钾素提高玉米(Zea mays L.)茎腐病抗性的营养与分子生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米茎腐病是世界玉米产区普遍发生的一种土传病害,严重影响到玉米的产量。近年来,由于耕作制度(如保护性耕作,秸秆还田等)及气候的影响,茎腐病在我国有逐年加重的趋势。应用化学手段很难完全控制该病,而且会对环境产生负面影响。研究发现,施钾能显著降低茎腐病的发病率,但是关于钾抑制玉米茎腐病发生的机制尚不清楚。本研究将田间试验和砂培试验相结合,研究了钾素对玉米各生育期干物质和氮磷钾积累与转运的影响;采用生理生化和分子生物学方法研究了钾素对接菌后玉米茎髓和幼根中酚类代谢产物总酚和木质素含量、酚类代谢关键酶活性及其基因表达的影响,研究了钾素对玉米碳水化合物分配及病原菌入侵后玉米幼根糖代谢产物和糖代谢关键酶活性及其基因表达的影响;利用扫描电镜和透射电镜观察了施钾后玉米茎髓组织和接菌后施钾和不施钾幼根根尖细胞超微结构的变化。主要结果如下:
     1)施钾能显著降低玉米茎腐病的发病率。通过两年的试验结果分析,钾素对茎腐病的防治效果达35%-50%。玉米各生育期的根系、茎秆、叶片、叶鞘等营养体器官的钾素含量与茎腐病的发病率存在极显著的负相关。钾素能够促进玉米对干物质和氮磷钾的积累和转运,缺钾条件下,干物质和氮磷钾养分的积累速率过早下降,积累量减少,难以满足植株生育后期的需求。容易导致植株生育后期光合产物和养分供应不足,造成根系及茎秆的提前早衰,不利于植株健康生长。
     2)在钾素对玉米酚代谢的影响方面,钾素不仅有利于提高玉米茎髓固有木质素的含量,而且还有利于病原菌入侵后茎髓诱导木质素和总酚含量的增加。施钾能促进接菌后茎髓和幼根中酚代谢相关酶:苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、多酚氧化酶(PPO)活性的提高,且对酶活性的峰值其及出现的时间影响最为明显。充足供钾处理中,茎髓PAL的活性在接菌3 d后达到最大值;而幼根PAL活性最大值出现于接菌后48 h。且施钾处理中PAL活性的峰值显著高于不施钾处理。从基因表达上看,在充足供钾的幼根中,受病原诱导产生的pal表达量高于不施钾处理。钾素还可以在基因水平调节pod基因的表达,缺钾导致了pod基因表达量的下降和表达时间的延迟。充足供钾,玉米茎髓和幼根受病原菌入侵后,POD活性被迅速诱导至最大。钾素还有利于接菌后茎髓和幼根PPO活性的增加。病原菌入侵幼根后,施钾处理中ppo的表达量在24 h内增加至接菌前的4倍多,显著高于不施钾处理。总之,钾素营养能从基因水平影响pal、pod、ppo基因的表达,促进受病原菌入侵后PAL、POD、PPO三种防御酶诱导活性的提高,调节植株酚代谢水平,增强玉米对茎腐病的抗性。此外,接菌后施钾处理中,根系对阿魏酸和绿原酸的分泌量显著增加,降低了病原菌与寄主的识别机率。
     3)在钾素对玉米糖代谢的影响方面,缺钾导致叶片中糖的积累,而施钾有利于糖由“源”器官向“库”器官运输,促进玉米生育后期光合产物向茎秆中分配,提高茎秆中糖含量。灌浆期和成熟期时,玉米茎秆中的糖含量与茎腐病发病率呈显著负相关。受病原菌侵染后,施钾还有利于增加幼根组织ss和sps基因表达量,提高SS和SPS活性,保持蔗糖和葡萄糖含量的稳定。不施钾导致幼根ss和sps基因表达量的减少,sps基因表达时间的延迟,从酶活性的变化上看,不施钾处理中,接菌后SPS活性降低,SS活性变化不大,造成幼根蔗糖供应明显不足,玉米幼根中蔗糖和葡萄糖含量均显著降低,且蔗糖含量的下降速率高于葡萄糖含量的下降速率,葡萄糖和蔗糖比值显著增加。总之,钾素能从基因水平影响ss、sps的表达,调节受侵染部位SS和SPS的活性,影响蔗糖和葡萄糖含量,维持受侵染部位正常的糖代谢水平。
     4)在钾素对玉米细胞超微结构的影响方面,缺钾处理的玉米茎髓薄壁细胞,结构不规则,长边较长,上下相邻细胞间连接壁破裂。而不缺钾处理茎髓细胞结构规则,呈长方形,整齐排列。缺钾导致维管束间的薄壁细胞破裂,致使茎髓中维管束间失去连接细胞,支撑能力变差。另外,施钾有利于寄主表皮细胞排列紧密而整齐,细胞壁增厚,有效阻碍病原菌的入侵。而且施钾处理细胞中拥有丰富的高尔基体,可以产生大量分泌物将菌丝降解。钾素还有利于菌丝入侵部位乳突的形成及高电子致密物的积累,以阻止菌丝的扩展。总之,钾素能通过稳定细胞结构,防止细胞间隙的扩大,来降低病原菌侵入的机率;通过积累酚类等化合物,加固细胞壁;通过形成位于胞间及胞内的闭塞物来限制病原物在寄主细胞的进一步发展。
     综上所述,钾素不仅是植物生长所必需的营养元素,还是一种抗性元素。钾素一方面能够通过调控植物防御基因的表达,参与酚类物质的生理代谢过程,产生抑菌物质,稳定细胞结构,加固细胞壁,阻止病原菌的入侵和扩展;另一方面钾素还能促进营养物质的运输,并能通过调控受侵染部位糖代谢相关基因的表达,参与该部位糖类物质的转化,维持正常的糖代谢水平,为防御反应提供充足的能量和原料。可见,钾素可同时对植物次生代谢和初生代谢进行调节,起到抗病作用。
Stalk rot is a serious and widespread soil-borne disease in maize, which reduces both yield and quality. Moreover, recently, because the changes of cultivation practices (conservation tillage, straw returning etc) and climatic conditions, stalk rot of maize aggravated year by year in China. Using chemicals to control the disease can not control it completely, and it often cause environment pollution. It has been found that application of potassium (K) fertilizer can result in reduction of maize stalk rot. However, the mechanism of maize resistance to this disease due to K fertilizer application has not been completely understood. Both field experiment and sand-culture experiment were conducted to study the effect of maize K nutrition status on dry matter and NPK accumulation and translocation at entire growth stage of maize; the effect of K nutrition status on phenolic metabolism products ( total phenol and lignin ), the activity of related enzyme and expression of related genes of inoculated stalk pith and young root of maize; the effect of K nutrition status on carbohydrate distribution and sugar metabolism products, the activity of related enzyme and expression of related genes of inoculated young root. Scanning electron microscope and transmission electron microscope were used to observe the effect of K on the ultrastructure of maize stalk pith tissue and young root tip cell influenced by K and pathogen. The main results are summarized as follows:
     1) Potassium application to maize could reduce the incidence of stalk rot significantly. According to the results from two years field experiments, the control efficiency of K to stalk rot reached to 35%-50%. The K content in vegetative organs, such as root, stalk, leaf, sheath had negative correlation with stalk rot incidence. Potassium application stimulated the accumulation, translocation and distribution of dry matter and NPK. Under K deficient condition, dry matter and NPK accumulation rate declined early, and the amount of nutrients accumulated reduced, resulting in shortage of nutrients supply at later growth stage. Therefore, early senescence occurred in roots and stems when photosynthate and nutrients were deficiency, which limited healthy growth and development of plant.
