非均质材料的时域自适应—等效力、热分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际工程问题中常会涉及非均质材料时间相关的力学、传热分析。这类问题的数值模拟具有重要的工程应用背景与理论探讨价值。一种直接的方式是分别考虑非均质材料组分的物理/几何特性,将问题在空间/时域离散后进行计算,这往往会导致计算量过大,甚至不可行。一个变通的策略是将非均质材料考虑成一种宏观均质材料,进行等效求解,从而大幅降低计算量。本文以时域自适应算法为核心,结合不同的空间等效技术,分别以粘弹性节理岩体及非均质线性瞬态热传导问题为研究对象,探讨了非均质材料时间相关的等效数值求解方法,并特别关注时域的求解精度和效率等计算细节,主要工作包括:
     分别对单向和双向正交粘弹性节理岩体,给出了相应的简单等效假定,利用时域自适应算法,在代表元上将节理与岩石的应力/应变、本构方程,等效应力/应变展开,得到递推格式的等效本构方程,结合有限元方法,导出了求解等效粘弹性场问题的递推求解格式。在模型的数值验证中,考虑了不同节理密度/倾角、节理-岩石不同本构组合、不同结构几何形状、以及不同时间步长的影响,并将等效解和ANSYS得到的非均质解进行了比较。
     以上采用的简单等效假定易于理解和操作,但在数学与物理上不够严格。为此,在具有周期性微结构的非均质材料线性瞬态温度场的等效分析中,引入了更为严格的空间等效技术——渐进展开均匀化方法,推导了相关等效热物性参数的表达式,建立了等效递推控制方程及等效温度场的递推求解模型。通过与ANSYS非均质解的比较,对模型的精度、效率等进行了考察,在计算中考虑了不同单胞形式、不同组分比等的影响。
     计算结果表明,所提单向/双向正交粘弹性节理岩体的等效模型,以及具有周期性结构的非均质材料的线性瞬态温度场的等效模型,都可提供快速且计算精度合理的数值结果,也可方便地与无网格、离散元等其它成熟的空间数值求解方法接口,并可通过分段的自适应计算,避免在时段大小变化时可能出现的计算误差。
     论文的工作有望为非均质材料时间相关的等效数值求解提供有价值的参考。
The time-dependent solution of mechanical and heat conduction for heterogeneous material often appeared in various fields of engineering. These problems are thus of great importance for engineering and theory. A direct way is to consider the geometrical and mechanical property of component in the heterogeneous material, respectively, and then discretize the problem in space/time domain, but this caused a huge computational cost or would be impossible. Another way is to consider the heterogeneous material as macroscopical homogenous material and equivalent analysis, the computational cost will reduce sharply. Based on an adaptive algorithm in the time domain and different space-homogenization method, this paper presented a numerical method for time-dependent equivalent analysis of heterogeneous material by concerning the viscoelastic jointed rock and linear transient heat conduction problem of heterogeneous material, especially focused on the computing accuracy and cost in time domain. The main works are as follows:
     Expanded the stress/strain, constitutive equation and equivalent stress/strain of the jointed rock in base cell, recursive equivalent constitutive models of unidirectional /orthogonal viscoelastic jointed rock and recursive finite element model of the related equivalent fields are proposed based on different equivalent assumptions. Regarding to the different joint density/dip angel, different combinations of constitutive relationships for rock and joint, different geometrical and different time step sizes, numerical examples are presented to verify the proposed model and the results are compared with the FE based heterogeneous solutions via ANSYS.
     The simple equivalent assumption is easy to understand and operate, however, it is not very enough strict in the frame of mathematics and physics. An equivalent finite element model for the transient thermal field of heterogeneous material with periodic microstructure is obtained by introducing a more strict equivalent method—asymptotic expansion homogenization (AHE), and the derivation of the related equivalent thermal properties and the formulation of the equivalent governing equation are given. The comparisons between the proposed model and the heterogeneous solutions via ANSYS verified its efficiency and accuracy considering different unit cell and ratio of components.
     Numerical examples show that the proposed equivalent models of unidirectional /orthogonal viscoelastic jointed rock and transient thermal field of heterogeneous material with periodic microstructure. This method can interface with different spatial numerical method such as mesh less method and DEM (Discrete Element Method), as well as FEM (Finite Element Method), and avoid the error accumulation caused by the change of the time interval. Finally, we hope this thesis will provide valuable reference for the research on time-dependent equivalent analysis of heterogeneous material.
引文
[1]杨挺青等.粘弹性理论与应用[M].北京:科学出版社,2004.
    [2]Alan D, Kamran D.35th AIAA Thermo physics conference [C]. Anaheim, Canada:2001.
