha S, Johnson I M, Malathi R. Interaction of resveratrol and genistein with nucleic acids. J Biochem Mol Biol, 2005, 38(2): 198-205
    [27] 张剑,张高勇,谢克昌,等.可改变DNA构象的非离子糖基表面活性剂.化学学报,2003,61(10):1658-1663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700