     2) Potassium application not only improved the inherent lignin content, but also increased induced lignin and phenol content of stalk pith. K could enhance the activities of phenolic metabolism related enzymes (phenylalanine ammonia-lyase, PAL; peroxidase, POD; polyphenoloxidase, PPO), especially had significant influence on the peak and its appearance time of the enzyme activity. In treatment with K application (+K), the activity of PAL in stalk pith reached maximum at 3 days after inoculation; and the activity of PAL in young root reached peak at 48 h after inoculation. Moreover, the inoculated root in +K treatment had higher pal transcripts as compared with no K treatment (-K). Potassium status in maize plants could also regulate pod gene expression. After inoculation, pod gene expressed later and lower in K deficient root. POD activity of stalk pith and young root induced rapidly to the maximum in K abundant treatment. Moreover, in +K treatment, the transcripts of ppo after inoculation increased 4-folds, which was higher than in–K treatment. When inoculated, K also enhanced PPO activity in both stalk pith and young root. Therefore, K could increase the resistant ability to maize stalk rot, through affecting the expression of pal, pod, ppo, promoting PAL, PPO, POD activities, and meliorating phenol metabolism. In addition, the ferulic acid and chlorogenic acid excreted by root increased significantly in +K treatment after inoculation, which reduced the identification probability between host and pathogen.
     3) Potassium deficiency caused sugar accumulation in leaf, and K application stimulated sugar translocation from sink organ to source organ. Potassium application also promoted photosynthate distributed to stalk at the later growth stage of maize, and increased sugar content in stalk. At grain filling and maturity stages, the sugar content in maize stalk had negative correlation to stalk rot incidence. Potassium application also increased ss and sps expression in young root after inoculation, enhanced SS and SPS activity, and kept sucrose and glucose content steadily. In–K treatment, ss and sps expressed lower and sps expressed later than that with +K treatment. After inoculation, SPS activity decreased, but SS had little change, resulting in sucrose deficiently in roots. Both sucrose and glucose content reduced in maize root and the reduced rate of sucrose was higher than glucose, so the glucose/sucrose ratio increased significantly. Therefore, K application could increase the resistant ability to maize stalk rot, through affecting the expression of ss and sps, regulating SS and SPS activity, influencing sucrose and glucose content, and maintaining normal sugar metabolism in infected position.
     4) Potassiun application helped to maintain an integrated cell structure with rectangle arrangement of stem pith. In K deficient treatment, parenchyma cells of stalk pith had abnormity structure and the cell wall between upper and lower adjacent cell was broken, resulting in the loss of connections between vascular cells and bad supporting capacity. In addition, improved K nutrition also helped in keeping a quite tight arrangement of root cell with thick cell wall, prevent the invading of pathogen effectively. Moreover, K treated root cell had abundant golgi apparatus, which could excrete large amount of secretions to degrade mycelium. Papillary and highly electronic intensity dot were accumulated in the invading point to prevent the development of the mycelium. Therefore, improved K nutrition could increase the resistant ability of maize plant to stalk rot, through keeping cell structure stability and preventing the expansion of intracellular space to reduce the chances of pathogen invasions; through accumulation of phenolic compounds to reinforce cell wall; through formation intercellular and intracellular material to restrict pathogen further development in host cell.