    [3]Venkataraman S, Snakar B V. Analysis of Sandwich Beams with Functionally Graded core [J]. Proceedings of the 42nd AIAA structures, structural dynamics and Materials Conference,2001.
    [4]Zhu H D. Design of metallic foams as insulation in thermal Protection systems [D]. University of Florida,2004.
    [5]Yoshida H, Horii H. Micromechanics-based continuum model for a jointed rock mass and excavation analyses of a large-scale cavern [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:119-145.
    [6]Maghous S, de Buhan P, Dormieux L. Non-linear global elastic behavior of a periodically jointed material [J]. Mechanics Research Communications,2002,29:45-51.
    [7]Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of rock [J]. Journal of the Soil Mechanics and Foundations Division ASVE,1986,94(SM3):637-659.
    [8]Hart R D, Cudall P A, Lemos J V. Formulation of a three-dimensional distinct element model-part ⅱ:mechanical calculations [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1988,25:117-126.
    [9]Singh B. Continuum characterization of jointed rock masses:Part Ⅰ—the constitutive equations [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1973,10:311-335.
    [10]Zienkiewicz O C, Pande G N. Time-dependent multilaminate model of rocks-a numerical study of deformation and failure of rock masses [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1977,1:219-247.
    [11]Gerrard C M. Elastic models of rock masses having one, two and three sets of joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982,19:15-23.
    [12]张武,张宏宪.节理岩体的弹性模型[J].岩土工程学报,1987,9:33-44.
    [13]Chen E P. Constitutive model for jointed rock mass with orthogonal sets of joints [J]. Journal of Applied Mechanics,1989,56:25-32.
    [14]杨海天,邬瑞峰.双向正交节理岩体的一个复合蠕变模型[J].大连理工大学学报,1991,31:267-274.
    [15]杨海天,邬瑞峰,王刚.节理岩体的复合本构有限元仿真计算[J].岩土工程学报,1996,18:69-76.
    [16]Cai M. A constitutive model for highly jointed rock masses [J]. Mechanics of Materials, 1992,13:217-246.
    [17]Huang T H, Chang C S, Yang Z Y. Elastic-module for fractured rock mass [J]. Rock Mechanics and Rock Engineering,1995,28:135-144.
    [18]Sitharam T G, Sridevi J, Shimizu N. Practical equivalent continuum characterization of jointed rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38:437-448.
    [19]Sridevi J, Sitharam T G. Analysis of strength and moduli of jointed rocks [J]. Geotechnical and Geological Engineering,2000,18:3-21.
    [20]Adhikary D P, Dyskin A V. Continuum model of layered rock masses with non-associative joint plasticity [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1998,22:245-261.
    [21]Esposito C, Martino S, Scarascia G. Mountain slope deformations along thrust fronts in jointed limestone:An equivalent continuum modeling approach [J]. Geomorphology,2007, 90:55-72.
    [22]Lin J S, Ku C Y. Two-scale modeling of jointed rock masses [J]. International Journal of Rock Mechanics and Mining Sciences,2006,43:426-436.
    [23]Oliveira D A F, Indraratna B. Comparison between Models of Rock Discontinuity Strength and Deformation [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010, 136:864-874.
    [24]Chen S h, Egger P. Three dimensional elasto-viscoplastic finite element analysis of reinforced rock masses and its application [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23:61-78.
    [25]Chen S h, Fu C H, Isam S. Finite element analysis of jointed rock masses reinforced by fully-grouted bolts and shotcrete lining [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46:19-30.
    [26]Yu Q, Fish J. Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales:a coupled thermo-viscoelastic example problem [J]. International Journal of Solids and Structures,2002,39:6429-6452.
    [27]Mareau C, Favier V, Berveiller M. Micromechanical modeling coupling time-independent and time-dependent behaviors for heterogeneous materials [J]. International Journal of Solids and Structures,2009,46:223-237.
    [28]Pierard O, Llorca J, Segurado J, Doghri Ⅰ. Micromechanics of particle-reinforced elasto-viscoplastic composites:Finite element simulations versus affine homogenization [J]. International Journal of Plasticity,2007,23:1041-1060.
    [29]Aboudi J. Micromechanical Characterization of the Non-linear Viscoelastic Behavior of Resin Matrix Composites [J]. Composites Science and Technology,1990,38:371-386.
    [30]Aboudi J. Micromechanically established constitutive equations for multiphase materials with viscoelastic-viscoplastic phases [J]. Mechanics of time-dependent materials,2005, 9:121-145.
