α-半乳糖苷酶固态发酵中试技术参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过物理和化学复合诱变处理扬奇青霉(Penicillium janczewskii),筛选高产α-半乳糖苷酶(GAL)变异株,从培养的环境因素和培养基组分两方面优化了固态发酵(SSF)产酶条件,并进行中试生产,探讨了α-半乳糖苷酶粗制剂的性质及其在肉鸡日粮中的应用。首先建立了测定饲用青霉GAL活力的对硝基酚比色法,建议反应液pH为5.5,温度为40℃,时间10 min,比色波长405 nm。对出发菌株进行紫外线、甲基磺酸乙酯、亚硝基胍多次重复连续的诱变处理,获得产GAL活力较高的5个菌株。对菌株连续传代试验以及循环交替培养,筛选获得稳定产GAL的青霉菌株(Penicillium sp.)MAFIC-6,其基础产酶活力为147 U/g。青霉MAFIC-6合成α-半乳糖苷酶在一定程度上仍受葡萄糖阻遏,也受蔗糖、蜜二糖和棉籽糖部分诱导,说明该菌属于半组成型突变株。三角瓶和托盘SSF试验研究了影响产酶的各种环境因素。结果表明,培养基的初始适宜pH在5.5~6.5,发酵温度为26~32℃,水分宜控制在55%左右,在250 mL三角瓶中装曲量为50.7 g,培养75 h时,产α-半乳糖苷酶活力最高。托盘发酵研究了料曲温度和含水量变化规律,发现随着发酵进程,料曲内部温度可持续升高,水分则减少。对SSF培养基组分优化结果表明,苹果渣、甜菜渣、甘蔗渣部分替代麸皮时能显著提高酶产量,酵母粉和大豆粕是较好的氮源。在培养基中添加0.1%的Tween-80、Triton-100和EDTA均能显著地提高α-半乳糖苷酶产量。按四因素三水平正交设计安排试验。结果显示,豆粕、甜菜渣、硫酸铵和磷酸氢二钾各因素/水平依次为16%、4%、2%和2%时,酶活力达到172 U/g以上。保持硫酸铵含量不变,选择豆粕、甜菜渣和磷酸氢二钾的三因素/水平进行响应面分析试验。结果表明,当培养基中含豆粕19.20%、甜菜渣3.89%和磷酸氢二钾2.92%时,得到最高理论酶活力为174.98 U/g,与实验结果相符。分别在自然状态和调控状态下开展托盘SSF中间规模试验。结果表明,在自然SSF条件下,酵曲温度和含水量变化幅度较大,酵曲温度最高达到43℃,最后料曲水分损失22%,收获GAL活力为128.5 U/g;在调控状态下,通过调节曲房空气的温度和相对湿度,可以维持相对稳定的温度和含水量,酵曲高峰期温度仅维持在33.5~36.5℃,酵曲水分含量下降幅度较小。最后收获GAL活力达到166.3 U/g,比自然发酵酶活提高了29.4%。通风换气和喷无菌水是调节发酵过程中温度和水分的有效措施。GAL粗酶制剂稳定pH范围在3.5~6.5,最适温度50~60℃,在70℃以下时稳定,经过猪胃肠液仍能保持活力70%以上,金属离子影响酶活力。GAL对底物(对硝基苯酚-α-D-吡喃半乳糖苷)Km为1.38 mmol L~(-1),V_m为2.58 mmol L~(-1)s~(-1)。粗酶制剂中含有其它多种非淀粉多糖酶,在常温能稳定储存。在玉米-豆粕型日粮中添加GAL对肉鸡营养物质利用、生产性能、血清学参数利器官重量的影响进行了研究。结果表明,GAL能改善日粮代谢能水平和营养物质消化率,显著提高肉仔鸡早期生长阶段的生产性能,日粮能量与GAL添加水平间存在一定的互作效应。
A hyperproducing α-galactosidase (GAL) strain was screened from Penicillium janczewskii through physical and chemical compound mutagenesis. The conditions of solid-state fermentation (SSF), including cultivating environmental factors and culture compositions, were optimized, and the pilot-scale production of GAL in SSF was performed. Moreover, the properties and applications in broiler on the enzyme preparation were studied. Firstly, the assay of feed Penicillium GAL activity was established as the para-nitrophenol spectrophotometeric method. It was suitable to specify GAL determination under the conditions of pH 5.5, 40℃, 10 min reaction at 405 nm. The original strain was treated repeatedly with ultraviolet light, ethyl methane sulfonate, and nitrosoguanidine in turn, and five strains with hyperproducing GAL were selected. With sequential generation, then circulatory and alternative culture, Penicillium sp. MAFIC-6 was obtained since it is stable and high production. Its basic GAL activity is about 147 U/g. GAL synthesis from MAFIC-6 is repressed by glucose to a certain extent, whereas induced by sucrose, melibiose and raffinose, which suggested the strain is a partially constitutive. Various factors effecting enzyme production were studied in Erlenmeyer's flasks and trays. The results showed that the best GAL activity could be available with 50.7 g substrate on the initial pH 5.5-6.5 and 55% moisture content, incubating at 26~32℃ for 75 h. Tests on SSF in trays disclosed the changes of temperature and water in the course of fermenting process. When the inner temperature of the culture