     In conclusion, K is not only a necessary nutrient element for plant growth, but also a resistance element. On the one hand, K helped in control in the expression of plant defense genes involved in phenolic metabolism, produce antibacterial substances, keep cell structure stable, and reinforce cell wall to prevent the invasion and expansion of pathogen; on the other hand, K could also enhance the translocation of dry matter and NPK, regulate the expression the sugar metabolism related genes in invaded site, participate in the conversion of carbohydrate, and maintain sugar metabolism normally, to provide adequate energy and raw materials for defensive reaction. Consequently, K can regulate both plant secondary metabolism and primary metabolism, playing an important role in disease resistance.
引文
[1]波钦诺克XH (荆家海、丁钟荣译).植物生物化学分析方法[M].北京:科学出版社,1987.
    [2]蔡宗启,林革,郑加宗.增施钾肥对枇杷茎腐病的影响试验[J].福建农业科技,2001,5:35.
    [3]曹如槐,王富荣,王晓玲.玉米青枯病抗性遗传规律的研究[J].遗传,1996,18(2):4-6.
    [4]陈彪,周桂元,王润华,等.水稻多酚氧化酶活性与白叶枯病抗性遗传的研究[J].华南农业大学学报,2000,21(2):46-48.
    [5]陈惠明,黄学跃.烟草罹赤星病后苯丙烷类代谢途径有关酶及物质的动态研究[J].云南农业大学学报,1998,13(1):63- 66.
    [6]陈捷,高洪敏.玉米茎腐病菌产生的细胞壁降解酶的致病怍用[J].植物病理学报,1998,28(3):221-226.
    [7]陈捷.我国玉米穗、茎腐病病害研究现状与展望[J].沈阳农业大学学报, 2000 -10,31(5):393 - 401.
    [8]陈绍江,宋同明.库源调节对玉米杂交种青枯病抗性的影响[J].作物学报,2003,29:740-743.
    [9]陈学平,姚忠达.不同烟草品种感染TMV病程过程中CAT、PAL活力变化研究[J].安徽农业大学学报,2002,29 (2):103-107.
    [10]崔彦玲,张环.番茄叶霉病抗性与苯丙氨酸解氨酶的相关性[J].华北农学报,2003,18 ( 1 ):79-82.
    [11]董艳,董坤,李秀琼,陈云德,鲁耀,周敏.K营养对烤烟叶片中几种抗性物质及野火病发生的影响[J].云南农业大学学报,2007,22(3):261-265.
    [12]杜雄,张立峰,李会彬,等.钾素营养对饲用玉米养分吸收动态及产量品质形成的影响[J].植物营养与肥料学报,2007,13(3):393-397.
    [13]冯芬芬,孙秀华,等.玉米种质对茎腐病的抗性和抗病资源筛选研究[J].玉米科学,1995,增刊,55-58.
    [14]冯洁,陈其煐.棉株体内几种生化物质与抗枯萎病之间的关系的初步研究[J].植物病理学报,1991,21 (4):291-297.
    [15]冯洁,陈其煐.棉株内阿魏酸和绿原酸酸含量及其对枯萎病抗性的关系[J].棉花学报,1990,2(2):81-84.
    [16]关全安,金加同.玉米青枯病病原菌的分离及其致病性测定技术的研究[J].植物病理学报,1997,27(1):29-35.
    [17]郭晓明.玉米茎腐病及其抗病育种[J].黑龙江农业科学,1998,2:34-35.
    [18]韩立军.不同施钾水平对玉米干物质及产量的影响[J].玉米科学,2006,14(5):127-129.
    [19]郝宏京,张波,孙英,等.新断面/SEM技术在农产品加工研究中的应用[J].电子显微镜报,2004,23(4):515.
    [20]何萍,金继运,林葆,等.不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,4(2):123-130.
    [21]胡笃敬,董任瑞,葛旦之.植物钾营养的理论与实践[M].长沙:湖南科学技术出版社,1993. 58-109.
    [22]胡剑,王国英.玉米感染肿囊腐霉后寄主-病原物互作的超微结构研究[J].植株病理学报,2002,32(2):241-246.
    [23]胡田田,肖玲,李岗,魏永东.施肥对春玉米养分吸收和产量形成的影响[J].西北农业大学学报,1999,27(5):11-16.
    [24]黄智鸿,王思远,包岩,等.超高产玉米品种干物质积累与分配特点的研究[J].玉米科学,2007,15(3):95-98.
    [25]纪明山,陈捷,黄国坤,等.玉米抗腐霉菌茎腐病超微结构的研究[J].沈阳农业大学学报,2000-10,31(5):482-486.
    [26]姜华,安利佳.玉米不同品种接种MDMV后叶片内过氧化物酶及其同工酶的变化[J].沈阳农业大学学报,1999-06,30(3):219-222.
    [27]金继运,何萍.氮钾互作对春玉米生物产量及其组分动态的影响[J].玉米科学,1999a,7(4):57-60.
    [28]金继运,何萍.氮钾营养对春玉米后期碳氮代谢的影响及其机理[J].华北农学报,1998,13:57-63.
    [29]金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999b,32(4):55-62.
    [30]金庆超,叶华智.张敏苯丙氨酸解氨酶活性与玉米对纹枯病抗性的关系[J].四川农业大学学报,2003,21(2):116-118.