    [31]Haj-Ali R, Aboudi J. International Journal of Solids and Structures Nonlinear micromechanical formulation of the high fidelity generalized method of cells [J]. International Journal of Solids and Structures,2009,46:2577-2592.
    [32]Haj-Ali R, Muliana A H. Micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials [J]. International Journal of Solids and Structures,2003,40:1037-1057.
    [33]Muliana A, Haj-Ali R.16th ASCE Environmental Engineering Conference [C]. Seattle:2003.
    [34]Muliana A H, Haj-ali R M. Nested nonlinear viscoelastic and micromechanical models for the analysis of pultruded composite materials and structures [J]. Mechanics of Materials, 2004,36:1087-1110.
    [35]Maghous S, Creus G J. Periodic homogenization in thermoviscoelasticity:case of multi layered media with ageing [J]. International Journal of Solids and Structures,2003, 40:851-870.
    [36]Suquet P M, Sanchez-Palencia E, Zaoui A. Homogenization Techniques for Composite Media [M]. Berlin/Heidelberg:Springer,1987.
    [37]Chen W, Fish J. A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales [J]. Journal of Applied Mechanics,2001,68:153-161.
    [38]De S, Fish J, Shephard M S, Kumar S K. Multiscale modeling of polymer rheology [J]. Physical Review E,2006,74:1-4.
    [39]Waisman H, Fish J. A heterogeneous space-time full approximation storage multilevel method for molecular dynamics simulations [J]. International Journal for Numerical Methods in Engineering,2008,73:407-426.
    [40]Aboudi J. The Generalized Method of Cells and High-Fidelity Generalized Method of Cells Micromechanical Models-A Review [J]. Mechanics of Advanced Materials and Structures, 2004,11:329-366.
    [41]Brinson L C, Knauss W G. Thermorheologically complex behavior multi-phase viscoelastic materials [J]. Journal of the Mechanics and Physics of Solids,1991,39:859-880.
    [42]Goering J. Analysis of thermoviscoelastic behavior of unidirectional fiber composites [J]. Composites Science and Technology,1987,29:103-131.
    [43]Liu S T, Chen K Z, Feng X A. Prediction of viscoelastic property of layered materials [J]. International Journal of Solids and Structures,2004,41:3675-3688.
    [44]刘书田,常崇义,杨海天.单向节理岩石粘弹性性能预测[J].岩石力学与工程学报,2003,22:582-588.
    [45]Dutra V F P, Maghous S, Campos A, Pacheco A R. A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete [J]. Cement and Concrete Research,2010,40:460-472.
    [46]Veeraraghavan S, Balasubramaniam K. Coupled transient thermal and pulsed EC modeling for NDT of materials subjected to laser based heat treatment [J]. AIP Conference Proceedings,2003,351-358.
    [47]Hahn O, Raether F, ArduiniSchuster M C, Fricke J. Transient coupled conductive/radiative heat transfer in absorbing, emitting and scattering media:Application to laser-flash measurements on ceramic materials [J]. International Journal of Heat and Mass Transfer, 1997,40:689-698.
    [48]Zobel N, Behrendt F. Transient heat transfer in packed beds:The significance of the history term [J]. International Journal of Heat and Mass Transfer,2008,51:3816-3824.
    [49]Hastaoglu M A. Transient modelling of a packed tower:mass and heat transfer with reaction [J]. Fuel,1995,74:1624-1631.
    [50]Fukuda K, Shiotsu M, Sakurai A. Effect of surface conditions on transient critical heat fluxes for a horizontal cylinder in a pool of water at pressures due to exponentially increasing heat inputs [J]. Nuclear Engineering and Design,2000,200:55-68.
    [51]Fukuda K, Shiotsu M, Hata K, Sakurai A. Transient boiling heat transfer from initial steady state caused by rapid depressurization [J]. Nuclear Engineering and Design,1994, 149:97-110.
    [52]Sakurai A, Shiotsu M, Hata K, Fukuda K. Sixth International Topical Meeting on Nuclear Reactor Thermal Hydraulics [C]. Nara-Ken:1993.
    [53]Cote P, Rickard C. Gas-metal reaction products in the erosion of chromium-plated gun bores [J]. Wear,2000,1:17-25.
    [54]Lawton B. Thermol-chemical erosion in gun barrels [J]. Wear,2001,251:827-838.
    [55]Sopoka S, Riekarda C, Dunnb S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part two:modeling and Prediction [J]. Wear,2005,258: 671-683.
    [56]Underwood J H, Parker A P, Vigilante G N, Cote P J. Thermal Damage, Cracking, and Rapid Erosion of Cannon Bore Coatings [J]. Journal of Pressure Vessel Technology,2003,125: 299-304.
