Sialon-Si_3N_4梯度纳米复合陶瓷刀具的研制及高速切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基合金具有优良的力学性能,广泛应用于航空、航天及核工业等领域,但高速切削镍基合金时具有切削力大、切削温度高、刀具寿命低等特点,高性能刀具是镍基合金高效高质量加工的关键技术之一。本文借鉴梯度功能材料(FGM)和纳米复合材料的研究方法,将梯度功能复合的热应力缓解及表面压应力特性和纳米复合的强韧化机制进行有机结合,建立了梯度纳米复合陶瓷刀具材料的宏微观结构模型,系统研究了梯度纳米复合陶瓷刀具材料的制备工艺、力学性能及微观结构、抗摩擦磨损性能、抗热冲击及热疲劳性能等,并对刀具的高速切削性能及其失效机理进行了分析与研究。
     建立了高速切削过程的非均匀热—力—化学多场耦合模型,明确梯度纳米复合刀具组分及结构的设计目标及要求。提出了梯度纳米复合陶瓷刀具材料的设计基本原则,对刀具材料“宏观”性能进行分解,以适应和抵抗非均匀多场作用,再进行各局部“微观”结构及性能设计,建立了适于高速切削的梯度纳米复合陶瓷刀具材料的宏微观结构模型。
     采用粉末铺填—热压烧结工艺,制备了Sialon-Si3N4梯度纳米复合陶瓷刀具材料。以刀具材料的综合力学性能最优为目标,优化了结构参数和工艺参数:GSS1力学性能在层厚比e=0.3、烧结温度T=1700℃、保温时间t=60min、压力P=35MPa时取得最优值,其最优的综合力学性能为:抗弯强度σf=980MPa、断裂韧度(表层)KIC=9.54MPa-m1/2、维氏硬度(表层)HV=16.91GPa; GSS2力学性能在e=0.3、T=1750℃, t=60min、P=35MPa时取得最优值,其最优的综合力学性能为:σf=810MPa、KIC=9.33MPa·m1/2、HV=16.98GPa。
     研究了Sialon-Si3N4梯度纳米复合陶瓷刀具材料的显微组织结构、裂纹扩展形式和断裂机制。结果表明,材料断口处有明显的柱状β-Sialon晶粒和β-Si3N4晶粒的断裂、桥接及拔出等,材料的断裂机制为穿晶断裂和沿晶断裂的混合型。不同尺寸的Si3N4晶粒形成双峰结构,使裂纹扩展时易发生晶粒的桥接和偏转。TEM分析表明,材料的微观结构是晶内/晶间混合型,存在孪晶、位错等特征。这些特征的存在使裂纹扩展时需消耗更多的能量,从而促进了材料强度和断裂韧度的提高。
     研究了Sialon-Si3N4梯度纳米复合陶瓷刀具材料的抗摩擦磨损性能。结果表明,在相同条件下,梯度陶瓷材料的摩擦系数和磨损率低于均质陶瓷材料的摩擦系数和磨损率。主要的滑动磨损机理是剥落、粘结磨损及磨粒磨损。梯度材料表层存在残余压应力,能够抵抗部分摩擦过程中产生拉应力,从而减小了摩擦力,提高了材料的抗摩擦磨损性能。
     研究了Sialon-Si3N4梯度纳米复合陶瓷刀具材料的抗热冲击及热疲劳性能。结果表明,梯度纳米复合陶瓷材料的抗热冲击及热疲劳性能均优于对应的均质陶瓷材料。梯度纳米复合陶瓷材料和均质纳米复合陶瓷材料都表现为原始短裂纹的扩展特征,GSS1的临界热震温差为600℃,而GSS2、ST10及SAAT10的临界热震温差为400℃。
     研究了Sialon-Si3N4梯度纳米复合陶瓷刀具高速切削Inconel718时的刀具寿命、刀具的磨损破损特征及其失效机理等。结果表明,高速车削Inconel718时,刀具耐磨性及寿命在vc=120m/min时较好,此时GSS1的切削性能优于进口刀具KY1540;梯度陶瓷刀具GSS1和GSS2的切削性能优于均质陶瓷刀具ST10和SAAT10的切削性能;刀具主要的失效机理有磨粒磨损、粘结磨损、沟槽磨损及崩刃等。高速铣削Inconel718时,最优速度范围vc=700~900m/min;梯度陶瓷刀具表现出极好的自砺性,崩刃后仍能进行正常切削,其抗沟槽磨损能力高于进口刀具KY4300;梯度陶瓷刀具主要的失效形式是剥落、崩刃及沟槽磨损;机械应力和热应力共同作用是梯度纳米复合陶瓷刀具破损的主要原因;刀具除发生破损外还有明显的磨损特征,磨损机理主要是粘结磨损和磨粒磨损。
Nickel-based super alloys have excellent mechanical properties, which have been widely employed in aerospace and nuclear industry. However, they are some characteristics in high speed cutting Nickel-based super alloys process, such as high cutting force, high cutting temperature and low tool life. Therefore, high performance cutting tool is one of the key technologies for high efficiency and high quality machining of Nickel-based super alloys. In this dissertation, the research methods of functionally graded materials (FGMs) and nano-composite materials were borrowed. The macro-micro design model of the graded nano-composite ceramic tool materials was constructed by the combination of the characteristics of thermal stress relief and surface compressive stress of the FGMs and the strengthening and toughening mechanisms of nano-composites. The preparation process, mechanical properties and microstructure, tribologiccal properties and antifriction mechanism, thermal shock and thermal fatigue resistance of the graded nano-composite ceramic tool materials were investigated in the dessertation. And the cutting performance and failure mechanism of the cutting tools were also analyzed and researched.