rises, the water content of culture drops. Apple pulp, beet pulp, and bagasse can partially substitute wheat bran as carbon sources for GAL production. Yeast meal and soybean meal are better nitrogen sources than others. Adding 0.1% Tween-80, Triton-100, or EDTA to the culture markedly improved GAL activity. An orthogonal design was employed to optimize the composition of the culture. GAL activity reached the highest (172 U/g) when the levels of soybean meal, beet pulp, (NH4)2SO4, and K2HPO4 were 16%, 4%, 2% and 2% respectively in the medium. The following response surface methodology indicated that the recipe of soybean meal at 19.20%, beet pulp at 3.89%, and K2HPO4 at 2.92% amounted to the theoretical value 174.98 U/g, coinciding with the practical result. In natural SSF the temperature and water of culture varied greatly and the final activity was 128.5 U/g. However, under controlled condition the temperature and water changed little and the final activity was 166.3 U/g that increased 29.4% compared with the natural. Ventilation and spraying sterile water may be effective measures to mediate temperature and water balance. The crude GAL is optimal at pH 3.5~6.5 and 50~60℃. Metal ions affected GAL activity. The Km and Vm of GAL to para-nitrophenyl-a-D-galactopyranoside is 1.38 mmol L-1 and 2.58 mmol L-1 s-1. Finally, the effects of GAL supplementation of corn-soybean meal diet on nutrient utilization, performance, serum indices and organ weight in broilers were studied. The results indicated that adding GAL enhanced metabolizable energy and nutrient digestibility to the diets, and obviously improved performance of broilers in the early growth stage. The interaction of GAL and energy can be also detected by some parameters determined.
引文
管斌,孙艳玲,谢来苏,隆言泉.2000.抗分解代谢阻遏纤维素酶变异株的选育.无锡轻工大学学报,19:244-247.
    郭勇主编.1994.酶工程.北京:中国轻工业出版社,pp 45-46.
    胡学智.2003.酶制剂工业概况及其应用进展.工业微生物,4:32-41.
    李孝辉.青霉产α-半乳糖苷酶的研究:[浙江大学硕士学位论文].杭州:浙江大学,2001.
    刘波,彭万霖,赵淑贞,王春生,高素洁,田晓光.1979.乳糖对焦曲霉的间接诱导作用的初步研究.微生物学报,2:225-226.
    刘波.1984.霉菌α-半乳糖苷酶分解棉籽糖的初步研究.微生物学通报,12:9-10.
    陆文清,李德发.2002.影响饲料酶活力测定的因素分析.饲料研究,5:15-18.
    潘宝海.扬奇青霉发酵生产饲用α-半乳糖苷酶的研究:[中国农业大学博士学位论文].北京:中国农业大学,2002.
    彭万霖,沈以源,刘波.1984.分枝犁头霉菌球对棉籽糖水解作用的研究.微生物学报,2:187-188.
    曲音波,高培基,王祖农.1984.青霉的纤维素酶抗降解阻遏突变株的选育.真菌学报,4:238-243.
    沈仁权,陈中孚,顾其敏,蔡武城,朱俭,冷麟.1981.嗜热芽孢杆菌中一株对分解代谢不敏感突变型的α-半乳糖苷酶的提纯及其性质.复旦学报(自然科学版),2:177-185.
    沈仁权,陈中孚,顾其敏,冷麟,金国琴,任丽芬,陈伟平,郭立平.1979.产α-半乳糖苷酶嗜热芽孢杆菌的选育.遗传学报,1:104.
    沈同,王镜岩主编.1991.生物化学(上册).北京:高等教育出版社(第二版),pp 232-328.
    吴劲松,冯万祥.2000.α-半乳糖苷酶.生命的化学,2:84-86.
    肖敏,刘树峰,朱崇日,钱新民.2001.短双歧杆菌α-D-半乳糖苷酶的纯化及性质.中华微生物学和免疫学杂志,3:307-311.
    肖念清,孙册.1996.慈姑(Sagittaria safitttifolia)的纯化与性质.生物化学杂志,5:547-552.
    严自正,朱梅芳,朱静,张树政.1986.分枝犁头霉α-半乳糖苷酶的研究:Ⅰ.纯化与性质.全国第二次糖的学术讨论会论文摘要汇编,pp 95-96.
    张克旭,陈宁,张蓓,赵桂仙编著.1998.代谢控制发酵.北京:中国轻工业出版社,pp54-76.
    张丽英.大豆寡糖对断奶仔猪抗营养作用及机理的研究:[中国农业大学博士论文].北京:中国农业大学,2000.
    张树政主编.1984.酶制剂工业(下册).北京:科学出版社(第一版),pp 780-794.
    中国肉鸡饲养标准(ZB B 43005-86).2002.中国饲料工业标准汇编.农业部畜牧兽医局编.北京:中国标准出版社,pp 247-250.
    周德庆著.2002.微生物学教程(第2版).北京:高等教育出版社,pp 82-87.