    [57]Underwood J H, Witherell M D, Sopok S, MeNeil J C, Mulligan C P, Vigilante G N, Troiano E. Thermomechanical Modeling of Transient Thermal Damagein Cannon Bore Materials [J]. Wear,2004,257:992-998.
    [58]Weinaeht P, Conxiy P. A numerical method for predicting thermal erosion in gun tubes, ARL-TR-1156 [R]. Army research laboratory,1996.
    [59]田清超,樊新民,张越.复合枪管传热的数值分析[J].南京理工大学学报,1999,23:340-343.
    [60]Sadasivam R, Manglik R M, Jog M A. Fully developed forced convection through trapezoidal and hexagonal ducts [J]. International Journal of Heat and Mass Transfer,1999,42: 4321-4331.
    [61]Gorton M P, Shideler J L, Webb G L. Static and aerothermal tests of a superalloy honeycomb prepackaged thermal protection system [J]. NASA, TP3257,1993.
    [62]Spinnler M. Theoretical Studies of High-temperature Multilayer Thermal Insulations Using Radiation Scaling [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2004, 84:477-491.
    [63]Krishnaprakas C K, Narayana K B, Dutta P. Heat transfer correlations for multilayer insulation systems[J]. Cryogenics,2000,40:431-435.
    [64]Daryabeigi K.35th AIAA Thermophysics conference [C]. Anaheim, America:June,2001.
    [65]Akimov Y K. Fields of Application of Aerogels (Review) [J]. Instruments and Experimental Techniques,2003,46:287-293.
    [66]Hass D D, B. DurgaPrasad, Wiedemann D G. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer[J]. NASA-97-CR-201733.
    [67]姜义军,杨听宇,梁晓娟,向卫东.溶胶-凝胶法制备二氧化钛薄膜的表征[J].温州大学学报,2004,17:43-47.
    [68]尹荔松,周歧发,唐新桂,林光明,张进修.溶胶-凝胶法制备纳米TIOZ的凝胶过程机理的研究[J].功能材料,1999,30:407-409.
    [69]邓忠生,魏建东,王环,沈军.SiO2气凝胶结构及其热学特性的研究[J].材料工程,1999,23-25.
    [70]何飞,赫晓东,李鑫.气凝胶热特性的研究现状[J].材料导报,2005,19:20-22.
    [71]Xu Y, Chung D D L. Increasing the Specific Heat of Cement Paste Admixture Surface Treatlnents [J]. Cement and Concrete Research,1999,29:1117-1121.
    [72]Xu Y, Chung D D L. Cement of high specific heat and high thermal conductivity, obtained by using silane and silica fume as admixtures [J]. Cement and Concrete Research,2000, 30:1175-1178.
    [73]Xu Y, Chung D D L. Effect of Sand Addition on the Specific Heat and Thermal Conductivity of Cement [J]. Cement and Concrete Research,2000,30:59-61.
    [74]Fu X, Chung D D L. Effect of Admixture on the Thermal and Thermomechanical Behavior of Cement Paste [J]. ACI Materials Journal,1999,96:455-461.
    [75]Fu X, Chung D D L. Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste [J]. Cement and Concrete Research,1997,27:1799-1804.
    [76]Chen P W, Chung D D L. Effect of polymer addition on the thermal stability and thermal expansion of cement [J]. Cement and Concrete Research,1995,25:465-469.
    [77]邹贵平.层合板热应力分析的辛正交解析法[J].强度与环境,1997,3:1-8.
    [78]赵军,王朝霞,董一芬,艾兴.对称型梯度功能材料的瞬态热应力强度因子[J].山东大学学报(工学版),2004,34:9-13.
    [79]张幸红,韩杰才,董世运.梯度功能材料制备技术及其发展趋势[J].宇航材料工艺,1999,29:1-5.
    [80]张晓丹,刘东青,葛昌纯.稳态温度场下轴对称梯度功能材料的热应力分析[J].功能材料,1994,25:452-455.
    [81]张丽娟,饶秋华,贺跃辉,肖逸锋,黄自谦,谢宏.功能梯度材料热应力的研究进展[J].粉末冶金材料科学与工程,2005,10:257-263.
    [82]曾昭焕,郭正,巫世杰.梯度功能材料及其研究现状与发展趋势[J].导弹与航天运载技术,1996,60-67.
    [83]许飞,许晓鸣,王元淳.正交各向异性厚层压板的热弹性响应分析[J].计算力学学报,1998,15:306-315.
    [84]滕立东,王福明,李文超.梯度功能材料数值模拟进展[J].稀有金属,1999,23:298-303.