     A non-homogeneous thermal-mechanical-chemical multi-field coupling model in high speed cutting process was established. The design objectives and requirements of the tool composite and structure were identified. The basic design principles of the tool materials have been proposed. In order to adapt and resist the action of the non-homogeneous multi-field, at first, the macro properties of the tool materials were tailored. And then the micro structure and properties of each local were designed. Thus the macro-micro design model of the graded nano-composite ceramic tool materials was constructed.
     According to the basic design principles, two kinds of graded nano-composite ceramic tool materials were fabricated by using layered powder filling and hot pressing technique. The optimum mechanical properties were taken as the objective to optimize the structural parameters and sintering parameters. GSS1material with optimum mechanical properties was sintered under a pressure of35MPa at1700℃for60min, while the thickness ratio being e=0.3. The optimum mechanical properties are a flexural strength σf=980MPa, a fracture toughness (surface layer) KIC=9.54MPa·m1/2and a Vicker's hardness (surface layer) HV=16.91GPa. GSS2material with optimum mechanical properties was sintered under a pressure of35MPa at1750℃for60min, while the thickness ratio being e=03. The optimum mechanical properties are σf=810MPa, KIC=9.33MPa·m1/2and HV=16.98GPa.
     Microstructure, crack propagation patterns and fracture mechanisms of Sialon-Si3N4graded nano-composite ceramic tool materials were thoroughly investigated. The results showed that the fracture surfaces were characterized by a mix mode of intergranular and transgranular fracture. A large amount of fracture and pull-out of rod-like β-Si3N4grains and β-Sialon grains were observed on the fracture surface. The difference in Si3N4grain size led to the formation of the interlocked duplex microstructure of β-Si3N4grains and β-Sialon grains. The interlocked duplex microstructure contributed much to the improvement of flexural strength and fracture toughness. Crack deflection and crack bridging were also observed, which can absorb additional amounts of fracture energy. According to the TEM micrographs analysis, a mix of intergranular and transgranular TiC0.7N0.3particles, stress interference stripes and twin structure acted simultaneously in the surface layer of Sialon-Si3N4graded ceramic materials.
     The tribological properties and antifriction mechanism of Sialon-Si3N4graded nano-composite ceramic tool materials were researched. The results showed that the friction coefficient and the wear rate of the homogeneous reference material were higher than those of the graded material. The wear mechanisms of the graded nano-composites were adhesion, chipping and abrasion. The compressive residual stresses at the surface layer of the graded specimens can counteract partially the tensile stress during sliding wear process, which cause the decrease friction force. Therefore, the graded specimen exhibits improved antifriction performance than that of the homogeneous reference one.
     The thermal shock and thermal fatigue resistance of Sialon-Si3N4graded nano-composite ceramic materials were also investigated. The results showed that the graded ceramics exhibited higher thermal shock and thermal fatigue resistance. Both the graded ceramics and homogeneous ceramics exhibited the propagation characteristics of short-cracks. The highest critical temperature difference of GSS1was600℃, while the critical temperature difference of GSS2, ST10ans SAAT10was400℃.
     Tool life, failure patterns and mechanisms of Sialon-Si3N4graded nano-composite ceramic tools were investigated via high speed cutting of Inconel718. The results showed that the highest tool life was obtained at vc=120m/min in turning. GSS1and GSS2showed higher performance than that of ST10and SAAT10respectively. The main failure mechanisms of the graded tools identified in the turning tests involved adhesive wear, abrasive wear, notch wear and chipping. The optimum cutting speed range was700-900m/min in the face milling tests. The graded tool was possessed of a self-sharpening characteristic and showed better cutting performance compared to the homogeneous ones. The resistance to notch wear of GSS1was higher than that of KY4300. The main failure types of the tools in ultra high speed cutting were flaking, chipping and notch wear. The main cause of tool fracture was the combined effect of the mechanical impact stress and thermal stress. Tool wear accompanied with tool fracture took place, with its mechanisms being abrasive wear and adhesive wear.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [2]Zhao J, Deng J X, Zhang J X, et al. Failure mechanisms of a whisker-reinforced ceramic tool when machining nickel-based alloys [J]. Wear,1997,208:220-225.
    [3]肖茂华,何宁,李亮,等.陶瓷刀具高速切削镍基高温合金沟槽磨损试验研究[J].中国机械工程,2008,(10):1188-1192.
    [4]Aspinwall D K, Dewes R C, Ng E G, et al. The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconel 718 under finishing conditions [J]. International Journal of Machine Tools & Manufacture,2007,47:1839-1846.