    Angel, C. R., J. L. Sell, and D. R. Zimmerman. 1988. Autolysis of α-galactosides of defatted soy flakes: influence on nutritive value for chickens. J. Agric. Food. Chem. 36: 542-546.
    AOAC. 1995. Official Methods of Analysis (16th Ed.). Association of Official Analytical Chemists, Washington, DC.
    Babu, K. R., and T. Satyanarayana. 1995. α-Amylase production by Thermophilic Bacillus coagulans in solid state fermentation. Process Biochem. 30: 305-309.
    
    Balasubramaniam, K., and C. D. Mathew. 1986. Purification of a-galactosidase from coconut. Phy tochemistry 25:1819-1821.
    Baldini, V. L. S., I. S. Drfetta, and Y. K. Park. 1985. Purification and characterization of a-galactosidase from Feijao bean Phaseolus vulgaris. J. Food Sci. 50:1766-1767.
    Battalino, R. A., M. Huergo, A. M. R. Pilosuf, and G. B. Bartholomai. 1991. Culture requirements for production of protease by Aspergillus oryzae in solid-state fermentation. Appl. Microbiol. Biotechnol. 35:292-296.
    Baucells, F., J. F. Perez, J. Morales, and J. Gasa. 2000. Effect of a-galactosidase supplementation of cereal-soya-bean-pea diets on the productive performances, digestibility and lower gut fermentation in growing and finishing pigs. Anim. Sci. 71:157-164.
    Brenes, A., B. A. Rotter, R. R. Marquardt, and W. Guenter. 1993a. The nutritional value of raw, autoclaved and dehulled peas (Pisum Sativum L.) in chicken diets as affected by enzyme supplementation. Can. J. Anim. Sci. 73:605-614.
    Brenes, A., R. R. Marquardt, W. Guenter, and B. A. Rotter. 1993b. Effect of enzyme supplementation on the nutritional value of raw, autoclaved, and dehulled lupins (Lupinus albus) in chicken diets. Poult. Sci. 72:2281-2293.
    Brillouet, J. M., and D. Riochet. 1983. Cell wall polysaccharides and lignin in cotyledons and hulls of seeds from various lupin (Lupinus L.) species. J. Sci. Food Agric. 34:861-868.
    Brumer, H., P. F. G. Sima, and M. L. Sinnott. 1999. Lignocellulose degradation by Phanerochaete chrysosporium: purification and characterization of the main alpha-galactosidase. Biochem. J. 339:43-53.
    Calloway, D. H., D. J. Colasito, and R. D. Matthews. 1966. Gases produced by human intestinal microflora. Nature 212:1238-1239.
    Caugant, I., R. Toullec, M. Formal, P. Guilloteau, and L. Savoie. 1993. Digestibility and amino acid composition of digesta at the end of the ileum in pre ruminant calves fed soybean protein. Reprod. Nutr. Dev. 33:335-337.
    Chong, C. H. 2000. Improving utilization of poultry feedstuffs with supplemental amino acids and enzymes. Ph. D. dissertation, the University of British Columbia (Canada).
    Coon, C. N., K. L. Leske, O. Akavanichan, and T. K. Cheng. 1990. Effect of oligosaccharide-free soybean meal on true metabolizable energy and fiber digestion in adult rooster. Poult. Sci. 69:787-793.
    Cruz, R., and Y. K. Park. 1982. Production of fungal a-galactosidase and its application to the hydrolysis of galactooligosaccharides in soybean milk. J. Food Sci. 47:1973-1975.
    Delente, J., J. H. Johnson, M. J. Kuo, and R. J. O'connor. 1974. Production of a new thermostable neutral a-galactosidase from a strain of Bacillus stearothermophilus. Biotechnol. Bioeng. 16:1227-1243.
    Dey, P. M. 1984. Characteristic features of an alpha-galactosidase from mung beans. Eur. J. Biochem. 140:385-390.
    Dey, P. M., and J. B. Pridham. 1969. Purification and properties of a-galactosidase from Vicia faba seeds. Biochem. J. 113:49-55.
    Dey, P. M., S. Patel, and M. D. Brownleader. 1993. Induction of a-galactosidase in Penicillium ochrochloron by guar {Cyamopsis tetragonobola) gum. Biotechnol. Appl. Biochem.
     17:361-371.
    
    Dopico, B., G. Nicolas, and E. Labador. 1991. Characterization, hydrolytic activity and variations throughout growth of a cell wall beta-glucosidase and alpha-galactosidase from Cicer arietinum epicotyls. J. Plant Physiol. 137:477-482.
    Duffaud, G. D., C. M. McCutchen, P. Leduc, K. N. Parker, and R. M. Kelly. 1997. Purification and characterization of extremely thermostable P-mannanase, P-mannosidase, and a-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl. Environ. Microbiol. 63:169-177.
    Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11:1-42.
    Durance, T., and B. Skura. 1985. Purification and characterization of a Clostridium perfringens a-galactosidase. J. Food Sci. 50:518-522.