    [85]陶光勇,郑子樵,刘孙和.W/Cu梯度功能材料板稳态热应力分析[J].中国有色金属学报,2006,16:694-700.
    [86]李永,张志民.耐热梯度功能材料的热应力研究进展[J].力学进展,2000,30.
    [87]陈伟球,边祖光,丁皓江.功能梯度矩形厚板的三维热弹性分析[J].力学季刊,2002,23:443-449.
    [88]Zimmerman R W, Lutz M P. Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder [J]. Journal of Thermal Stresses,1999,22:177-188.
    [89]Wu C H, Tauchert T R. Thermoelastic analysis of laminated plates Ⅰ:Symmetric specially orthotropic composites [J]. Journal of Thermal Stresses,1980,3:247-259.
    [90]Wu C H, Tauchert T R. Thermoelastic analysis of composite plates Ⅱ:Antisymmetric cross-ply and angle-ply laminates [J]. Journal of Thermal Stresses,1980,365-378.
    [91]Tanigawa Y, Ootao Y. Thermal bending of laminated composite rectangular plates and non-homogenous plates with respect to rotating heat source [J]. Journal of Thermal Stresses,1991,14:285-308.
    [92]Tanigawa Y, Akai T, Kawamura R. Transient heat conduction and thermal stress problem of a non-homogeneous plate with temperature dependent material properties [J]. Journal of Thermal Stresses,1996,19:77-102.
    [93]Sankar B, Tzeng J. Thermal stresses in functionally graded beams [J]. AIAA Journal of Applied Mechanics,2002,40:1228-1232.
    [94]Ravichandran K S. Thermal residual stresses in a functionally gradient system. [J]. Materials Science and Engineering,1995, A201:269-276.
    [95]Ootao Y, Akai T, Tanigawa Y. Three-dimensional transient thermal stress analysis of nonhomogeneous hollow circular cylinder [J]. Transactions of JSME,1993,59:1684-1691.
    [96]Obata Y, Noda N. Transient thermal stresses in a plate of functionally gradient material. in:Holt J. B. K., M.; Hirai, T.; Munir, Z. A. (Ed.) Functionally Gradient Materials[M]. Westville:American Ceramic Society,1993, pp.403-410.
    [97]Obata Y, Noda N, Tsuji T. Steady thermal stresses in a hollow circular cylinder and hollow sphere of a functionally gradient material [J]. Journal of Thermal Stresses,1994,17: 471-487.
    [98]Obata Y, Noda N, Tsuji T. Steady thermal stresses in functionally gradient plate (Influence of Mechanical Boundary Conditions) [J]. Transactions of JSME,1992,58: 1689-1696.
    [99]Noda N, Tsuji T. Steady thermal stress in a plate of functionally gradient material with temperature-dependent properties [J]. Transactions of JSME,1991,57:625-632.
    [100]Lutz M, Zimmerman R. Thermal stresses and effective thermal expansion coefficient of a functionally graded sphere. Journal of Thermal Stresses [J].1996,19:39-54.
    [101]Kobayashi H. Fabrication of PSZ-SUS 304 functionally graded disk [J]. Materials Science Forum,1999,308-311:36-40.
    [102]Jabbari M, Sohrabpour S, Eslami M. General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads [J]. Journal of Applied Mechanics,2003,70:111-118.
    [103]Jabbari M, Sohrabpour S, Eslami M. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads [J]. International Journal of Pressure Vessels and Piping,2002,79:493-497.
    [104]Hayes A M, Wang A, Dempsey B M, McDowell D L. Mechanics of linear cellular alloys [J]. Mechanics of Materials,2004,36:691-713.
    [105]Agapiou J S, Deveries M F. An Experimental Determination of the Thermal conductivity of a 304 L Stainless steel powder Metallurgy Material [J]. Journal of Heat Transfer, 1989,111:281-286.
    [106]Ehrens E. Thermal Conductivities of Composite Materials [J]. Journal of Composite Materials,1968,2:2.
    [107]Eucken A. Thermal Conductivity of Ceramic Refractory Materials:Calculation from Thermal Conductivity of Constituents, Ceramic Abstract [J].1982,11:576.
    [108]Francl J, Kingery W D. Thermal Conductivity:Ⅸ, Experimental Investigation of Effect of Porestity on Thermal Conductivity [J]. Journal of the American Ceramic Society,1954, 37:99.
    [109]Hashin Z. Assessment of the Self Consistent Scheme Approximation:Conductivity of Parriculate Composites [J]. Journal of Composite Materials,1968,284-300.