    [5]Thakur D G, Ramamoorthy B, Vijayaraghavan L. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning [J]. Materials and Design,2009,30: 1718-1725.
    [6]郑文虎,张玉林,詹明荣编写.难切削材料加工技术问答[M].北京:北京出版社,2000.
    [7]刘阳,叶洪涛,张军,等.航空用镍基高温合金切削现状研究[J].航空制造技术,2011,(14):48-5].
    [8]Prengel H G, Jindal P C. A new class of high performance PVD coatings for carbide cutting tools [J]. Surface and Coatings Technology,2001,139:25-34.
    [9]Ducros C, Benevent V. Characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools [J]. Surface and Coatings Technology,2003,163-164: 681-688.
    [10]Arunachalam R M, Mannan M A. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools [J]. International Journal of Machine Tools & Manufacture,2004,44:879-887.
    [11]Darwish S M. The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy [J]. Journal of Materials Processing Technology,2000,97: 10-18.
    [12]Costes JP, Guillet Y, Poulachon G, et al. Tool-life and wear mechanisms of CBN tools in machining of Inconel 718 [J]. International Journal of Machine Tools & Manufacture,2007,47: 1081-1087.
    [13]Ezugwu E O, Bonney J, da Silva R B, et al. Evaluation of the performance of different nano-ceramic tool grades when machining nickel-base, inconel 718, alloy [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2004,26:12-16.
    [14]邓建新,艾兴.Al2O3/TiB2/SiCw陶瓷刀具加工镍基合金时的磨损机理研究[J].硅酸盐学报, 1997,25(2):192-197.
    [15]Altin A, Nalbant M, Taskesen A. The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools [J]. Materials and Design,2007,28:2518-2522.
    [16]宋新玉,赵军,姜俊玲.加工Inconel 718时陶瓷刀具的磨损机理[J].中国机械工程,20(7):763-767.
    [17]Zhao J, Ai X, Huang X P. Relationship between the thermal shock behavior and the cutting performance of a functionally graded ceramic tool [J]. Journal of Materials Processing Technology,2002; 129(1-3):161-166.
    [18]Tohgo K, Iizuka M, Araki H, et al. Influence of microstructure on fracture toughness distribution in ceramic-metal functionally graded materials [J]. Engineering Fracture Mechanics,2008,75:4529-4541.
    [19]Jin Z H, Feng Y Z. Effects of multiple cracking on the residual strength behavior of thermally shocked functionally graded ceramics [J]. International Journal of Solids and Structures,2008, 45:5973-5986.
    [20]Zhao J, Yuan X L, Zhou Y H. Processing and characterization of an Al2O3/WC/TiC micro-nano-composite ceramic tool material [J]. Materials Science and Engineering A,2010,527: 1844-1849.
    [21]周咏辉.A1203基纳米复合陶瓷刀具材料的研制及切削性能研究[D].山东大学博十学位论文,2009.
    [22]吕志杰.高性能Si3N4/TiC纳米复合陶瓷刀具材料的研制与性能研究[D].山东大学博士学位论文,2005.
    [23]郭新贵,汪德才,李从心.高速切削技术及其在模具工业中的应用[J].现代制造工程,2001,(9):31-33.
    [24]Herbert Schulz, Eberhard Abele,何宁编著.高速加工理论与应用[M].北京:科学出版社,2010.
    [25]张铁铭.干式切削及其所用刀具材料的现状[J].工具展望,2002,(5):14.
    [26]李如松.正在兴起的干切削技术[J].国际金属加工商情,2003,(7):11-14.
    [27]李良琦.取代磨削的硬切削[J].国防制造技术,2010,(1):58-59.
    [28]冯立新,刘少东.提高硬切削质量的建议[J].机械工程师,2007,(7):161-161.
    [29]赵炳桢.重视刀具应用技术提高切削加工效率[J].航空制造技术,2005,(7):38-40.
    [30]李忠科,张宇,张春飞,等.高速硬切削技术及刀具的合理选择[J].工具技术,2007,41(1):89-92.
    [31]Konig W, Verktold. A Turning Versus Grinding-a Comparison of Surface Integrity Aspects and Attainable Accuracy [J]. Annals of the CIRP,1993,42(1):39-44.
    [32]王宇PCBN刀具高速精密硬态切削机理与应用技术[D].哈尔滨理工大学博士学位论文, 2008.
    [33]Fallqvist M, Olsson M, Ruppi S. Abrasive wear of multilayer κ-Al2O3-Ti(C, N) C VD coatings on cemented carbide [J]. Wear.2007,26(1-6):74-80.
    [34]Fallqvist M, Olsson M, Ruppi S. Abrasive wear of texture-controlled CVD α-Al2O3 coatings [J]. Surface and Coatings Technology,2007,202(4-7):837-843.
    [35]Dey A K, Biswas K. Dry sliding wear of zirconia-toughened alumina with different metal oxide additives [J]. Ceramics International,2009,35(3):997-1002.