    Durand, A., and D. Chereau. 1988. A new pilot reactor for solid state fermentation: application to the protein enrichment of sugar pulp. Biotechnol. Bioeng. 31:476-486.
    Eldridge, A. C, L. T. Black, and W. J. Wolf. 1979. Carbohydrate composition of soybean flours, protein concentrates, and isolates. J. Agric. Food Chem. 21:799-802.
    Emilio, M., T. Maija, L. Elina, and P. Merijia. 1996. Three a-galactosidase genes Trichoderma reesei cloned by expression in yeast. Eur. J. Biochem. 240:105-111.
    Entian, K. D., and K. U. Frohlich. 1984. Saccharomyces cerevisiae mutants provide evidence of hexokinase P II as a bifunctional enzyme with catalytic and regulatory domains or triggering carbon repression. J. Bacteriol. 158:29-35.
    Fontana, E. A., A. T. Lamptey, F. Brinthaus, and G. L. Lewis, Jr. 2001. Method for increasing carcass yields in poultry. U. S. Pat. No. 6,333,062.
    Garro, M. S., G. S. de Gion, G. F. de Valdez, and G. Oliver. 1994. a-D-Galactosidase (EC 3.2.1.22) from Bificobacterium longum. Lett. Appl. Microbiol. 19:16-19.
    Gdala, J., A. J. M. Jansman, L. Buraczewska, J. Huisman, and P. van Leeuwen. 1997. The influence of a-galactosidase supplementation on the ileal digestibility of lupin seed carbohydrates and dietary in young pigs. Anim. Feed Sci. Technol. 67:115-125.
    Gervais, P., P. Molin, W. Grajek, and M. Bensoussan. 1988. Influence of the water activity of a solid substrate on the growth rate and sporogenesis of filamentous fungi. Biotechnol. Bioeng. 31:457-463.
    Ghazi, S., J. A. Rooke, H. E. Galbraith, and A. Morgan. 1997a. Effect of adding protease and alpha-galactosidase enzymes to soyabean meal on nitrogen retention and true metabolisable energy in broilers. Bri. Poult. Sci. 38 (Suppl.):S28.
    Ghazi, S., J. A. Rooke, H. E. Galbraith, and A. Morgan. 1997b. Effect of feeding growing chicks semi-purified diets containing soyabean meal and different amounts of protease and alpha-galactosidase enzymes. Bri. Poult. Sci. 38 (Suppl.):S29.
    Gitzelmann, R., and S. Auricchio. 1965. The handling of soy alpha-galactosidase by a normal and galactosemic child. Pediatrics. 36:231-232.
    Giuseppin, M. L. F., J. W. Almkerk, C. J. Herstek, and C. T. Verrips. 1993. Comparative study on the production of guar a-galactosidase by Saccaromyces cerevisiae SU50B Hansenula ploymorpha 8/2 in continuous cultures. Appl. Environ. Microbiol. 59:52-59.
    Glazebrook, M. A., L. C. Vining, and R. L. White. 1992. Growth morphology of Streptomyces
     akiyoshiensis in submerged culture: influence of pH, inoculum, and nutrients. Can. J. Microbiol. 3:98-103.
    
    Goffrini, P., A. Ficarelli, and I. Ferrero. 1995. Hexokinase activity is affected in mutants of Kluyveromyces lactis resistant to glucose repression. Microbiology 141:441-447.
    Grajek, W., and P. Gervais. 1987. Influence of water activity on the enzyme biosynthesis and enzyme activities produced by Trichodeerma viride TS in solid-state fermentation. Enzyme Microb. Technol. 11:658-662.
    Griffin, D. M. 1981. Water and microbial stress. Adv. Microbial Ecol. 5:91-136.
    Hartwig, E. E., T. M. Kuo, and M. M. Kenty. 1997. Seed protein and its relationship to soluble sugars in soybean. Crop Sci. 37:770-773.
    Hashimoto, H., C. Katayama, M. Goto, and S. Kitahata. 1993. Purification and some properties of a-galactosidase from Candida guilliermondii H 404. Biosci. Biotech. Biochem. 57:372-378.
    Hassan, K. S., and W. J. Thomas. 1999. 2-Deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis. Appl. Biochem. Biotechnol. 77-79:211-222.
    Igbasan, F. A., W. Guenter, and B. A. Slominski. 1997. The effect of pectinase and a-galactosidase supplementation on the nutritive value of peas for broilers chickens. Can. J. Anim. Sci. 77:537-539.
    Iji, P. A., and D. R. Tivey. 1998. Natural and synthetic oligosaccharides in broiler chicken diets. World's Poult. Sci. J. 54:129-143.
    Irish, G. G., and D. Balnave. 1993. Non-starch polysaccharides and broiler performance on diets containing soybean meal as the sole protein concentrate. Aust. J. Agric. Res. 44:1483-1499.
    Irish, G. G., G. W. Barbour, and H. L. Classen. 1995. Removal of the a-galactosides of sucrose from soybean meal using either ethanol extraction or exogenous a-galactosidase and broiler performance. Poult. Sci. 74:1484-1494.