    [31]晋齐鸣,潘顺法,姜晶春,等.吉林省玉米茎腐病病原菌组成、分布和优势种研究[J].玉米科学,1995,增刊:43-46.
    [32]李爱贞,罗宽,刘毅君.水稻近等位基因与白叶枯病菌互作的生理指标研究[J].植物保护学报,1999,26 (1):35-39.
    [33]李春霞,苏俊,龚士琛.玉米茎腐病接种方法的研究[J].玉米科学,2001,9(2):72-74.
    [34]李国利,于艳娟,李楠,王学臣.玉米细菌性茎腐病发生的原因及防治[J].天津农业科技,2006,3(191):20-21.
    [35]李红,沙洪林,宋淑云,等.应用足量钾肥和高效种衣剂防治玉米茎腐病的试验研究[J].吉林农业大学学报,2004,26(4):360-362.
    [36]李莫然,梅丽艳,韩庆新,等.黑龙省玉米青枯病发生危害调查及钾肥防病研究[J].黑龙江农业科学,1994,(2):12-16.
    [37]李淑菊,马德华,庞金安,等.黄瓜感染黑星病菌后的生理变化及抗病性的产生[J].华北农学报,2003, 18(3):74–77.
    [38]李亚玲,龙书生,郭军战,等.玉米感染禾谷镰刀菌后PAL、POD活性和同工酶谱的变化[J].西北植物学报,2003,23(11):1927–1931.
    [39]李永庚,于振文,姜东,余松烈.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [40]梁琼,侯明生.玉米品种抗感玉米粗缩病毒与过氧化物酶关系的研究[J].云南农业大学学报,2004,19(5):546-549.
    [41]刘景辉,刘克礼.春玉米需氮规律的研究[J].内蒙古农牧学院学报,1994,15(3):12-18.
    [42]刘克礼,刘景辉.春玉米干物质积累、分配与转移规律的研究[J].内蒙古农业大学学报, 1994,15(1):1-10.
    [43]刘凌霄,沈法富,卢合全,韩庆点,刘云国.蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展[J].分子植物育种,2005,3(2):275-281.
    [44]刘梦星,崔彦宏,丁民伟,等.氮磷钾及锌配施对旱薄区夏玉米干物质积累、分配和转移的影响[J].河北农业大学学报,2007,30(1):1-4.
    [45]刘晓燕,何萍,金继运.氯化钾对玉米根系糖和酚酸分泌的影响及其与茎腐病菌生长的关系[J].植物营养与肥料学报,2008,14(5):929-934.
    [46]刘晓燕.氯化钾抑制玉米茎腐病发生的机理研究[博士学位论文].北京:中国农业科学院,2006.
    [47]龙书生,李亚玲,等.糖分含量作为抗镰刀菌茎腐病玉米品种的育种指标研究[J].山东农业大学学报,1999,30(4):372-376,380.
    [48]龙书生,李亚玲,段双科,等.玉米苯丙烷次生代谢物与玉米对茎腐病抗性的关系[J].西北农林科技大学学报(自然科学版),2004,32(9):93–96.
    [49]龙书生.玉米对镰刀菌(Fusarium graminearum)茎腐病抗性机制研究[J].中国优秀博硕士学位论文,2003.
    [50]栾晓燕,陈怡,杜维广,等.大豆感染SMV3后多酚物质的变化分析[J].大豆科学,2003,22(3):186-189.
    [51]马秉元,等.陕西关中地区玉米青枯病病碌菌厦其致病性研究[J].植物病理学报,1985,(15):150-153.
    [52]梅丽艳,郭梅,李志勇.钾肥防治玉米青枯病应用技术初步研究[J].植保技术与推广,2003,23(6):3-5.
    [53]梅丽艳,李莫然,王芊,等.钾肥对玉米青枯病及其产量的影响[J].黑龙江农业科学,1995,(6):22–24.
    [54]慕康国,赵秀琴.矿质营养与植物病害关系研究进展[J].中国农业大学学报,2000,5 (1): 84- 90.
    [55]欧阳光察,薛应龙.植物苯丙烷代谢的生理意义及其调控[J].植物生理学通讯,1988,(3):9–16.
    [56]阮建云,石元值,马立锋,等.钾营养对茶树几种病害抗性的影响[J].土壤,2003,(2):165–167.
    [57]商振清,史吉平,李广敏,等.玉米对青枯病敏感性与多酚氧化酶和过氧化物酶活性关系初探[J].河北农业大学学报,1994,17(增刊):66–71.
    [58]史振声.不同施钾量对甜玉米茎秆含糖量的影响[J].沈阳农业大学学报,1995-03,26(1):18-21.
    [59]宋凤鸣,郑重,葛秀春.活性氧及膜脂过氧化在植物-病原物互作中的作用[J] .植物生理学通讯,1996,32(5):377-385.
    [60]谭桂凤.浅淡当前玉米茎腐病的发生为害与防治对策[J].农业科技通讯,2006,11,15-16.
    [61]汪耀富,宋世旭,王佩,等.渗透胁迫对不同供钾水平烤烟叶片抗旱生理指标的影响[J].植物生理科学,2006,22(5):216–219.
    [62]王春枝,葛海峰,姚刚,等.钾肥对春玉米氮磷钾吸收动态模型及养分生产效率影响的研究[J].内蒙古农业大学学报,2000,21:148-152.