    [36]Chen H, Gou G, Tu M, Liu Y. Characteristics of nano particles and their effect on the formation of nanostructures in air plasma spraying WC-17Co coating [J]. Surface and Coatings Technology,2009,203(13):1785-1789.
    [37]Bobzin K, Bagcivan N, Immich P, et al. Mechanical properties and oxidation behaviour of (Al, Cr)N and (Al, Cr, Si)N coatings for cutting tools deposited by HPPMS [J]. Thin Solid Films, 2008,517(3):1251-1256.
    [38]肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社,1990.
    [39]余东海,王成勇,张凤林.刀具涂层材料研究进展[J].工具技术,2007,41(6):25-32.
    [40]邓建新,钮平章,王景海,等.“软”涂层刀具的发展与应用[J].工具技术,2005,39(3):10-12.
    [41]Julthongpiput D, Ahn H S, Sidorenko A. Towards self-lubricated nano-coatings [J], Tribology International,2002,35(12):829-836.
    [42]Selinder T I, Coronel E, Wallin E, et al. a-Alumina coatings on WC/Co substrates by physical vapor deposition [J]. International Journal of Refractory Metals and Hard Materials.2009, 27(2):507-512.
    [43]马丽林,刘滨,于启勋,等.金属陶瓷刀具材料的发展和应用[J].航空制造技术,2008,(7):100-101.
    [44]Bellosi A, Calzavarini R, Faga M G, et al. Characterization and application of titanium carbonitride-based cutting tools [J]. Journal of Materials Processing Technology,2003, 143-144:527-532.
    [45]. Zhang H A, Tang S W, Yan J H, et al. Cutting performance of titanium carbonitride cermet tools [J]. International Journal of Refractory Metals and Hard Materials,2007,21 (5-6): 440-444.
    [46]李少峰,刘维良,彭牛生,等.金属陶瓷刀具材料研究进展[J].陶瓷学报,2010,31(1):140-144.
    [47]李永涛,熊惟皓,杨青青,等.超细/纳米粉末Ti(C,N)基金属陶瓷性能研究进展[J].材料导报,2005,19(9):57-60.
    [48]梁在国,熊惟皓.放电等离子烧结纳米复合Ti(C,N)基金属陶瓷[J].机械工程材料,2006,30(3):64-67.
    [49]李瑜煜,张仁元.热电材料热压烧结技术研究[J].材料导报,2007,21(7):126-129.
    [50]晏鲜梅,熊惟皓,郑立允.金属陶瓷刀具及其表面处理的现状与展望[J].材料导报,2005,19:352-355.
    [51]Ettmayer P, Kolaska H, Lengauer W, et al. Ti(C, N) cermets-metallurgy and properties[J]. International Journal of Refractory Metals and Hard Materials,1995,13:343-351.
    [52]Zhou S, Zhao W, Xiong W, et al. Thermodynamics of the formation of contiguity between ceramic grains and interface structures of Ti(C,N)-based cermets [J]. International Journal of Refractory Metals and Hard Materials.2009,27(4):740-746
    [53]李鹏南,唐思文,张厚安,等Ti(C, N)基金属陶瓷刀具的高速切削性能与磨损机理[J].中国有色金属学报,2008,18(7):1287-1291.
    [54]石增敏,郑勇,袁泉,等.金属陶瓷刀具切削不锈钢的磨损机理研究[J].材料导报,2007,21:244-246.
    [55]徐立强,孙永敏,黄传真,等.淬硬钢的金属陶瓷刀具车削加工[J].烟台大学学报(自然科学与工程版),2011,24(3):231-235.
    [56]马丽林,刘滨,于启勋,等.金属陶瓷刀具材料的发展和应用[J].航空制造技术,2008,(7):100-101.
    [57]艾兴,邓建新,赵军,等.陶瓷刀具的发展及其应用[J].机械工人(冷加工),2000,(9):4-6.
    [58].王宝友,崔丽华,黄传真,等.陶瓷刀具的发展与应用[J].工具技术.2001,35(1):3-7
    [59]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2007:67-134.
    [60]Zhao J, Yuan X L, Zhou Y H. Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro-nano-composite ceramic tool [J]. International Journal of Refractory Metals and Hard Materials 28 (2010) 330-337.
    [61]丁代存.Si3N4/TiC纳米复合陶瓷刀具材料的研制及其性能研究[D].山东大学硕士学位论文,2005.
    [62]黄新平.新型基陶瓷刀具材料的研制及其切削性能研究[D].山东大学硕士学位论文,2002.
    [63]邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D].山东大学博士学位论文,2006.
    [64]Poortemana M, Descampsa P, Cambiera F, et al. Silicon nitride/silicon carbide nanocomposite obtained by nitridation of SiC:fabrication and high temperature mechanical properties [J]. Journal of the European Ceramic Society,2003, (23):2361-2366.
    [65]刘战强.陶瓷刀具材料的新进展与应用(上)[J].机械工人,2006,(1):38-41.
    [66]张荣波,许崇海,冯曰美,等.陶瓷刀具材料近期研究进展[J].机械工程师,2008,(1):55-58.