    [110]Koh J C Y, Fortini A. Thermal conductivity and electrical resistivity of porous materials [R]. NASA Report No. NAS3-12012, CR-120854,1972.
    [111]Loeb A L. Thermal Conductivity:Ⅷ, A Theory of Thermal Conductivity of Porous Meterails [J]. Journal of the American Ceramic Society,1954,96-99.
    [112]Maxwell J C. Treatise on Electricity and Magnetism [M].1st ed., Oxford:Clarendon Press, 1873.
    [113]Murabayashi M. Effect of Porosity on the Thermal Conductivity of Th02 [J]. Journal of Nuclear Science and Technology,1969,6:47.
    [114]Russell H W. Principles of Heat Flow in Porous Materials [J]. Journal of the American Ceramic Society,1935,18:1.
    [115]Springer S G, Tsai S G. Thermal Conductivities of Unidirectional Materials [J]. Journal of Composite Materials,1967,1:166.
    [116]Thornburgh J D, Pears C D. ASME Winter Annual Meeting,65/WA/HT-4 [C]. Chicago:1965.
    [117]Tzou D Y. A Universal Model for the Overall Thermal Conductivity of Porous Media [J]. Journal of Composite Materials,1991,25:1064-1084.
    [118]Larsson F, Runesson K, Su F. Variationally consistent computational homogenization of transient heat flow [J]. International Journal for Numerical Methods in Engineering, 2010,81:1659-1686.
    [119]Pilling M W, Yates B, Black M A. The thermal conductivity of carbon fibre-reinforced composites [J]. Journal of Materials Science,1979,14:1326-1338.
    [120]McIvor S D, Darby M I, Wostenholm G H, Yates B. Thermal conductivity measurements of some glass and carbon fiber reinforced plastics [J]. Journal of Materials Science,1990, 25:3127-3132.
    [121]Rolfes R, Hammerschmidt U. Transverse thermal conductivity of CFRP laminates:a numerical and experimental validation of approximation formula [J]. Composites Science and Technology,1995,54:45-54.
    [122]Farmer J D, Covert E E. Thermal conductivity of a thermosetting advanced composite during its cure [J]. Journal of Thermophysics and Heat Transfer,1996,10:467-475.
    [123]Vadasz P. Rendering the Transient Hot Wire Experimental Method for Thermal Conductivity Estimation to Two-Phase Systems-Theoretical Leading Order Results [J]. Journal of Heat Transfer-Transactions of the ASME,2010,132.
    [124]Springer G S, Tsai, S. W. Thermal conductivities of unidirectional materials [J]. Journal of Composite Materials,1967,166-173.
    [125]Khan K A, Muliana A H. Effective thermal properties of viscoelastic composites having field-dependent constituent properties [J]. Acta Mechanica,2010,209:153-178.
    [126]Hashin Z. Assessment of the Self Consistent Scheme Approximation:Conductivity of Parriculate Composites [J]. Journal of Composite Materials,1968,2:284-300.
    [127]Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites [J]. Journal of Applied Polymer Science,1970,14:1449-1471.
    [128]Noor A K, Shah R S. Effective thermoelastic and thermal properties of unidirectional fiber-reinforced composites and their sensitivity coefficients [J]. Composite Structures,1993,26:7-23.
    [129]Benveniste Y, Chen T, Dvorak G J. The effective thermal conductivity of composite reinforced by coated cylindrically orthotropic fibers [J]. Journal of Applied Physics, 1990,67:2878-2884.
    [130]Aboudi J. Mechanics of Composite Materials:A Unified Micromechanical Approach [M]. Amsterdam:Elsevier,1991.
    [131]Chung P W, Tamma K K, Namburu R R. Homogenization of temperature-dependent thermal conductivity in composite materials [J]. Journal of Thermophysics and Heat Transfer, 2001,15:10-17.
    [132]Averill R C, Yip Y C. Development of simple, robust, finite elements based on refined theories for thick laminated beam [J]. Computers & Structures,1996,59:529-546.
    [133]Cho Y B, Averill R C. First order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels [J]. Composite Structures,2000,50: 1-15.
    [134]Haj-Ali R, Muliana A H. A micro-to-meso sublaminate model for the viscoelastic analysis of thick-section multi-layered FRP composite structures [J]. mechanics of time-dependent materials,2008,12:69-93.
    [135]Haj-Ali R. Nested nonlinear multiscale framework for the analysis of thick-section composite materials and structures [M]. New York:Springer Pub,2007.
    [136]Kulkarni M R, Brady R P. A model of global thermal conductivity in laminated carbon/carbon composites [J]. Composites Science and Technology,1997,57:277-285.