    [63]王宁宁,朱建新,王淑芳,朱亮基.苦参碱对小麦旗叶中蔗糖磷酸合成酶活性的调节[J].南开大学学报,2000,33(1):19-22.
    [64]王旭东,于振文,王东.钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响[J].植物营养与肥料学报,2003,9(1):57-62.
    [65]王振华.玉米茎腐病与品种抗性的研究进展[J].种子,1997,4:40-43.
    [66]魏胜林,秦煊南.氮钾水平与多酚氧化酶活性对柠檬流胶病抗性的影响[J].西南农业大学学报,1996,18(1):6–9.
    [67]魏胜林.氮钾水平与全多对柠檬流胶病抗性的影响[J].植物保护,1997,23(4):10-12
    [68]温瑞,董金皋,王景合,等.磷、钾、蔗糖对玉米茎腐病的田间防治效果[J].河北农业科学,1999,3(3):26-27.
    [69]温瑞,黄梧芳,康绍兰,等.玉米茎腐病研究进展[J].河北农业大学学报,2000,23(1):53-56.
    [70]吴纯仁,王铨茂.玉米对茎腐病菌抗性的生化研究[J].植物病理学报,1987,18:250.
    [71]吴凯,周晓阳.环境胁迫对植物超微结构的影响[J].山东林业科技,2007,3:79-83.
    [72]吴兆苏.抽穗期小麦抗赤霉病与酚类物质的关系初探[J].安徽农业科学,1998,26 (3):250-251
    [73]徐作珽,张传模,张柏松.玉米茎基腐病苗期抗病性鉴定方法的研究[J].山东农业科学,1988,3:46-48.
    [74]薛应龙,欧阳光察.植物抗病的物质代谢基础.植物生理与分子生物学[M].北京:科学出版社,1992.
    [75]杨家书,吴畏,等.植物苯丙酸类代谢与小麦对白粉病抗性的关系[J].植物病理学报,1986,16(3):169-173.
    [76]尹立红,马志卿,陈安良,张兴.矿质元素与植物抗病虫草害关系研究进展[J].西北农林科技大学学报(自然科学版),2003,31(增):157-161.
    [77]尹艳,何黎明.甜玉米茎腐病发生原因及防治措施[J].作物杂志,2004,6,36-37.
    [78]游明鸿,刘金平,毛凯,等.钾肥对提高假俭草抗寒性作用的研究[J].草业科学,2005,22(2):67–70.
    [79]于振文,张炜,余松烈.钾营养对冬小麦养分吸收分配、产量形成和品质的影响[J].作物学报,1996,22(4):442-447.
    [80]袁飞,张春兰,沈其荣.酚酸物质减轻黄瓜枯萎病的效果及其原因分析[J].中国农业科学,2004,37(4):545-551.
    [81]战秀梅,韩晓日,杨劲峰,等.不同氮、磷、钾肥用量对玉米源、库干物质积累动态的影响[J].土壤通报,2007,38(3):495-499.
    [82]张超冲,李锦茂.玉米镰孢菌茎腐病发生规律及防治试验[J].植物保护学报,1990 ,17(3):257 - 261.
    [83]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993a:148-170.
    [84]张福锁.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社,1993b:63-69.
    [85]张薇,李天林,曹连莆.小麦抗白粉病性与酶活性的关系[J].石河子大学学报,1997,1 (1):43-46.
    [86]张颖.北方春玉米不同生育期干物质积累与氮、磷、钾含量的变化[J].玉米科学,1996,4(1):63-65.
    [87]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2002.
    [88]章元寿.植物病理生理学[M].南京:江苏科技出版社.1996,204-210.
    [89]赵东,刘祖生,奚彪.茶树多酚氧化酶基因的克隆及其序列比较[J].茶叶科学,2001,21(2):94-98.
    [90]赵利梅,赵继文,高炳德,等.钾肥对春玉米籽粒建成与品质形成影响的研究[J].内蒙古农业大学学报,2000,21(1):11-15.
    [91]周冀衡,李卫芳,王丹丹,等.钾对病毒侵染后烟草叶片内源保护酶活性的影响[J].中国农业科学,2000,33(6):98-100.
    [92]宗兆锋,康振生.植物病理学原理[M].北京:中国农业出版社,2002.
    [93] Abney TS and Foley DC. Influence of nutrition on stalk rot development of Zea mays [J]. Phytopathology. 1971, 61, 1125-1129.
    [94] Ahmad Y, Hameed A, Aslam M. Effect of soil solarization on corn stalk rot [J]. Plant and soil, 1996, 179: 17-24.
    [95] Alhagdowl MM, Barthakur NN and Donnelly DJ. Salinity stress and sodium-potassium interactions in micropropagated potatoes [J]. Potato Research, 1999, 42: 73-78.
    [96] Ashley MK, Grant M and Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins [J]. Journal of Experimental Botany, 2006, 57(2): 425-436.
    [97] Assis J S, Maldonado R, Munoz T, et al. Effect of high carbon dioxide concentration on PAL activity and phenolic contents in repening cherimoyafruit [J]. Postharvest Biol. Technol, 2001, 23: 33-39.
    [98] Ayres PG, Press MC, and Spencer-Phillips PTN. Effects of pathogens and parasitic plants on source-sink relationships. In Photoassimilate Distribution in Plants and Crops, Source-Sink Relationships (E. Zamski & A. A. Schaffer, eds ) : 479–499. Marcel Dekker, New York.1996.