    [67]Bitterlich B, Bitsch S, Friederich K. SiAlON based ceramic cutting tools [J]. Journal of the European Ceramic Society,2008,28:989-994.
    [68]邓强Sialon结合SiC摩擦材料的制备与性能研究[D].武汉理工大学硕士学位论文,2007.
    [69]Nalbant M, Altm A, Gokkaya H. The effect of cutting speed and cutting tool geometry on machinability properties of nickel base Inconel 718 super alloys [J]. Materials and Design,2007, 28:1334-1338.
    [70]周玉梅,秦哲,王成勇.金刚石刀具性能及其应用研究[J].机械设计与制造,2009(6):158-160.
    [71]陈定一,孙楠.超精金刚石刀具的特点及应用[J].新技术新工艺.2008,(9):43-46.
    [72]谷勇霞,叶伟吕.立方氮化硼刀具的合理使用[J].硬质合金.2004,21(3):164-167.
    [73]. K Fujisaki, H Yokota, N Furushiro, et al. Development of Ultra-Fine-Grain Binderless CBN Tool for Precision Cutting of Ferrous Materials [J]. Journal of Materials Processing Technology, 2009,209(15-16):5646-5652.
    [74]Angseryd J, Elfwing M, Olsson E, et al. Detailed microstructure of a CBN based cutting tool material [J]. International Journal of Refractory Metals and Hard Materials,2009,27(2): 249-255.
    [75]Low I M. Ceramic matrix composites:microstructure, properties and applications. In:Anne G, Vleugels J, Van Der Biest O, editors. Functionally graded ceramics. Cambridge:Woodhead Publishing Limited; 2006,575-596.
    [76]赵军,艾兴,黄传真,等.新型梯度功能陶瓷刀具材料的设计模型[J].陶瓷学报,1997,18(3):125-129.
    [77]Ai X, Zhao J, Zhang J H. Development of an advanced ceramic tool material-functionally gradient cutting ceramics [J]. Materials Science and Engineering A,1998,248(1-2):125-131.
    [78]Zhao J, Ai X. Fabrication and cutting performance of an Al2O3-(W, Ti)C functionally gradient ceramic tool [J]. International Journal of Machining and Machinability of Materials,2006,1(3): 277-286.
    [79]赵军,艾兴,张建华,等Al2O3/TiC系梯度功能陶瓷刀具材料的设计[J].机械工程学报,1998,34(4):32-36.
    [80]赵军,艾兴,张建华,等.梯度功能陶瓷刀具材料的残余应力设计及制备[J].硅酸盐学报,1998,26(3):292-299.
    [81]Nomura T, Moriguchi H, Tsuda K, et al. Material design method for the functionally graded cemented carbide tool [J]. International Journal of Refractory Metals & Hard Materials,199,17: 397-404.
    [82]Cho J R, Park H J. High strength FGM cutting tools:finite element analysis on thermoelastic characteristics [J]. Journal of Materials Processing Technology,2002,130-131:351-356.
    [83]Wang R G, Pan W, Chen J, et al. Fabrication and characterization of machinable Si3N4/h-BN functionally graded materials [J]. Materials Research Bulletin,2002,37:1269-1277.
    [84]Lee C S, Ahn S H, DeJonghe L C, et al. Effect of functionally graded material (FGM) layers on the residual stress of polytypoidally joined Si3N4-Al2O3 [J]. Materials Science and Engineering A,2006,434:160-165.
    [85]Calis N, Kushan S R, Kara F, et al. Functionally graded SiAlON ceramics [J]. Journal of the European Ceramic Society,2004,24:3387-3393.
    [86]赵军,邓建新,艾兴,等.对称型梯度功能陶瓷材料的抗热震参数[J].硅酸盐学报,2003,31(10):945-949.
    [87]赵军,艾兴,邓建新,等.对称型梯度功能陶瓷材料的非定常热应力[J].机械工程学报,2001,37(11):22-27.
    [88]赵军,王朝霞,董一芬,等.对称型梯度功能材料的瞬态热应力强度因子[J].山东大学学报(工学版),2004,34(3):9-13.
    [89]Zhao J, Ai X, Huang C Z, et al. An analysis of unsteady thermal stresses in a functionally gradient ceramic plate with symmetrical structure [J]. Ceramics International,2003,29: 279-285.
    [90]Zhao J, Ai X, Deng J X, et al. A model of the thermal shock resistance parameter for functionally gradient ceramics [J]. Materials Science and Engineering A,2004,382:23-29.
    [91]Zhao J, Li Y Z, Ai X. Analysis of transient thermal stress in sandwich plate with functionally graded coatings [J]. Thin Solid Films,2008,516:7581-7587.
    [92]赵军,艾兴,张建华,等.对称型梯度功能陶瓷材料抗热震性的研究[J].中国陶瓷,2002,38(2):1-3,20.
    [93]王永国,艾兴,李兆前,等.新型陶瓷刀具材料的热应力分析[J].无机材料学报,2001,16(5):999-1003.
    [94]王永国,李兆前,邓建新,等.新型陶瓷刀具的界面裂纹分析[J].陶瓷学报.2000,21(2):104-106.
