益髓通经方对实验性自身免疫性神经炎大鼠调节性T细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过观察益髓通经方对格林-巴利综合征(GBS)的经典动物模型—实验性自身免疫性神经炎(EAN)大鼠周围神经病理形态学超微结构、神经电生理功能、脾淋巴细胞增殖功能及对血清IL-10、TGF-β水平和胸腺、脾、淋巴结CD4+CD25+T细胞mRNA表达水平的影响,探讨GBS的细胞免疫机制以及益髓通经方对本病的治疗机理,验证益髓通经方对GBS的临床疗效,进一步丰富中医“脑髓”理论,完善中医治疗痿病的理论和实践。
     方法:采用P0180-199多肽及IFA免疫Lewis大鼠制备EAN动物模型。将造模成功的大鼠100只随机分为模型组、免疫球蛋白治疗组,益髓通经方高、中、低剂量组5组,每组20只,另取20只正常鼠作为空白对照组,共分为6组。免疫球蛋白治疗组于免疫后第11天起给予人免疫球蛋白注射液480mg/只·天腹腔注射治疗,共5天。益髓通经方高、中、低各组于免疫后第11天分别给予益髓通经方溶液2.0ml/d、1.5ml /d、1.0ml/d灌胃治疗直至处死;在免疫后第10天,空白组及模型组各取5只大鼠处死、在免疫后第18、25、39天各组分别随机抽取5只大鼠处死检测各组大鼠坐骨神经运动传导速度;应用光镜、电镜观察坐骨神经病理形态学及超微结构的变化;采用CCK-8试剂检测大鼠脾脏淋巴细胞增殖能力;ELISA法检测血清IL-10、TGF-β表达水平;采用流式细胞技术检测各组大鼠胸腺、脾、腹股沟淋巴结CD4+CD25+T/ CD4+T比率,并以RT-PCR法检测上述淋巴器官调节性T细胞Foxp3 mRNA表达水平。
     结果:
     1.通过电镜观察各组大鼠坐骨神经病理变化:模型组在免疫后第18天出现有髓神经纤维结构病变,髓鞘折叠起皱、轴索与髓鞘板层分离等改变,在第25天时出现较明显髓鞘脱失或髓鞘溶解,在39天时仍有广泛脱髓鞘及轴索崩解改变。经治疗,益髓通经方治疗组与免疫球蛋白组的髓鞘脱失情况得到明显改善,有髓纤维髓鞘板层结构整齐,同时还可见到胶原纤维聚集及有髓神经纤维新生等改变。
     2.应用BL-420生物机能实验系统检测EAN大鼠坐骨神经运动传导速度。模型组在免疫后第10天起运动神经传导速度下降,在第18天、25天进一步下降,在第39天时神经传导速度略有改善。益髓通经方各治疗组及球蛋白治疗组在上述时间点均优于模型组,在第39天治疗4周时,益髓通经方高剂量组神经传导速度同球蛋白治疗组比较无显著性差异(P>0.05),优于中、低剂量组(P<0.01),但均不及空白组(P<0.01)。
     3.淋巴细胞增殖实验显示,模型组及益髓通经方各治疗组对P0多肽及ConA的刺激增殖反应在第10天、18天、25天进行性增强,在第25天达到顶峰,随后下降,但模型组的增殖强度均高于同期中药治疗组。球蛋白治疗组淋巴细胞增殖强度在第18天起下降。在第39天时益髓通经方各治疗组同球蛋白组淋巴细胞增殖反应基本恢复正常,均优于模型组。
     4.在免疫后第10天,模型组血清IL-10水平增高,在第18天显著增高,在25天起下降,与EAN大鼠疾病严重程度呈正相关;模型组血清TGF-β水平在免疫后第10天、第18天低于空白组,在免疫后第25天与空白组持平,在39天高于空白组,与EAN大鼠病情改善情况呈正相关。益髓通经方高剂量组及球蛋白治疗组IL-10水平在以上各时间点均低于模型组,而其TGF-β水平则高于模型组。
     5.模型组在免疫后第10天,胸腺、脾、腹股沟淋巴结CD4+CD25+/ CD4+比率降低,相应的,其Foxp3 mRNA表达水平也降低。在免疫后第18天,即临床症状高峰期,这种趋势更加明显,模型鼠CD4+CD25+T比率及Foxp3 mRNA表达水平均处于谷底。在免疫后第25天,模型鼠进入恢复期,此时Treg细胞数量及Foxp3 mRNA表达水平也随之回升。经过药物治疗,益髓通经方高剂量组与免疫球蛋白治疗组在免疫后第18天均表现出对CD4+CD25+T细胞的改善作用,在胸腺、淋巴结Foxp3的表达方面,高剂量组甚至优于球蛋白组,在第39天时,高剂量组与球蛋白组作用持平,均优于中低剂量组。
     结论:
     1.益髓通经方可以使EAN模型鼠病变坐骨神经有髓神经纤维结构改善,髓鞘脱失减少,髓鞘板层排列整齐、清晰度增强,有助于受损神经修复和再生。
     2.益髓通经方组能提高EAN大鼠坐骨神经运动传导速度。
     3.益髓通经方能抑制EAN模型鼠脾淋巴细胞对特异性或非特异性抗原刺激的异常增殖反应,有助于减轻CD4+T淋巴细胞介导的免疫损伤。
     4.益髓通经方能降低EAN模型鼠血清IL-10的表达水平,提高保护性因子TGF-β的表达水平,有助于恢复模型鼠细胞因子平衡状态。
     5.益髓通经方有助于EAN大鼠胸腺、脾、腹股沟淋巴结调节性T细胞数量及功能恢复正常,随着调节性T细胞功能恢复,对CD4+T细胞的抑制作用增强,对于恢复免疫平衡状态,终止周围神经的炎性损伤起到积极作用。
Purpose:
     To study Yisui Yongjing prescription on the Guillain-Barre Syndrome (GBS) classic animal model - experimental autoimmune neuritis (EAN) laboratory rats pathomorphology ultrastructure of peripheral nerve, nerve electrophysiological function, proliferation functions of spleen lymphocytes, serum IL-10 and TGF-βlevel, the spleen, thymus, lymph cells CD4+CD25+T level, and probe into the cellula immune mechanism of GBS, the mechanism of Yisui Yongjing prescription in treating GBS and its therapeutic effects, and thus provide the experimental basis for Yisui Yongjing prescription, enrich the Encephala Theory in traditional Chinese medicine (TCM) and promote the theory and practice in treating the Flaccidity disease by TCM.
     Methods:
     The immune Lewis rat models of EAN were made by P0180-199 Polypeptide and IFA. One hundred successful models from EAN Lewis rats were randomly divided into 5 groups: the model group, immunoglobulin group, high dose Yisui Yongjing prescription group, medium dose group and low dose group, 20 in each group. Twenty normal and healthy rats were taken as the control group.
     The immune globulin group was treated with 480mg / (kg ? d) immunoglobulin per rat by intraperitoneal injection from the 11th day, and 5 times in all;the high dose group, medium dose group and low dose group were treated by stomach feeding from the 11th day to the day they were killed, and the doses were 2.0ml/d, 1.5ml /d, and 1.0ml/d respectively. On the 10th day, 5 in the control group and 5 in the model group were killed, and on the 18th, 25th, and 39th day respectively, 5 were killed randomly to test the sciatic nerve motor conduction velocity in each group.
     The changes in ultrastructure of sciatic nerve pathology were observed by electron microscopy; the proliferation functions of spleen lymphocytes were tested by CCK-8 reagent; the serum IL-10 and TGF-βexpression level was tested by ELISA method; the ratios of the spleen, thymus, groin lymph cells CD4+CD25+T were tested by the flow cytometry, and their expression levels of modulation T cells, Foxp3mRNA were tested by RT-PCR method.
     Results:
     1.Pathological changes of the sciatic nerve of rats in each group were shown by the electron microscopy. On the 18th day, the model group has changes in the encephala nerve fiber structure, myelination overlapping and corrugating, and axonal was separated from the layers of the myelinated nerve fiber sheath. On the 25th day, myelination was in the process of disappearing or dissolving. And on the 39th day, the trend was more conspicuous. After treatment, the demyelinated nerve fiber sheath was improved and with a more orderly structure.