    Kawamura, S., T. Kasai, and S. Tanusi. 1976. Purification and properties of a-galactosidase from Escherichia coli subsp. communior IAM 1272. Agric. Biol. Chem. 40:641-648.
    Kennedy, I. R., O. D. Mwandemele, and K. S. Me Whiter. 1985. Estimation of sucrose, raffinose and stachyose in soybean seeds. Food Chem. 17:85-92.
    Khan, A. W., D. Tremblay, and A. LeDuy. Assay of xylanase and xylosidase activities in bacterial and fungal cultures. Enzyme Microb. Technol. 1986, 8:373-377.
    Kidd, M. T., G. W. Morgan, Jr., C. D. Zumwalt, C. J. Price, P. A. Welch, F. L. Brinkhaus, and E. A. Fontana. 2001a. a-Galactosidase enzyme supplementation to corn and soybean meal broiler diets. J. Appl. Poult. Res. 10:186-193.
    Kidd, M. T., G. W. Morgan, Jr., C. J. Price, P. A. Welch, and E. A. Fontana. 2001b. Enzyme supplementation to corn and soybean meal diets for broilers. J. Appl. Poult. Res. 10:65-70.
    Kim, J. H., M. Hosobuchi, T. Seki, T. Yoshida, H. Taguchi, and D. D. Y. Ryu. 1985. Cellulase production by a solid state culture system. Biotechnol. Bioeng. 27:1445-1450.
    Kim, S. W. 2002a. Effect of alpha- 1,6-galactosidase, beta-l,4-mannanase, and beta-1,4- mannosidase on lactation performance in primiparous sows. J. Anim. Sci. 80(Suppl. 2):58. (Abstr.)
    Kim, S. W. 2002b. Supplementation of a-1,6-galactosidase and (i-l,4-mannanosiase, β-1,4-mannanase on intestinal morphology and the removal of dietary antinutritional factors in
     young pigs. J. Anim. Sci. 85(Suppl. 1):39. (Abstr.)
    
    Kim, S. W., J. H. Zhang, K. T. Soltwedel, and R. A. Easter. 2001. Supplementation of a-l,6-galactosidase and p-l,4-mannanase to improve soybean meal utilization by growing-finishing pigs. J. Anim. Sci. 79(Suppl. 2):84. (Abstr.)
    Kligerman, A. E. 2002. Compositions and method for reducing gastro-intestinal distress due to alpha-D-galactoside-linked/containing sugar. U.S. Pat. No. 6,334,196.
    Knap, I. H., A. Ohmann, and N. Dale. 1996. Improved bioavailability of energy and growth performance from adding alpha-galactosidase (from Aspergillus sp.) to soybean meal-based diets. Proc. Aust. Poult. Sci. Symp. Sydney, Australia, pp 153-156.
    Knap, I. H., C. M. Hjort, T. Halkier, and L. V. Kofod. 1999. Alpha-galactosidase. U.S. Pat. No. 5,919,690.
    Knap, I. H., C. M. Hjort, T. Halkier, and L. V. Kofod. 2001. Alpha-galactosidase. U.S. Pat. No. 6,197,566.
    Kotwal, S. M, M. M. Gote, S. R. Sainkar, M. I. Khan, and J. M. Khire. 1998. Production of a-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soyamilk hydrolysis. Process Biochem. 33:337-343.
    Kuo, T. M., J. F. Van Middlesworth, and J. Wolf. 1988. Content of raffinose oligosaccharides and sucrose in various plant seeds. J. Agric. Food Chem. 36:32-36.
    Lamptey, A. T., F. Brihkhaus, J. A. Greaves, E. A. Fontana, and G. M. Smith. 2001. Method for increasing breast meat yields in poultry. U.S. Pat. No. 6,174,558.
    Leske, K. L., and C. N. Coon. 1999. Hydrogen gas production of broiler chicks in response to soybean meal and a-galactoside free, ethanol-extracted soybean meal. Poult. Sci. 78:1313-1316.
    Leske, K. L., B. Zhang, and C. N. Coon. 1995. The use of Sow alpha-galactoside protein products as a protein source in chicken diets. Anim. Feed Sci. Technol. 54:275-286.
    Leske, K. L., C. J. Jevne, and C. N. Coon. 1993. Effect of oligosaccharide additions on nitrogen-corrected true metabolizable energy of soy protein concentrate. Poult. Sci. 72:664-668.
    Li, X., L. Yang, P. Yan, F. Zuo, and F. Jin. 1997. Factors regulating production of a-galactosidase from Bacillus sp. JF2. Lett. Appl. Microbiol. 25:1-4.
    Lindley, M. G. 1982. Cellobiase, melibiase and other disaccharides. In: Developments in food carbohydrates, Vol. 30. Lee, C. K., and M. G. Lindley, ed. Elsevier Applied Science Publishers, London, England, pp 141-165.
    Lonsane, B. K., N. P. Ghildyal, S. Budiatman, and S.V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7:258-265.
    Lu, W., D. Li, and Y. Wu. 2003. Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb. Technol. 32:305-311.
    Luonteri, E., M. Tenkanen, and L. Viikari. 1998. Substrate specificities of Penicillium simplicissimum a-galactosidases. Enzyme Microb. Technol. 22:192-198.