    [95]王永国,艾兴,李兆前,等.梯度功能陶瓷刀具的热应力分析[J].机械工程学报.2003,39(4):53-55.
    [96]Jin Z H, Luo W J. Thermal shock residual strength of functionally graded ceramics [J]. Materials Science and Engineering A,2006,435-436:71-77.
    [97]赵军,艾兴,张建华,等.梯度功能陶瓷刀具FG-2的切削性能及损坏特征[J].工具技术,1998,32(4):3-6.
    [98]赵军,王亮德,王志孟Al2O3/TiC梯度功能陶瓷刀具的切削性能及损坏机理[J].工具技术.2000,34(6):11-13.
    [99]Sternitzke M. Review:Structural Ceramic Nanocomposites [J]. Journal of the European Ceramic Society,1997,17:1061-1082.
    [100]Huang C Z, Liu H L, Wang J, et al. Multi-scale and multi-phase nanocomposite ceramic tools and cutting performance [J]. Chinese Journal of Mechanical Engineering (English Edition), 2007; 20 (5):5-7.
    [101]李广海,江安全,张立德.添加纳米Al2O3对Al2O3陶瓷增韧和增强的影响[J].金属学报,1996,32(12):1285-1288.
    [102]Tan H L, Yang W. Toughness mechanisms of nano-composite ceramics. Mechanics of Materials,1998,30:111-123.
    [103]Reimanis I E. A review of issues in the fracture of interracial ceramics and ceramic composites. Materials Science and Engineering A,1997,237(2):159-167.
    [104]Pezzotti G, Mailer W H. Strengthening mechanisms in Al2O3/SiC nanocomposites. Computational Materials Science,2001,22(3-4):156-168.
    [105]Jeong Y K, Niihar K. Microstructure and mechanical properties of pressureless sintercd Al2O3/TiC nanocomposites. Nanostructure Materials,1997,9:193-196.
    [106]宋世学,艾兴,赵军,吴齐Al2O3/TiC纳米复合陶瓷刀具材料的力学性能与增韧强化机理[J].机械工程材料,2003,27(12):35-36.
    [107]张凯.梯度纳米复合陶瓷刀具材料的制备及性能研究[D].山东大学硕士学位论文,2009.
    [108]马伟民Al2O3/ZrO2(Y2O3)复合陶瓷刀具材料的制备、力学性能及切削性能研究[D].东北大学博士学位论文.2004.
    [109]杨明辉.热压烧结氧化铝/氮化硅纳米复合陶瓷的研究[D].武汉理工大学硕士学位论文,2005.
    [110]Hnatko M, Galusek D, Sajgalk P. Low-cost preparation of Si3N4-SiC micro/nano composites by in-situ carbothermal reduction of silica in silicon nitride matrix [J]. Journal of the European Ceramic Society,2004,24:189-195.
    [111]Luo J T, Liu R P, Qi L. Formation and vanishment of the intragranular microstructure in Si2N2O/Si3N4 nanocomposites [J]. Science China Technological Sciences,2010,53(1):284-286
    [112]Lin M T, Chen G R, Yang Y X, et al. Microstructure and room-temperature mechanical properties of β-sialon/SiC nanocomposites [J]. Materials Science and Engineering A,2006,433: 329-333.
    [113]Szafran M, Bobryk E, Kukla D. Si3N4-Al2O3-TiC-Y2O3 Composites Intended for the Edges of Cutting Tools [J]. Ceramic International,2000,26:579-582.
    [114]杨发展.新型WC基纳米复合刀具材料及其切削性能研究[D].山东大学博士学位论文.2009.
    [115]Chen W L, Li W, Liu N, et al. Performance of Ti(C,N)-based cermets cutter and simulation technique of cutting process [J]. Journal of Materials Processing Technology,2008,197:36-42.
    [116]Itakura K, Kuroda M. Wear mechanism of coated cemented carbide tool in coated tool in cutting of Inconel 718 super-heat resisting alloy [J]. International Journal of Japanese Society for Precision Engineering,1999,33(4):326-333.
    [117]Jindal P C, Santhanam A T. Performance of PVD TiN, TiCN and TiAIN coated cemented carbide tools in turning [J]. International Journal of Refractory Metals and Hard Materials,1999, (17):163-170.
    [118]EL-Wardany T I, Mohammed E, M. Elbestawi A. Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials [J]. International Journal of Machine Tools & Manufacture,1996,36(5):611-634
    [119]Kurt A. Modeling of the cutting tool stresses in machining of Inconel 718 using artificial neural networks [J]. Expert Systems with Applications,2009,36:9645-9657.
    [120]Kitagawa T, Kubo A, Maekawa K. Temperature and wear of cutting tools in high-speed machining of Incone1718 and Ti-6A1-6V-2Sn [J]. wear,1997,202:142-148.
    [121]Li L, He N, Wang M, et al. High speed cutting of Inconel 718 with coated carbide and ceramic inserts [J]. Journal of Materials Processing Technology,2002,129:127-130.
    [122]刘建生,陈慧琴,郭晓霞,等.金属塑性加工有限元技术与应用.北京:冶金工业出版社,2003:73-109.