    [99] Babb VM, Haigler CH. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems [J]. Plant Physiology, 2001, 127(3): 1234-1242.
    [100] Barber MS. A quantitative as say for induced ligification in wounded wheat leaves and its use to survey potential elicitors of the response [J]. Physiol Mol Plant Pathol, 1988, 32: 185-179.
    [101] Barratt DHP, Barber L, Kruger NJ, et al. Multiple distinct isoforms of sucrose synthase in pea[J]. Plant Physiology, 2001, 127, 655-664.
    [102] Baxter CJ, Foyer CH, Turner J, et al. Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in order leaves and alters development [J]. Journal of Experimental Botany, 2003, 54(389): 1813-1820.
    [103] Bayaron T B. Effect of NPK and their combinations on the occurrence of severity of stalk rot on corn [J]. Philippine Phytopathol, 1989, 24(1–2): 64-65.
    [104] Beardmore J. Cell wall hydroxyproline enhancement and ligninde position as a nearly event in the resistance of cucumber to Clados porium cucumerinum [J]. Physiol Plant Pathol, 1984, 24: 43-47.
    [105] Beardmore J. Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust [J]. Physiol Plant Pathol, 1993, 22: 209-220.
    [106] Benhamou N, Grenier J, Chrispeels M J. Accumulation of fl-Fructosidase in the Cell Walls of Tomato Roots following Infection by a Fungal Wilt Pathogen [J]. Plant Physiol, 1991, 97, 739-750.
    [107] Berger S, Papadopoulos M, Schreiber U, Kaiser W and Roitsch T. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato [J]. Physiologia Plantarum, 2004, 122: 419-428.
    [108] Berger S, Sinha AK and Roitsch T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions [J]. Journal of Experimental Botany, 2007, 58: 4019-4026.
    [109] Beringer H and Koch K. 15N uptake and distribution by spring barley in relation to K nutrition and mildew attack [J]. Journal of Plant Nutrition and Soil Science, 1980, 143,449-456.
    [110] Bhaskar CV, Pao GR, Reddy KB. Effect of nitrogen and potassium nutrition on sheath rot incidence and phenol content in rice (O ryza sativa L.) [J]. India J. of Plant Physiology, 2001, 16 (3): 254-257.
    [111] Blum U. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interaction [J]. J. Chem. Eco1. 1998, 24: 685-708.
    [112] Bonhoff A, Loyal R, Ebel J, Grisebach H. Race: cultivar-specific induction of enzymes related to phytoalexin biosynthesis in soybean roots following infection with Phytophthora megasperma f.sp. glycinea [J]. Archives of Biochemistry and Biophysics, 1986, 246: 149-154.
    [113] Bostock R M, Wilcox SM, Wang G, Adaskaveg JE. Suppression of Moniliniafructicola cutinase production by peach fruit surface phenolic acids [J]. Physio1. Mo1. Plant Patho1, 1999, 54: 37-50.
    [114] Boyer PD, Lardy HA, Phillips PH. Further studies on the role of potassium and other ions in the phosphorylation of the ademylic system [J]. Biol Chem., 1943, 149: 529.
    [115] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254.
    [116] Bucheli CS, Dry IB, Robinson SP. Is olation of a full-length cDNA encoding polyphenol oxidase from sugarcane, a C4 grass [J]. Plant Mol Biol, 1996, 31: 1233-1238.
    [117] Bullock DG, Gascho GJ, Summer DR. Grain yield, stalk rot, and mineral concentration of fertigated corn as influenced by NPK [J]. J. Plant Nutr.1990, 13(8): 915-937.
    [118] Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants [J]. J. Plant Nutr. Soil Sci. 2005, 168, 521-530.
    [119] Carine GC, et al. Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation inforage maize digestibility [J]. BMC Genetics, 2004, 5(19):1-11.
    [120] Carlson SJ, Chourey PS, Helentjaris T and Datta R. Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene [J]. Plant Molecular Biology, 2002, 49(1): 15-29.
    [121] Castleden CK, Aoki N, Gillespie VJ, MacRae EA, et al. Evolution and Function of the Sucrose-Phosphate Synthase Gene Families in Wheat and Other Grasses [J]. Plant Physiology, 2004, 135: 1753-1764.
    [122] Chen HB and Vierling A. Molecular cloning and characterization of soybean peroxidase gene families [J]. Plant Science, 2000, 150(2): 129-137.
    [123] Chou H, Bundock N, Rolfe S, Scholes J. Infection of Arabidopsis thaliana leaves with Albugo candida causes a reprogramming of host metabolism [J]. Molecular Plant Pathology, 2000, 1: 99-113.
    [124] Chourey PS, Taliercio EW, Carlson SJ, Ruan YL.Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis [J]. Mol Gen Genet 1998, 259(1): 88-96.
    [125] Conrath U, Linke C, Jeblick W, Geigenberger P, Quick WP, Neuhaus HE. Enhanced resistance to Phytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants with decreased activity of the plastidic ATP/ ADP transporter [J]. Planta, 2003, 217: 75-83.
    [126] Cosgrove DJ. Assembly and enlargement of the primary cell wall in plants [J]. Annual Review of Cell and Development Biology, 1997, 13: 171-201.
    [127] Craig J, Hooker AL. Relation of sugar trends and pith density to Diplodis stalk rot in dent corn [J]. Phytopathology, 1961, 51: 376-382.