     More collagen fibers can be seen and the growth of the myelinated nerve fiber as well.
     2. The sciatic nerve motor conduction velocity was tested by BL-420. The result shows the velocity in the model group decreased after the 10th day, and the tendency continued on the 18th and 25th day, but began to increase on the 39th day. The velocity of the Yisui Yongjing prescription group and immunoglobulin group is higher than that in the model group on the 10th , 18th, and 25th day, and no significant difference(P>0.05)was shown between the high dose Yisui Yongjing prescription group and the immunoglobulin group on the 39th day. The velocity was higher than that in the medium dose group and low dose group(P<0.01), but lower than that in the control group(P<0.01).
     3. The experiment of the proliferation functions of lymphocytes showed that the proliferation intensity of the reaction to the stimulation of P0 Polypeptide and ConA increased continuously, and climaxed at the 25th day, then began to decrease. But the intensity of the model group was higher than that in the Yisui Yongjing groups. The intensity of the immunoglobulin group began to decrease on the 18th day. the proliferation functions of lymphocytes was back to normal generally in the immunoglobulin group and Yisui Yongjing prescription groups on the 39th day, and was better than that in the model group.
     4. The serum IL-10 level of the model group increased on the 10th day, and significantly on the 18th day, but decreased on the 25th day. The level related positively with the seriousness of EAN rats. And TGF-βlevel was lower than that in the control group on the 10th and 18th day, and nearly the same as the control group on the 25th day, and higher than the model group. The level was positively related to the improvement of the EAN rats. The IL-10 level of the immunoglobulin group, high dose Yisui Yongjing group was lower than that of the model group on the four given dates, but the level of TGF-βwas higher than the model group.
     5. The ratio of CD4+CD25+/ CD4+ in the spleen, thymus, lymph cells of the model group decreased on the 10th day, and so did the Foxp3 mRNA expression level. On the 18th day, the peak of the clinical symptoms, the tendency was more conspicuous, and the CD4+CD25+T rate and the Foxp3 mRNA expression level were the lowest in the model group. On the 25th day, the model rats were in the process of recovery. The number of Treg cells and Foxp3 mRNA expression level increased accordingly.
     The treatment for the Yisui Yongjing prescription group and immunoglobulin group had positive therapeutic effect on CD4+CD25+T cells. The Foxp3 expression level of the thymus and lymph cells was even better than that the immunoglobulin group. On the 39th day, the therapeutic effects were almost the same as the immunoglobulin group and high dose Yisui Yongjing group, and were better than those of the medium dose and low dose groups
     Conclusions:
     1. The Yisui Yongjing prescription significantly improved the sciatic nerve fiber structure of the EAN rats, reduced the myelination loss, caused the myelination layers to align orderly and become clearer. Yisui Yongjing prescription contributes to the recovery and the reproduction of the damaged nerves.
     2. The Yisui Yongjing prescription can improve EAN rats sciatic nerve motor conduction velocity
     3. The Yisui Yongjing prescription can restrain the abnormal proliferation reaction of the EAN model rats spleen to the specific antigen or nonspecific antigen, and help to alleviate the immune damage of the CD4+T lymphocyte.
     4. The Yisui Yongjing prescription can decrease the serum IL-10 expression level in the EAN model rats, the enhance the TGF-βexpression level, thus help to restore the balance of the model rats cells
     5. The Yisui Yongjing prescription helps to restore the normal number and function of the Treg cells in the thymus, spleen and groin lymph of the EAN rats. With the recovery of the Treg function, the Yisui Yongjing prescription exerts stronger retraining effects on the CD4+T, and contributes positively to the restoration of the immune balance and the termination of the inflammation damage to the peripheral nerve.
引文
[1] Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. J Exp Med, 2003; 198:1875-1886.
    [2] Jonuliet H, Schmitt E, Schuler G, et al. Induction of interleukin 10-producing, nonproliferating CD4(+)T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells[J]. J Exp Med, 2000; 192:1213-1222.