    [123]钱壬章,魏艳红,魏尊杰,等.材料热加工过程的数值模拟.哈尔滨:哈尔滨工业大学出版社,2001:53-95.
    [124]Hu Z, Zhu L, Wang B, et al. Computer simulation of the deep extrusion of a thin—walled cup using thermo-mechanically coupled elasto-plastic FEM [J], Journal of Materials processing Technology,2000,102:128-137.
    [125]Lee W S, Sue W C, Lin C F, et al. The strain rate and temperature dependence of the dynamic impact properties of 7075 Alnunmu Alloy [J]. Journal of Materials porcessing Technology.2000, (10):116-122.
    [126]Uhlmann E, Graf von der Schulenburg M, Zettier R. Finite element modeling and cutting simulation of Inconel 718 [J]. Annals of the CIRP,2007,56:61-64.
    [127]中国硅酸盐学会.陶瓷硅酸盐指南’96-中国硅酸盐学会手册Vol.2技术篇.中国建材工业出版社,1996.p96-135.
    [128]全燕鸣,何振威.车削碳钢中切削热的分配[J].中国机械工程,2006,17(20):2155-2158.
    [129]何振威,全燕鸣,乐有树.基于有限元模拟的高速切削中切削热的研究[J].工具技术,2006,40(3):60-63.
    [130]刘旺玉,张勇,李静,等.高速切削热分配的有限元模拟[J].工具技术,2009,43(8):14-17.
    [131]叶大伦,胡建华.实用无机物热力学数据手册(第二版)[M].北京:冶金工业出版社,2002.
    [132]王零森.特种陶瓷[M].长沙:中南工业大学出版社,1994.
    [133]李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1990.
    [134]王零森,王有才,樊毅,等Sialon陶瓷的常压烧结[J].中南工业大学学报,2001,32(3):277-280.
    [135]曹忠良,王珍云编.无机化学方程式手册[M].长沙:湖南科学技术出版社,1985.
    [136]甄强,王庭云,张大海,等.热力学模型在氮氧化物陶瓷研究中的应用[J].宇航材料工艺,2006,(2):13-17.
    [137]侯新梅,徐恩霞,王习东,等.热力学及热力学参数状态图在β-Sialon材料合成中的应用.耐火材料,2006,40(2):136-138,144.
    [138]董鹏莉,吴凯军,孟宪民,等β-Sialon及其复合材料热力学与合成[J].中国稀土学报,2004,22(8):383-387.
    [139]王萍萍SIALON陶瓷的制备及力学性能研究[D].哈尔滨理工大学硕士学位论文,2007.
    [140]《中国航空材料手册》编辑委员会编.中国航空材料手册(第二版)[M].北京:中国标准出版社,2001.
    [141]赵军.新型梯度功能陶瓷刀具材料的设计制造与切削性能研究[M].北京:高等教育出版社,2005.5
    [142]徐崇海.复相陶瓷刀具材料设计、仿真及其应用研究.济南:山东工业大学博士学位论文,1998.
    [143]Taya M, Hayashi S, Albert S, et al. Toughening of a particulate reinforced ceramic-matrix composite by thermal residual stress [J]. Journal of the American Ceramic Society,1990,73(5): 1382-1391.
    [144]陈源,黄莉萍,孙兴伟,等.烧结助剂对氮化硅陶瓷高温性能的影响[J].硅酸盐学报,1997,25(2):183-187.
    [145]王零森,张正富,樊毅,等.烧结助剂对Sialon常压烧结的影响[J].中国有色金属学报,2001,11(3):386-389.
    [146]张晓丹,王三强,刘冬青.基于遗传算法轴对称梯度功能材料优化设计[J].北京科技大学学报.2002,24(6):630-632,650.
    [147]刘书田,程耿东.基于均匀化理论的梯度功能材料优化设计方法[J].宇航材料工艺,1995,(6):21-27.
    [148]穆柏春.陶瓷材料的强韧化[M].冶金工业出版社,2002.
    [149]饮征骑.新型陶瓷材料手册[M].江苏科学技术出版社,1996.
    [150]张玉龙,马建平.实用陶瓷材料手册[M].化学工业出版社,2006.
    [151]中国机械工程学会,中国材料研究学会,中国材料l:程大典编委会编.中国材料工程大典[M].北京:化学工业出版社,2006.
    [152]师昌绪,李恒德,周廉主编.材料科学与工程手册(下)[M].北京:化学工业出版社,2004.
    [153]吕志杰,赵军,艾兴.分散剂聚乙二醇对Si3N4纳米粉末分散性的影响[J].硅酸盐学报(英 文版).2007,35(11):1434-1438.
    [154]中华人民共和国国家技术监督局.GB6596-1986.中华人民共和国国家标准-工程陶瓷弯曲强度试验方法[M].北京:中国标准出版社,1986.
    [155]周玉,雷延权.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995.
    [156]中华人民共和国国家技术监督局.GB/T 16534-1996.中华人民共和国国家标准-工程陶瓷维氏硬度试验法[M].北京:中国标准出版社,1996.