    [128] Curtis MD, Rae AL, Rusu AG, Harrison SJ, Manners JM. A peroxidase gene promoter induced by phytopathogens and methyl jasmonate in transgenic plants [J]. Molecular Plant-Microbe Interactions, 1997, 10: 326-338.
    [129] Davis KD, Ausubel FM. Characterization of elicitor-induced defences in suspension cultured cells of Arabidopsis [J]. Molecular Plant-Microbe Interactions, 1989, 2: 363-368.
    [130] de Armas R, Santiago R, Legaz ME, Vicente C. Levels of phenolic compounds and enzyme activity can be used to screen for resistance of sugarcane to smut (Ustilago scitaminea) [J].Australasian Plant Pathology, 2007, 36: 32-38.
    [131] Dejardin A, Sokolov LN, Kleczkowski LA. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis [J]. Biochem. J, 1999, 344 (2): 503-509.
    [132] Demeke T, Morris CF. Molecular characterization of wheat polyphenol oxidase (PPO) [J]. Theor Appl Genet, 2002, 104: 813-818.
    [133] Dicko MH, Gruppen H, Barro C, et al. Impact of phenolic compounds and related enzymes in sorghum varieties for resistance and susceptibility to biotic and abiotic stresses [J]. J. Chem. Ecol., 2005, 31(11): 2671–2688.
    [134] Dixon RA and Paiva NL. Stress-lnduced Phenylpropanoid Metabolism [J]. The Plant Cell, 1995, 7: 1085-1097.
    [135] Dodd JL. Grain sink size and predisposition to Zea mays to stalk rot [J]. Phytopathology, 1980, 70: 534-535.
    [136] Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review [J]. Agron. Sustain. Dev. 2008, 28, 33-46.
    [137] Edrorial. Phenols amd plant-pathogen interactions: the aga continues [J]. Physiological and molecular plant pathology, 2005, 66:77-78.
    [138] Egilla JN, Davies FT, et al. Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: Plant growth, leaf macro- and micronutrient content and root longevity [J]. Plant and Soil, 2001, 229: 213-224.
    [139] Ehness R, Ecker M, Godt D, Roitsch T. Glucose and stress independently regulate source/sink relations and defence mechanisms via signal transduction pathways involving protein phosphorylation [J]. Plant Cell, 1997, 9: 1825–1841.
    [140] EL Modafar C, EL Boustani E. Cell Wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium oxysporum [J]. Biologia plantarum, 2001, 44 (1): 125 -130.
    [141] Ende GVD.Cutinolytic enzymes in relation to pathogenesis [J]. Annu Rev Phytopathol, 1992, 30: 369-389.
    [142] Espelie KE. Composition of suberin-associated waxes from the subterraneans to rage organs of seven plants [J]. Planta, 1980, 148: 468-476.
    [143] Fang DZ. Chapter two: plant disease investigation. In: Fang DZ. Research method of plant disease, Beijing, China: Chinese agriculture press, 1998.
    [144] Farrar JF. Fluxes and turnover of sucrose and fructans in healthy and diseased plants [J]. J. Plant Physiol, 1989, 134: 137–140.
    [145] Fisher I. The role of exocarp thickness in the production, consumption and selection of paprika for consumption [J]. Genet Breed Capsicum, 1994, 8: 106-109.
    [146] Fu J, Huang B. Effects of foliar application of nutrients on heat tolerance of creeping bentgrass [J]. Journal of Plant Nutrition, 2003, 26(1): 81-96.
    [147] Fukazawa-Akada T, et al. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana [J]. Plant Molecule Biology, 1996, 30: 711-722.
    [148] Gandon C, Bruneteau M, Bruneteau P, et al. Fungal extracellular polysaccharides and glycoproteins-elicitors of phytoalexin synthesis in carnation [J]. Recent Research Developments in Phytochemistry, 1998, 2: 73-81.
    [149] Goamez-vasquez R, Day R, Buschmann H, Randles S, Beeching JR, Cooper RM. Phenylpropanoids, Phenylalanine Ammonia Lyase and Peroxidases in Elicitor-challenged Cassava (Manihot esculenta) Suspension Cells and Leaves [J]. Annals of Botany, 2004, 94: 87-97.
    [150] Gogoi R, Singh D V, Srivastava K D. Phenols as a biochemical basis of resistance in wheat against Karnal bunt [J]. Plant Pathol, 2001, 50: 470–476.
    [151] Goldman MHS, Seurinck J, Marins M, Goldman GH. Mariani C.A tobacco flower- specific gene encodes a polyphenol oxidase [J] .Plant Mol Biol, 1998, 36: 479 - 485.
    [152] Grayer RJ, Kokubun T. Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants [J]. Phytochemistry, 2001, 56: 253-263.
    [153] Grewal HS, Williams R. Influence of potassium fertilization on leaf to stem ratio, nodulation, herbage yield, leaf drop, and common leaf spot disease of alfalfa [J]. Journal of plant nutrition, 2002, 25: 781–795.
    [154] Guidi L, Degl’Innocenti E, Genovesi S, Soldatini GF. Photosynthetic process and activities of enzymes involved in the phenylpropanoid pathway in resistant and sensitive genotypes of Lycopersicon esculentum L exposed to ozone [J]. Plant Sci, 2005, 168: 153-160.
    [155] Hammerschimidt R. Lignification as a mechanism for induced SAR in cucumber [J]. Physiol Plant Pathol, 1982, 60: 61-71.
    [156] Hayes MA. Identification of host genes involved in the biotrophic interaction between grapevine and powdery mildew [Ph.D thesis]. Adelaide University, 2006.