    [3] Luther C, Poeschel S, Varga M, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma [J]. J Neuroimmunol, 2005, 164(1-2):124-128.
    [4] Brunkow M E, Jeffery E W, Hjerrild K A, et al. Disruption of a new forkhead/ ingedhelix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J]. Nat Genet, 2001,27(1):68-73.
    [5] Annunziato F,Cosmi L,Liotta F, et al. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes[J]. J Exp Med, 2002, 196(3): 79-387.
    [6] Sakaguchi S, Hori S, Fukui Y, et al. Thymic generation and selection of CD25+CD4+regulatory T cells: implication of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance [J]. Novartis Found Symp,2003;252:6-16.
    [7] Bensinger S J, Bandeira A, Jordan M S, et al. Major histocompatibility complex classII positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells[J]. J Exp Med, 2001,194(4):427-438.
    [8] Thornton AM, Shevach EM. CD4+CD25+immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production[J]. J Exp Med,1998,188(2):287-296.)
    [9] Hori S, Nomura T, Sakaguehi S. Control of regulatory Tcell development by the transcription factor Foxp3 [J]. Science, 2003, 299(5609):1057-1061.
    [10] Coffer PJ, Burgering BM. Forkhead-box transcription factors and their rolein the immune system [J]. Nat Rev Imm unol, 2004; 4(11):889-899.
    [11] Bassuny WM, Ihara K, Sasaki Y, et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes [J]. Immuno genetics, 2003, 55(3): 149-156.
    [12] Carlsson P, MahlapuuM. Forkhead transcription factor: key players in development and metabolism [J]. Dev Biol, 2002, 250(1): 1-23.
    [13] Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J]. Nat Genet, 2001; 27(1):68-73.
    [14] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [J].Nat Immunol, 2003,4(4):330-336.
    [15] Roli Khatrisi,Tom Cox, Sue-Ann Yasayko, et al. An essential role for scurfin in CD4+CD25+T regulatory cells [J]. Nature immunology, 2003; 4(4):337-342.
    [16] Suffia IJ, Reckling SK, Piccirillo CA, et al. Infected site restricted Foxp3+natural regulatory T cells are specific for microbial antigens [J]. J Exp Med, 2006, 203:777-788.
    [17] Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4+CD25+T cells with regulatory properties isolated from peripheral blood [J]. J Exp Med, 2001; 193(11):1285-1294.
    [18] Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25 + CD4 + regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4 [J]. J Exp Med, 2000, 192(2): 303-309.
    [19] Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism [J]. Nat Rev Immunol, 2004, 4(10):762-774.
    [20] Stassen M, Fondel S, Bopp T, et al. Human CD25+regulatory T cells: two subsets defined by the integrins alpha 4 beta 7 or alpha 4 beta 1 confer distinct suppressive properties upon CD4+T helper cells[J]. Eur J Immunol, 2004; 34:1303-1311.
    [21] Berg DJ, Davidson N, Kühn R, et al. Enterocolitis and colone cancer ininterleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+)Th 1-like responses.J Clin Invest, 1996; 98: 1010-1020.
    [22] Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of refulatory T cells that inhibit intestinal inflammation [J]. J Exp Med,1999;190:995-1004.
    [23] Melgar S, Yeung MM, Bas A, et al. Over-expression of interleukin-10 in mucosal T cells of patient s with active ulcerative colitis [J]. Clin Exp Immunol, 2003, 134 (1): 127-137.
    [24] Becker C, Fantini MC, Neurath MF. TGF-beta as a T cell regulator in colitis and colon cancer [J]. Cy tokine Growth Factor Rev, 2006, 17(1-2): 97-106.
    [25] Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+)regulatory T cells is mediated by cell surface-bound transforming growth factor beta[J]. J Exp Med, 2001; 194:629-644.
    [26] Kukreja A, Cost G, Marker J, et al. Multiple immuno-regulatory defects in type-1 diabetes [J]. Clin Invest, 2002, 109(1): 131-140.
    [27] Lundsgaard D, Holm TL, Hornum L, et al. In vivo control of diabetogenic T-cells by regulatory CD4+CD25+ T-cells expressing Foxp3 [J].Diabetes, 2005, 54(4): 1040-1047.