    [157]. Evans A G, Charles E A. Fracture toughness determinations by indentation [J]. Journal of the American Ceramic Society,1976,59(7-8):371-372.
    [158]Rhee S H, Lee J D, Kim D Y. Effect of α-Si3N4 initial powder size on the microstructural evolution and phase transformation during sintering of Si3N4 ceramics. Journal of the European Ceramic Society,2000,20:1787-1794.
    [159]Lee C J, Chae J I, Kim D J. Efect of β-Si3N4 starting powder size on elongated grain growth in (3-Si3N4 ceramics [J]. Journal of the European Ceramic Society,2000,20:2667-2671.
    [160]Perera D S, Mitchell D R G, Leung S. High Aspect Ratio β-Si3N4 Grain Growth [J]. Journal of the European Ceramic Society,2000,20:789-794.
    [161]Deng J X, Duan Z X, Yun D L, et al. Fabrication and performance of Al2O3/(W,Ti)C+ Al2O3/TiC multilayered ceramic cutting tools [J]. Materials Science and Engineering A,2010, 527:1039-1047.
    [162]兰俊思,丁培道,黄楠.SiC晶须和Ti(C,N)颗粒协同增韧Al2O3陶瓷刀具的研究.材料科学与工程学报,2004,22(1):59-64.
    [163]Ji Y, Yemans J A. Processing and mechananical properties of Al2O3-3vol.%Cr nano-composites [J]. Journal of the European Ceramic Society,2002,22(12):1927-1936.
    [164]Becher P F. Microstructural design of toughened ceramics. Journal of the American Ceramic Society,1991,74(2):255-269.
    [165]赵敬世.位错理论基础[M].北京:国防工业出版社[M],1989:p41.
    [166]孟凡英,郭绍义,刘曾岭,等.氮化硅基陶瓷的摩擦磨损特性研究[J].浙江理工大学学报,2008,25(1):79-81.
    [167]Kerkwijk B, Winnubst A J A, Verweij H, et al. Tribological properties of nanoscale alumina-zirconia composites [J]. Wear,1999,225-229:1239-1302.
    [168]陈晓虎.材料转移层对Al2O3基自润滑陶瓷-铸铁摩擦副摩擦的影响[J].陶瓷科学与艺术,2002,(3):5-7.
    [169]梅方胜,陈卫飞,梅炳初.不同摩擦条件下MoS2-Ti3SiC2l的摩擦学性能[J].中国材料进展,2009,28(2):56-60.
    [170]Czichos H著,刘钟华,王夏锹,陈善雄等译.摩擦学对摩擦、润滑和磨损科学技术的系统分析[M].北京:机械工业大学出版社,1984.
    [171]何奖爱,王玉玮编著.材料磨损与耐磨材料[M].沈阳:东北大学业出版社,2001.
    [172]Kingery W D. Metal-ceramic interaction:Ⅳ, absolute measurement of metal-ceramic interfacial energy and interracial adsorption of silicon from iron-silicon alloys [J]. Journal of the American Ceramic Society,1954,37:42-25.
    [173]Kingery W D. Factors affecting thermal stress resistance of ceramic materials [J]. Journal of the American Ceramic Society,1955,38:3-15.
    [174]Hasselman D P H. Approximate theory of thermal stress resistance of brittle ceramics involving creep [J]. Journal of the American Ceramic Society,1969,50:454-457.
    [175]Hasselman D P H. Griffith criterion of thermal shock resistance of single-phase versus multiphase brittle ceramics [J]. Jourual of the American Ceramic Society,1969,52:288-289.
    [176]Hasselman D P H. Unified theory of thermal shock fracture initiation, crack propagation in brittle ceramics [J]. Journal of the American Ceramic Society,1969,52:600-604.
    [177]Jin Z H. An asymptotic solution of temperature field in a strip a functionally graded material. Int Comm Heat Mass Transfer,2002,29(7):887-895.
    [178]Jin Z H. Fracture mechanics of functionally graded materials, In:Gao D Y and Ogden R W, Klu-wer (eds), Advances in Mechanics and Mathematics:Vol. Ⅱ (AMMA Series, Vol.4), Academic Publishers, Dordrecht,2003, pp 1-108.
    [179]Becher P F, Lewis D, Carman K R, et al. Thermal shock resistance of ceramics:size and geometry effects in quench Tests [J]. American Ceramic Society Bulletin,1990,59(5):542-545.
    [180]Hasselman D P H, Chen E P, Urick P A. Prediction of the thermal fatigue resistance of indented glass rods [J]. American Ceramic Society Bulletin,1978,57(2):190-192.
    [181]Gong J H, Guan Z D, Jiang D C. Analysis for Strength Degradation of Indented Specimens Due to Thermal Shock, pp.605-610 in Fracture Mechanics of Ceramics, Vol 10. Edited by Bradt R C, Hasselman D P H, Sakai M, Shevchenko V Y. Plenum Press New York,1992.
    [182]Deng JX, Liu LL, Liu JH, et al. Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys [J]. International Journal of Machine Tools & Manufacture,2005,45:1393-1401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700