    Manzanares, P., L. H. de Graaff, and J. Visser. 1998. Characterization of galactosidases from Aspergillus niger. purification of a novel a-galactosidase activity. Enzyme Microb. Technol.
     22:383-390.
    
    Marx, S., S. Leder, and W. Hartmeier. 1998. Properties of alpha-galactosidase from Bifidobacterium adolescentis. Twelfth forum for applied biotechnology, Brugge, Belgium, pp 24-25.
    McGhee, J. E., R. Silman, and E. E. Bagler. 1978. Production of a-galactosidase from Aspergillus awamori: properties and action on para-nirophenyl a-D-galactopyranoside and galactooligosaccharides of soymilk. J. Am. Oil Chem. 55:244-247.
    Mckay, A. M. 1991. Production of extracellular β-glucosidase and a-galactosidase during fungal growth on polygalacturonate. J. Food Sci. 56:1749-1750.
    Mitchell, D. 1992. A Solid Substrate Cultivation. London, K: Elsevier Science Publishers LTD, pp 53-63.
    Mitsutomi, M., J. Honda, and A. Ohtakara. 1991. Enzymatic synthesis of galactooligosaccharides by the condensation action of thermostable alpha-galactosidase from Pycnoporus cinnabarinus. J. Jap. Soc. Food Sci. Technol. 38:722-728.
    Montenecourt, B. S. 1980. Biochemical nature of cellulases from mutants of Trichoderma reesei. Biotech. Bioeng. 10:15-26.
    Moo-Young, M., A. R. Mortiera, and R. P. Tengerdy. 1983. Principles of solid state fermentation. In: The filamentous fungi, Vol. 4, Fungal Biotechnology. Smith, J. E., D. R. Berry, and B. Kristiansen, ed. Edward Arnold Publishers, London, pp 117-144.
    Mudgett, R. E. 1986. Solid state fermentation. In: Manual of Industrial Microbiology & Biotechnology, American Society for Microbiology, Washington D. C, pp 66-83.
    Mulimani, V. H., S. Thippeswamy, and Ramalingam. 1997. Enzymatic degradation of oligosaccharides in soybean flours. Food Chem. 59:279-282.
    Nadkarni, M., C. K. K. Nair, V. N. Pandey, and D. S. Pardhan. 1992. Characterization of a-galactosidase from Corynebacterium murisepticum and mechanism of its induction. J. Gen. Appl. Microbiol. 38:23-34.
    Nigam, P., and D. Singh. 1994. Recent process developments in solid state substrate systems and their applications in biotechnology-solid state fermentation. J. Basic Microbiol. 34:405-423.
    O'Doherty, J. V., and S. Forde. 1999. The effect of protease and alpha-galactosidase supplementation on the nutritive value of peas for growing and finishing pigs. Irish J. Agric. Food Res. 38:217-226.
    Oda, Y., and K. Tonomura. 1996. a-Galactosidase from the yeast Torulaspora delbrueckii IFO 1255. J. Appl. Bacteriol. 80:203-208.
    Ohshima, T., G. T. Murray, W. D. Swaim, G. Longenecker, J. M. Quirk, C. O. Cardarelli, et al. 1997. Alpha-galactosidase A deficient mice: a model of Fabry disease. Pro. Natl. Acad. Sci. USA. 94:2540-2544.
    Oriol, E., B. Schettino, G. Viniegra-Gonzalez, and M. Raimbault. 1988a. Solid state culture of Aspergillus niger on support. J. Ferment. Technol. 66:57-62.
    Oriol, E., M. Raimbault, S. Roussos, G. Viniegra-Gonzalez, and M. Raimbault. 1988b. Water and water activity in the solid state fermentation of cassava starch by Aspergillus niger. Appl. Microb. Biotechnol. 27:498-503.
    Overbeeke, N., G. H. M. Termorshuizen, M. L. F. Giuseppin, D. R. Underwood, and C. T. Verrips.
     1990. Secretion of the α-galactosidase from Cyamopsis tetragonoloba (Guar) by Bacillus subtilis. Appl. Environ. Microbiol. 56:1429-1434.
    
    Pandey, A. 2003. Solid-state fermentation. Biochem. Eng. J. 13:81-84.
    Pandey, A., P. Selvakumar, C. R. Soccol, and P. Nigram. 1999. Solid state fermentation for the production of industrial enzymes. Current science 77:149-162.
    Pardo, E. H., S. Funayama, F. O. Pedrosa, and L. U. Rigo. 1992. Pichia stipitis L-rhamnose dehydrogenase and a catabolite-resistant mutant able to utilize 2-deoxy-D-glucose. Can. J. Microbiol. 38:417-422.
    Park, G. G., S. Y. Lee, B. K. Park, S. S. Han, and J. H. Lee. 1991. Characteristics features of an a-galactosidase from Penicillium purpurogenum. J. Microbiol. Biotechnol. 1:90-95.
    Park, Y. S., S. W. Kang, J. S. Lee, S. I. Hong, S. W. Kim. 2002. Xylanase production in solid-state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol. 58:761-766.