    [28] Lindley S, Dayan C M, Bishop A, et al. Defective suppressor function in CD4+CD25+T-cells from patients with type 1 diabetes[J]. Diabetes, 2005, 54(1): 92-99.
    [29]石昌红,管庆波,高聆,等.成人隐匿性自身免疫性糖尿病患者CD4+CD25+T细胞的变化研究[J].中国免疫学杂志,2006,(22):771-774.
    [30] Feili-Hariri M, Falkner DH, Morel PA. Regulatory Th2 response induced following adoptive transfer of dendritic cells in prediabetic NOD mice [J]. Eur J Immunol, 2002, 32(7): 2021-2030.
    [31] David A Hafler,Jacqueline M Slavik,David E Anderson,et al. Multiple sclerosis [J].Clin Invest, 2004, 113(6):788–794.
    [32] Steinman L. Multiple sclerosis: a coordinated immunological attack against myelininthe central nervous system [J].Cell, 1996, 85(3):299-302.
    [33] Mendel I, Kerlero de Rosbo N, Ben-Nun A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic Tcells[J]. Eur J Immunol, 1995, 25(7):1951-1959.
    [34] Huan J, Culbertson N, SpencerL, et al. Decreased Foxp3 levels in multiple sclerosis patients [J]. NeurosciRes, 2005, 81(1): 45-52.
    [35] Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis [J]. J Exp Med, 2004, 199(7): 971-979.
    [36]翁益云,李旭华,夏君慧,等.多发性硬化患者外周血CD4+CD25+T细胞变化及其机制探讨[J].中国神经免疫学和神经病学杂志,2008, 15(2):84-87.
    [37]刘广志,高旭光.多发性硬化患者外周CD4+CD25highT细胞上4-1BB和GITR的表达[J].中国免疫学杂志, 2008, 24(2):171-173.
    [38] Veltkamp C, Ruhwald R, Giesem T, et al. CD4+CD25+cell depletion from the normal CD4+T cell pool prevents tolerance toward the intestinal flora and leads to chronic colitis in immuno deficient mice [J]. Inflamm Bowel Dis,2006,12:437-446.
    [39] Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+CD25highT cells in inflammatory bowel disease [J]. Gastroenterology, 2005, 128:1868-1878.
    [40] Yu QT, Saruta M, Avanesyan A, et al. Expression and functional characterization of FOXP3(+)CD4(+)regulatory T cells in ulcerative colitis[J]. Inflamm Bowel Dis 2007,13(2):191-199
    [41] Kelsen J, Agnholt J, Falborg L, et al. Indium-labelled human gut-derived T cells from healthy subjects with strong in vitro adhesion to MAdCAM-1 show no detectable homing to the gut in vivo [J]. Clin Exp Immunol, 2004, 138:66-74.
    [42] Makita S, Kanai T, Oshima S, et al. CD4+CD25 bright T cells in human intestinal lamina propria as regulatory cells[J].J Immunol,2004,173:3119-3130.
    [43] Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactissecreting interleukin-10[J]. Science, 2000, 289:1352-1355.
    [44] Fuss IJ, Boirivant M, Lacy B, et al. The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis [J].J Immunol,2002,168:900-908.
    [45] Cope A P, Schulze-Koops H, Aringer M. The central role of T cells in rheumatoid arthritis [J]. Clin ExpRheumatol, 2007, 25: 4-11.
    [46] Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy [J]. J Exp Med, 2004, 200(3):277-285.
    [47] van Amelsfort JM, Jacobs KM, Bijlsma JW ,et al. CD4(+)CD25(+)regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid[J].Arthritis Rheum,2004,50(9):2775-2785.
    [48] Toubi E, Kessel A, Mahmudov Z, et al. Increased spontaneous apoptosis of CD4+ D25+T cells in patients with active rheumatoid arthritis is reduced by Infliximab [J]. Ann N Y Acad Sci, 2005, 1051:506-514.