    [137]Kolodziej J A, Konczak Z. Determination of effective thermal conductivity for a laminated composite slab in a nonlinear case. [J]. International Communications in Heat and Mass Transfer,1994,21:403-410.
    [138]Lee Y M, Yung R B, Gao S S. A generalized self consistent method for calculation of effective thermal conductivity of composites with interfacial contact conductance [J]. International Communications in Heat and Mass Transfer,2006,33:142-150.
    [139]Goyheneche J M, Cosculluela A. A multiscale model for the effective thermal conductivity tensor of a stratified composite material [J]. International Journal of Thermophysics, 2005,26:191-202.
    [140]Ozdemir I, Brekelmans W A M, Geers M G D. Computational homogenization for heat conduction in heterogeneous solids [J]. International Journal for Numerical Methods in Engineering, 2008,73:185-204.
    [141]Muliana A H, Kim J S. A two-scale homogenization framework for nonlinear effective thermal conductivity of laminated composites [J]. Acta Mechanica,2010,212:319-347.
    [142]Monteiro E, Yvonnet J, He Q C. Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction [J]. Computational Materials Science, 2008,42:704-712.
    [143]Feyel F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua [J]. Computer Methods in Applied Mechanics and Engineering,2003,192:3233-3244.
    [144]Feyel F, Chaboche J L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials [J]. Computer Methods in Applied Mechanics and Engineering,2000,183:309-330.
    [145]Kouznetsova V G, Geers M G D, Brekelmans W A M. Multi-scale second-order computational homogenization of multi-phase materials:a nested finite element solution strategy [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:5525-5550.
    [146]Matsui K, Terada K, Yuge K. Two-scale finite element analysis of heterogeneous solids with periodic microstructures [J]. Computers & Structures,2004,82:593-606.
    [147]Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling [J]. Computer Methods in Applied Mechanics and Engineering,1998,155:181-192.
    [148]Blumenfeld R, Bergman D J. Exact calculation to second order of the effective dielectric constant of a strongly nonlinear inhomogeneous composite [J]. Physical Review B,1989, 40:1987.
    [149]Blumenfeld R, Bergman D J. Strongly nonlinear composite dielectrics:A perturbation method for finding the potential field and bulk effective properties [J]. Physical Review B,1991,44:7378.
    [150]Castaneda P P, Kailasam M. Nonlinear electrical conductivity in heterogeneous media [J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,1997, 453:793-816.
    [151]Pecullan S, Gibiansky L V, Torquato S. Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites [J]. Journal of the Mechanics and Physics of Solids,1999,47:1509-1542.
    [152]Lorenz E N. Empirical orthogonal eigenfunctions and statistical weather prediction [R]. Cambridge:MIT, Department of Meteorology (Statistical forecasting project),1956.
    [153]Krysl P, Lall S, Marsden J E. Dimensional model reduction in non-linear finite element dynamics of solids and structures [J]. International Journal for Numerical Methods in Engineering,2001,51:479-504.
    [154]Liang Y C, Lee H P, Lim S P, Lin W Z, Lee K H, Wu C G. Proper orthogonal decomposition and its applications—Part Ⅰ:Theory [J]. Journal of Sound and Vibration,2002,252: 527-544.
    [155]Fish J, Shek K. Multiscale analysis of composite materials and structures [J]. Composites Science and Technology,2000,60:2547-2556.
    [156]Kaminski M. Homogenization based finite element analysis of unidirectional composites by classical and multiresolutional techniques [J]. Computer Methods in Applied Mechanics and Engineering,2005,194:2147-2173.
    [157]Zhang H W, Zhang S, Bi J Y, Schrefler B A. Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach [J]. International Journal for Numerical Methods in Engineering,2007,69:87-113.
    [158]Fish J, Chen W, Nagai G. Non-local dispersive model for wave propagation in heterogeneous media:multi-dimensional case [J]. International Journal for Numerical Methods in Engineering,2002,54:347-363.
    [159]Fish J, Chen W, Nagai G. Non-local dispersive model for wave propagation in heterogeneous media:one-dimensional case [J]. International Journal for Numerical Methods in Engineering,2002,54:331-346.
    [160]Divo E, Kassab A. Generalized boundary integral equation for transient heat conduction in heterogeneous media [J]. Journal of Thermophysics and Heat Transfer,1998,12: 364-373.
    [161]Gray L J, Kaplan T, Richardson J D, Paulino G H. Green's Functions and Boundary Integral Analysis for Exponentially Graded Materials:Heat Conduction [J]. Journal of Applied Mechanics,2003,70:543-549.