    Pluske, J. R., and M. D. Lindemann. 1998. Maximizing the response in pigs and poultry diets containing vegetable proteins by enzyme supplementation. In: Biotechnology in the Feed Industry. Proc. of Alltech's 14th Annu. Symp. Lyons, T. P., and K. A. Jacques, ed. Nottingham Univ. Press, Nottingham, U.K., pp 375-379.
    Pubols, M. H. 1993. The effects of a-galactosidase on energy values of soybean meal rations. Poult. Sci. 72(Suppl. 1):126. (Abstr.)
    Puchart V., P. Katapodis, P. Biely, L. Kermnicky, P. Christakopoulos, M. Vrsanska, D. Kekos, B. J. Macris, and M. Y. Bhat. 1999. Production of xylanases, mannases, and pectinases by the thermophilic fungus thermomyces lanuginosus. Enzyme Microb. Technol. 24:355-361.
    Rackis, J. J., D. H. Honig, D. J. Sessa, andF. R. Steggerda. 1970. Flavor and flatulence factors in oybean protein products. J. Agric. Food Chem. 18:977-979.
    Raimbault, M., and D. Alazard. 1980. Culture method to study fungal growth in solid state fermetation. Eur. J. Appl. Microbiol. Biotechnol. 9:199-209.
    Richards, E. A., F. R. Steggerda, and A. Murata. 1968. Relationship of bean substrates and certain intestinal bacteria to gas production in the dog. Gastroenterology 55: 502-509.
    Risley, C. R., and T. Lohrmann. 1998. Growth performance and apparent digestibility of weaning pigs fed diets containing low stachyose soybean meal. J. Anim. Sci. 76(Suppl. 1):179. (Abstr.)
    Ronald, P. V., C. B. Herry, D. Ester, M. Paloma, H. G. Leo, and V. Jaap. 1999. Differential expression of three a-galactosidase genes and a single P-galactosidase gene from Aspergillus niger. Appl. Environ. Microbiol. 65:2453-2460.
    Sadhukhan, A. K., M. V. Ramana Murthy, K. R. Ajaya, E. V. S. Mohan, G. Vandana, C. Bhar, and R. K. Venkateswara. 1999. Optimization of mycophenolic acid production in solid-state fermentation using response surface methodology. J. Ind. Microbiol. Biotechnol. 22:33-38.
    Saini, H. S. 1989. Legume seed oligosaccharides. In: Recent advances of research in antinutritional factors in legume seeds. Huisman, J., A. F. B. van der Poel, and I. E. Liener, ed. Pudoc, Wageningen, Netherlands, pp 329-341.
    Sanni, A. I., A. A. Onilude, and O. R. Ogundoye. 1997. Effect of bacterial galactosidase treatment on the nutritional status of soybean seeds and its milk derivative. Nahrung/Food. 41(1): 18-21.
    Sargantanis, J., M. N. Karim, V. G. Murphy, and D. Ryoo. 1993. Effect of operating conditions on
     solid substrate fermentation. Biotechnol. Bioeng. 42:149-158.
    
    SAS Institute, Inc. 1998. SAS User's Guide. Release 6.12 ed. SAS Institute, Cary, NC.
    Saucedo-Castaneda, G., M. Gutierrez-Rojas, G. Bacquet, M. Raimbault., and G. Viniegra-Gonzalez. 1990. Heat transfer simulation in solid state substrate fermentation. Biotechnol. Bioeng. 35:802-808.
    Selden, F. R., M. Borowski, P. F. Gillispie, M. C. Kinoshita, A. D. Treco, and D. M. Williams. 2000. Transfected human cells expressing human alpha-galactosidase protein. U.S. Pat. 6,083,725.
    Shabalin, K. A., A. A. Kulminskaya, A. N. Savel'ev, S. M. Shishlyannikov, and K. N. Neustoev. 2002. Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides. Enzyme Microb. Technol. 30:231-239.
    Shibuya, H., H. Kobayashi, G. G. Park, J. Komatsu, T. Sato, R. Kanee, H. Nagasaki, S. Yoshida, K. Kasamo, and I. Kufakabe. 1995. Purification and some properties of alpha-galactosidase from Penicillium purpurogenum. Biosci. Biotech. Biochem. 59:2333-2335.
    Shibuya, H., H. Kobayashi, T. Sato, W. S. Kim, R. Kaneke, S. Yoshida, S. Kaneko, K. Kasamo, and I. Kufakabe. 1997. Purification, characterization and cDNA cloning of a novel alpha-galactosidase from Morterella vinacea. Biosci. Biotech. Biochem. 61:592-595.
    Shibuya, H., N. Hiroaki, K. Satoshi, S. Yoshida, G. G. Park, I. Kusakabe, and H. Kobayashi. 1998. Cloning and high level expression of a-galactosidase cDNA from Pennicillium purpurgenum. Appl. Environ. Microbiol. 64:4489-4494.
    Shigeyoshi, N., N. Hirosuke, Y. Akiyoshi, and K. Ichiro. 1976. Method for manufacture of a-galactosidase by microorganism. U.S. Pat. 3,957,578.