    [49]焦志军,尤海燕,陈蕾,等.类风湿性关节炎患者CD4+CD25+Foxp3+调节性T细胞检测及意义[J].中国免疫学杂志,2007,23(10):936-943.
    [50]陈丽娜,王聪华,朱平,等. CD4+CD25high调节性T细胞在类风湿性关节炎病程中的消长及其意义[J].细胞与分子免疫学杂志, 2007,23(4):331-334.
    [51] Cao D, vanVollenhoven R, KlareskogL, et al. CD25brightCD4+ regulatoryT cells are enriched in inflamed jointsofpatientswith chronic rheumatic disease [J]. ArthritisResTher, 2004, 6:335-46.
    [52] Ruprecht CR, Ruprecht, Marco Gattorno, Francesca Ferlito, et al. Coexpression ofCD25 and CD27 identifies FoxP3 regulatory T cells in inflamed synovia [J]. J Med Exp, 2005, 201(11):1793–1803.
    [53] Wu HY, Staines NA. A deficiency of CD4CD25T cells permits the developmen of spontaneous lupus-like disease in mice, and can be reversed by induction omucosal tolerance to histone peptide autoantigen[J].Lupus,2004,13(23):192-200.
    [54] Monk CR, Spachidou M, Rovis F, et al. MRL/Mp CD4+CD25-T cells show reduced sensitivity to suppression by CD4+CD25+regulatory T cells in vitro: a novel defect ofT cell regulation in systemic lupus erythematosus [J].Arthritis Rheum, 2005, 52(4): 1180-1184.
    [55] Liu MF, Wang CR, Fung LL, et al. Decreased CD4+CD25+ Tcells in peripheral blood of patients with systemic lupus erythematosus [J]. Scand J Immunol, 2004, 59(2): 198-202.
    [56] Lee JH, Wang LC, Lin YT, et al. Inverse correlation between CD4+regulatory T-cell population and autoantibody levels in pediatric patients with systemic lupus erythematosus [J]. Immunology,2006, 117(2): 280-286.
    [57]李向培,翟志敏,钱龙,等.系统性红斑狼疮患者CD4+CD25+T细胞的变化[J].中华风湿病学杂志,2006,10(3):141-144.
    [58] Sun Y, Qiao J, Lu CZ, et al. Increase of circulating CD4+CD25+ Tcells in myasthenia gravis patients with stability and thymectomy [J]. ClinImmunol, 2004, 112(3): 284-289.
    [59] Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4+CD25+T cells in the thymus of patients with autoimmune myasthenia gravis[J]. Blood, 2005, 105(2): 735-741.
    [60]魏秀丽,黄志,李欣,等.Foxp3基因及调节性T细胞在重症肌无力被动转移幼鼠发病中的作用机制[J].第三军医大学学报,2008,32(4:353-356.
    [61]吴云,王化冰,王维治,等.实验性自身免疫性神经炎相关细胞的免疫机制[J].中华神经科杂志,2006,39(9):629-633.
    [62] Chi LJ, Wang HB, Zhang Y,et al. Abnormality of circulating CD4+CD25+regulatory T cell in patients with Guillain-Barrésyndrome [J]. J Neuroimmunol, 2007, 192(1-2): 206-214.
    [63] Pritchard J, Makowska A, Gregson NA, et al. Reduced circulating CD4+CD25+cell populations in Guillain-Barrésyndrome[J].J Neuroimmunol, 2007, 183(1-2): 232-238.
    [64]许文华,翟志敏,任明山,等.调节性T细胞在格林巴利综合征外周血中的变化及意义[J].南京医科大学学报,2006,26(12):1274-1275.
    [65]李奕贵,陈齐鸣,李柏青,等.格林-巴利综合征急性期外周血T淋巴细胞亚群及NK细胞的检测[J].蚌埠医学院学报,2009,34(4):294-297.
    [66]李建萍. EAN大鼠神经轴膜与淋巴细胞离子通道及雷公藤多甙干预的研究[D] .复旦大学,2004, P-15
    [67] Stoll G, Wesemeier C, Gold R, et al. In vivo monitoring of macrophage infilt ration in experimental autoimmune neuritis by magnetic resonance imaging [J]. J Neuroim- nol, 2004, 149 (122):142-146.