    [162]Sutradhar A, Paulino G H. The simple boundary element method for transient heat conduction in functionally graded materials [J]. Computer Methods in Applied Mechanics and Engineering,2004,193:4511-4539.
    [163]Sutradhar A, Paulino G H, Gray L J. Transient heat conduction in homogeneous and non-homogeneous materials by the Laplace transform Galerkin boundary element method [J]. Engineering Analysis with Boundary Elements,2002,26:119-132.
    [164]Sladek J, Sladek V, Krivacek J, Zhang C. Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids [J]. Computational Mechanics,2003,32: 169-176.
    [165]Sladek J, Sladek V, Zhang C. Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method [J]. Computational Materials Science,2003,28:494-504.
    [166]Sladek J, Sladek V, Zhang C. A local BIEM for analysis of transient heat conduction with nonlinear source terms in FGMs [J]. Engineering Analysis with Boundary Elements,2004, 28:1-11.
    [167]Divo E, Kassab A J. Boundary Element Method for Heat Conduction:with Applications in Non-Homogeneous Media Topics in Engineering Series vol.44 [M]. Billerica, MA:WIT Press, 2002.
    [168]Wrobel L C, (Eds.) C A B. Boundary Element Methods in Heat Transfer [M]. Computational Mechanics Publication and Elsevier Applied Science,1992.
    [169]Yang H T. A precise algorithm in the time domain to solve the problem of heat transfer [J]. Numerical Heat Transfer Part B-Fundamentals,1999,35:243-249.
    [170]Christensen R M. Theory Of Viscoelasticity [M]. second ed., New York:Academic Press, 1982.
    [171]Zienkiewicz 0 C, Taylor R L. The Finite Element Method [M]. Fifth ed., Boston: Butterworth-Heinemann,2000.
    [172]Jones R M. Mechanics of Composite Materials [M]. second ed., Philadelphia:Taylor & Francis,1999.
    [173]Bensoussan A, Lions J L, Papanieolou G. Asymptotic Analysis of Periodic Struetures [M]. Amsterdam:North-Holland,1978.
    [174]Kohn R. Recent Progresses in the mathematical modeling of Composite materials [M]. New York:Courant Institute,1988.
    [175]Gudes J M, Kikuchi N. Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite Element Methods [J]. Computer Methods in Applied Mechanics and Engineering,1990,83:143-198.
    [176]Hassani B, Hinton E. A review of homogenization and topology optimization Ⅰ-homogenization theory for media with periodic structure [J]. Computers & Structures, 1998,69:707-717.
    [177]Hassani B, Hinton E. A review of homogenization and topology optimization Ⅱ-analytical and numerical solution of homogenization equations [J]. Computers & Structures,1998, 69:719-738.
    [178]Huet C. Application of variational concepts to size effects in elastic heterogeneous bodies. [J]. Journal of the Mechanics and Physics of Solids,1990,38:813-841.
    [179]阎军.超轻金属结构与材料性能多尺度分析与协同优化设计[D].大连:大连理工大学,2007.
    [180]施建勇.土工织物加筋机理的研究[J].河海大学学报,1996,24:30-35.
    [181]肖成志.土工格栅流变特性及加筋挡土墙长期工作性能研究[D].大连:大连理工大学,2005.
    [182]李敬峰.土工格栅加筋挡土墙的有限元数值分析和性能研究[D].大连:大连理工大学,2004.
    [183]介玉信,李广信.加筋土数值计算的等效附加应力法[J].岩土工程学报,1999,21:614-616.
    [184]介玉新,李广信,郑继勤.纤维加筋土计算的新方法[J].工程力学,1999,16:81-89.
    [185]马振泉.玻纤格栅技术指标[EB/OL]. [2007.2.10] http://mzq1860.bokee.com/viewdiary.11506218. html.
    [186]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [187]大连理工大学工程力学系环境土力学教研室.北京威克冶金有限责任公司郝家庄尾矿库加高增容现场勘查、取样试验研究及坝体动、静稳定分析(第一部分)现场勘查和土工试验[R].大连:大连理工大学,2005.
    [188]刘军.土工格栅加筋挡土墙数值模拟及特性研究[D].南京:河海大学,2006.
    [189]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [190]刘书田.复合材料性能预测与梯度功能材料优化设计[D].大连:大连理工大学,1994.
    [191]韩志.求解非线性粘弹性问题的时域精细算法[D].大连:大连理工大学,2006.
    [192]Yang H T, Han Z. Solving non-linear viscoelastic problems via a self-adaptive precise algorithm in time domain [J]. International Journal of Solids and Structures,2004,41: 5483-5498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700