    Sibbald, I. R. 1979. A bioassay for available amino acid and true metabolizable energy in feedstuffs. Poult. Sci. 58: 668-673.
    Slominski, B. A. 1994. Hydrolysis of galactooligosaccharides by commercial preparations of a-galactosidase and P-fructofuranose: potential for use as dietary additives. J. Sci. Food Agric. 65:323-330.
    Slominski, B. A., L. D. Campbell, and W. Guenter. 1992. Enhancement of the feeding value of low-glucosinolate rapeseed by supplementation of poultry diets with exogenous enzymes. In: Proceedings of the 19* World's Poultry Congress, World's Poultry Science Association, Amsterdam, Netherlands, pp 241-245.
    Smet, B. de M. Hesta, M. Seynaeve, G. Janssens, P. Vanrolleghem, and R. O. de Wilde. 1999. The influence of supplemental alpha-galactosidase and phytase in a vegetable ration for dogs on the digestibility of organic components and phytate phosphorus. J. Anim. Physiol. Anim. Nutr. 81:1-8.
    Somiari, R. I., and E. Balogh. 1995. Properties of an extracellular glycosidase of Aspergillus niger suitable for removal of oligosaccharides from cowpea meal. Enzyme Microb. Technol. 17:311-316.
    SPSS. 2000. Statistical Package for the Social Science. Version 9.0 Chicago, Illinois.
    Srinivas, M. R. S., Nagin Chand, and B. K. Lonsane. 1994. Use of Plackett-Burman design for rapid screening of several nitrogen source, growth/product promoters, minerals and enzyme inducers for the production of alpha-galactosidase by Aspergillus niger MRSS 234 in solid
     state fermentation system. Bioprocess Eng. 10:139-144.
    
    Stanbury, P. F., A. Whitaker, and S. J. Hall. 1995. Media for industrial fermentation. In: Principles of Fermentation Technology. Stanbury, P. F., and A. Whitaker, ed. Oxford: Pergamon Press, pp 93-121.
    STATISTICA. 2001. Data analysis software system. StatSoft, Inc., version 6.
    Sugimoto, FL, and J. P. Van Buren. 1970. Removal of oligosaccharides from soy milk by an enzyme from Aspergillus saitoi. J. Food Sci. 35:655-660.
    Suzuki, H., S. H. Li, and Y. T. Li. 1970. a-Galactosidase from Mortierella vinacea. J. Biol. Chem. 245:81-83.
    Suzuki, H., W. Ozawa, and H. Yoshida. 1969. Induction α-galactosidase from Mortierella vinacea. Agric. Biol. Chem. 33:506-509.
    Talbot, G., and J. Sygusch. 1990. Purification and characterization of thermostable beta-mannanase and alpha-galactosidase from Bacillus sterarothertnophilus. Appl. Environ. Microbiol. 56:3505-3510.
    Tanaka, M., D. Thananunkul, T. C. Lee, and C. O. Chichester. 1975. A simple method for the quantitative determination of sucrose, raffinose, and stachyose in legume seeds. J. Food Sci. 40:1087-1088.
    Trevino, J., C. Centeno, A. Brenes, P. Yustek, and L. Rubio. 1990. Effect of dietary oligosaccharides on the digestion of pea starch by growing chicks. Anim. Feed Sci. Technol. 30:313-319.
    Veldman, A., W. A. G. Veen, D. Barug, and P. A. van Paridon. 1993. Effect of a-galactosidase in feed on ileal piglet digestive physiology. J. Anim. Physiol. Anim. Nutr. 69:57-65.
    Wagner, J., R. Becker, M. R. Gumbmann, and A. C. Olson. 1976. Hydrogen production in the rat following ingestion of raffinose, stachyose, and oligosaccharide-free bean residue. J. Nutr. 106:466-470.
    Yang, F. C, and C. B. Lian. 1998. Effect of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng. 19:233-236.
    Yernool, D., E. D. Eveleigh, R. M. King, and B. Chassy. 2000. Thermastable alpha-galactosidase and methods of use. U.S. Pat. 6,150,171.
    Zadrazil, F., and H. Brunnert. 1981. Investigations on physical parameters important for the SSF of straw by white rot fungi. Eur. J. Appl. Microbiol. Technol. 11:183-188.
    Zapater, I. G., A. H. J. Ullah, and R. J. Wodzinski. 1990. Extracellular a-galactosidase (E.C. 3.2.1.22) from Aspergillus ficuum NRRL 3135 purification and characterization. Prep. Biochem. 20:263-296.
    Zeilinger, S., D. Kristufek, I. Arisan-Atac, R. Hodits, and C. P. Kubicek. 1993. Conditions of formation, purification, and characterization of an a-galactosidase of Trichoderma reesei RUT C-30. Appl. Environ. Microbiol. 59:1347-1353.
    Zuo, Y., G. C. Fahey, Jr., N. R. Merchen, and N. L. Bajjalieh. 1996. Digestion responses to low oligosaccharide soybean meal by ileally-cannulated dogs. J. Anim. Sci. 74:2441-2449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700