    [68]徐宁安,肖波,王玉忠,等. BTLA mRNA在实验变态反应性神经炎中的动态表达[J].现代免疫学,2010,30(6) :498-502.
    [69]郭向东,许贤豪,林嘉友,等. P-2蛋白及其合成肽与实验性变态反应性神经炎的研究[J].中国神经免疫学和神经病学杂志, 2003,10(1):25-27.
    [70] Latov N, Chaudhry V, Koski CL, et al. Use of intravenous gamma globulins in neuroimmunologic diseases[J].Allergy and Clinical Immunology, 2001,108 (Suppl): S126-132.
    [71]钟镝,赵秀丽,董俊英,等. 79例格林-巴利综合征临床分析[C].中华医学会第十三次全国神经病学学术会议论文选编, 2010:395.
    [72]王国平,李淮玉,陈柯,等. 25例格林-巴利综合征的病理与临床研究[J].中风与神经病杂志,1998, 15(6) :361-362.
    [73] Wekerle H, Schwab M, Linington C, et al.Antigen pre-sentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes.Eur [J].Immunol, 1986, 16:1551.
    [74]张国华,高长玉,毕淑秀,等.格林-巴利综合征运动传导速度的康复评定[J].河北医科大学学报,2000,21(1):12-13.
    [75]王维治.神经病学[M](第4版).北京:人民卫生出版社,2001:95-99.
    [76]张晓君.格林巴利综合征的电生理诊断新进展[J].临床脑电图学杂志, 1997, 6 (4): 188.
    [77] Racke MK, Bonomo A, Scott DE, et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease [J].J Exp Med, 1994, 180(21): 1961 - 1966.
    [78] Ishida H, Muchamuel T, Sakaguci S, et al. Continuous administration of anti-nterleukin 10 antibodies delays onset of autoimmunity in NZB/W mice [J]. J Exp Med, 1994, 179(3):305-310.
    [79] Zhu J, Bai XF, Mix E, et al. Cytokines dichotomy in peripheral nervous system influences the out come of experimental allergic neuritis:dynamics of mRNA expression for IL-1-β,IL-6, IL-10, IL-2, TNF-a TNF-β, and cytolysin[J].Clin Immunol ImmunoPathol, 1997, 84:85-94.
    [80] Sivieri S, Ferrarini AM,Lolli F, et al. Cytokine Pattern in the cerebrospinal fluid from Patients with GBS and CIDP. J. Neurol [J]. Sci, 1997, 147:93-95.
    [81] Press R, Deretzi G, Zou LP, et al. IL-10 and IFN-r in Guillain-Barre syndrome [J]. J Neuroimmunol,2001,112:129-138.
    [82] Press R, Ozenei V, Kouwenhoven M, et al. Non-THI cytokines are augmented systematically early in Guillain-Barre syndrome [J]. Neurolog,2002;58:476-478.
    [83] Wu Y, Wang H, Wang W, et al. A study of associated cell-mediated immune mechanisms in experimental autoimmune neuritis rats [J]. Journal of Neuroimm- ology, 2007, 185:87-94.
    [84] Creange A, Blec L, ClairB, et al. Circulation transforming growth factor beta 1 in Guillain-Barre syndrome: decreased concentrations in the early course and increase with motor function. J Neurol Neurosurg Psychiatry,1998;64:162-165
    [85] Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation [J].J Exp Med, 1999; 190:995-1004.
    [86] Powrie F, Carlino J, Leach MW, et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB (low)CD4+T cells[J]. J Exp Med, 1996; 183:2669-2674.
    [87] Ohtsuka K, Gray JD, Stimmler MM, et al. The relationship between defects in lymphocyte production of transforming growth factor-beta1 in systemic lupus erythematosus and disease activity or severity[J].Lupus,1999,8(2):90-94.
    [88]孙保东,梁晓萍,洪小平,等.自身免疫病患者血清TGF-β的检测及临床意义[J].中国误诊学杂志,2005,5(17):3205-3207.
    [89] Sakaguchi S, Sakaguchi N, Asano M et al.Immunologic self-tolerance maintained byactivated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a singlemechanism of self-tolerance causes various autoimmune diseases[J].J Immunol, 995,155(3):1151-1164.
    [90] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [J]. Nat Immunol, 2003, 4(4):330-336.
    [91]彭永,肖波,冯德云,等.实验性变态反应性神经炎周围神经浸润CD4+T细胞的凋亡[J].湖南医科大学学报,1999,26(4):536-538.
    [92]王永炎.中医内科学[ M] .上海:上海科学技术出版社, 1997,363-369.
    [93]于振宣,黄坤强,季晓莉.尚尔寿治疗痿证经验[J].中医杂志,1995,36(9):522-524.
    [94]孔祥梅,张延群,毛兴爱.急性感染性多神经根神经炎从寒湿论治的体会[J].中医杂志,1997, 38 (7) :404– 405.
    [95]杨廷辉.电针夹脊穴为主治疗格林-巴利综合征恢复期92例[J].针灸临床杂志,2002 ,18 (12) :27– 28.
    [96]王昊.中药治疗格林巴利综合征1例[J].北京中医药大学学报,1996,19(2):65.
    [97]王洪峰,黎明全,项柏冬,等.中医药治疗格林—巴利综合征的研究进展[J]吉林中医药,2006,26(1):59-60.
    [98]全世建,肖会泉.邓铁涛治疗重症肌无力经验[J].山东中医杂志,2004,23(10):10.
    [99]孔令昭.阳虚痿证治疗心得[J].北京中医,2006,25(1):32-33.
    [100]宋立群,吴茜.浅谈“格林-巴利综合征”的中医治疗[J].中医药学报, 1999,27 (4) :24.
    [101]韩志贞.中药治疗急性感染性多发性神经根炎20例[J].新中医,1996,(3):39-40.
    [102]常富业,王永炎,李辉,等《.内经》毒论诠析[J].时珍国医国药,2007,18(11):2684-2685.
    [103]张允岭,常富业,王永炎等.论内毒损伤络脉病因与发病学说的意义[J].北京中医药大学学报, 2006,29(8):514-516.
    [104]李伊为,崔晓军,陈东风,等.龟板对脊髓损伤大鼠神经干细胞的作用[J].神经解剖学杂志,2003,19(3):321~322.
    [105] Pennisi E. Neural beginnings for the turtle’s shell [J]. Science, 2004, 303: 951.
    [106]杜少辉,杨卓欣,陈东风,等.通瘀开窍与滋阴潜阳法对局灶性脑缺血再灌注后神经上皮干细胞巢蛋白表达的影响[J].中医杂志,2004, 45: 539-542.
    [107]邝美媚,廖欣,杜少辉,等.三甲复脉汤含药血清体外诱导成年大鼠骨髓间充质干细胞分化为神经元[J].中国临床康复, 2005, 9(30): 53-55.
    [108]董万超,刘春华,赵立波,等.马鹿茸、梅花鹿茸不同部位无机元素含量测定分析[J].特产研究,2004,l04(3):32.
    [109]董万超,赵景辉,潘久如,等.梅花鹿七种产物中生物胺的分析测定[J],特产研究.1998(1):22.
    [110]崔昊震,尹明浩.鹿茸生长因子的研究现状[J].延边大学医学学报,2006,29(1):70-72.
    [111]陈东,孟晓婷.鹿茸多肽对眙大鼠啮神经干细胞体外诱导分化的实验研究[J].解剖学报,2004,6(3):240-242.
    [112]路来金,王克利,李立军,等.鹿茸多肽对周围神经再生的影响[J].中国修复重建外科杂志. 2008, 22(12):1458-1461.
    [113]任继学.脑髓述要.中国中医基础医学杂志[J].2003,9(3):161-164.
    [114]黎明全,赵建军.基于脑髓理论对益髓通经法治疗痿病的思路[J].世界中西医结合杂志,2010,5(3):254-256.
    [115]赵建军,黎明全,张炜煜,等.通经益髓方对实验性自身免疫性神经炎家兔协同刺激分子CD80/CD86调控作用的影响.环球中医药,2009,1:27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700