    [157] Heisteruber D, Schulte P, Moerschbacher B. Soluble carbohydrates and invertase activity in stem rust-infected, resistant and susceptible near-isogenic wheat leaves [J]. Physiol Mol Plant Pathol, 1994, 44: 111-123.
    [158] Herbers K, Takahata Y, Melzer M, Mock HP, Hajirezaei M, Sonnewald U. Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco [J]. Mol Plant Pathol, 2000, 1: 51-59.
    [159] Hiraga S, Yamamoto K, et al. Diverse expression profiles of 21 rice peroxidase genes [J]. FEBS Letters, 2000, 471(2-3): 245-250.
    [160] Holzmueller EJ, Jose S, Jenkins MA. Influence of calcium, potassium, and magnesium on Cornus florida L. density and resistance to dogwood anthracnose [J]. Plant Soil, 2007, 290: 189–199.
    [161] Huang JW,Chen JT,Yu WP, et al. Complete structures of three rice sucrose synthase isogenes and differential regulation of their expression [J]. Bioscience Biotechnology and Biochemistry,1996, 60 (2): 233-239.
    [162] Huber DM. Management of nutrition to control plant pathogens [J]. Botany&Plant Pathology, 1996a: 1-2.
    [163] Huber SC and Huber JL. Role and regulation of sucrose-phosphate synthase in higher plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996b, 47: 431- 444.
    [164] Huber SC and Huber JL. Role of Sucrose-Phosphate Synthase in Sucrose Metabolism in Leaves [J]. Plant Physiol, 1992, 99: 1275-1278.
    [165] Huber SC. Role of Sucrose phosphate synthase in partitioning of carbon in leaves [J]. Plant Physiol, 1983, 71: 818-821.
    [166] Jorgensen JH. Discovery, characterization and exploitation of Mlopowdery mildew resistance in barley [J]. Euphytica, 1992, 63: 141-152.
    [167] Kervinen T, Peltonen S, Utriainen M, Kangasjarvi J, Teeri TH, Karjalainen R. Cloning and characterization of cDNA clones encoding phenylalanine ammonia-lyase in barley [J]. Plant Science, 1997, 123: 143-150.
    [168] Kettlewell PS, Cook JW and Parry DW. Evidence for an osmotic mechanism in the control of powdery mildew disease of wheat by foliar-applied potassium chloride [J]. European Journal of Plant Pathology, 2000, 106: 297–300.
    [169] Koch KE. Carbohydrate-modulated gene-expression in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47, 509–540.
    [170] Koga H, Bushn ell WR, Zeyen RJ. Specificity of cell type and timing of events associated with papilla formation and the hypersensitive reaction in leaves of Hord eum vulg are attacked by Erysip he graminis f. sp. hord ei [J]. Can. J. Bot., 1990, 68 (11): 2344-2352.
    [171] Koller W. Role of cutinase and cell wall degrading enzyme in infection of pisumsativum by Fusarium solani [J]. Physiol Plant Pathol, 1982, 20: 47-60.
    [172] Kostas C, Georgios P, Stavros V, et al. Response of two olive cultivars to salt stress and potassium supplement [J]. J. of Plant Nutr., 2006, 29: 2063-2078.
    [173] Kuranda M. Chitinaseis required for cell s parathion during growth of Saccharom yce cerevisiae [J]. Biological Chem, 1991, 226 (29) : 19758-19767.
    [174] Kuroda K, Sasaki K, Iwai T, Yazaki Y, Hiraga S, Seo S, Mitsuhara I, Minami E, Ohashi Y. Rapid defense gene expression in both resistant and susceptible rice cultivars by elicitor(s) originating from conidia of blast fungus—Basal resistance response before fungal penetration into host cells [J]. Physiological and Molecular Plant Pathology, 2006, 69: 13–25.
    [175] Lafitte C. Cell surfaces in plant-micro organism interactions [J]. Plant Physiol, 1979, 64: 320-326.
    [176] Lamport DTA. Cell surfaces in plant-micro organism interactions [J]. Plant Physiol, 1979, 64: 314-319.
    [177] Lebeda A, Luhov′a L, Sedl′aˇrov′a D, Janˇcov′a D. The role of enzymes in plant-fungal pathogens interactions [J]. Journal of Plant Diseases Protection, 2001, 108, 89-111.
    [178] Lee JH. Effect of fruit removal on carbohydrate concentrations of cantaloupe (cucumis melo L.) roots in naturally infested soil with monosporascus cannonballus [Master thesis]. Texas A&M university, 2003.
    [179] Leigh RA, Wyn Jones RG. A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell [J]. New Phytologist, 1984, 97, 1–13.
    [180] Li CR, Zhang XB, and Choy SH. Cloning of a sucrose-phosphate synthase gene highly expressed in flowers from the tropical epiphytic orchid Oncidium Goldiana [J]. J. Exp. Bot., 2003, 54: 2189– 2191.
    [181] Li L and Steffens JC. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance [J]. Planta, 2002, 215: 239–247.
    [182] Lisker N, Cohen L, Chalutz E, Fuchs Y. Fungal infections suppress ethylene-induced phenylalanine ammonialyase activity in grape fruits [J]. Physiological Plant Pathology, 1983, 22: 331-338.
    [183] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△CT method [J]. Methods, 2001, 25: 402-408.
    [184] Long SS, Li L, Shi CX, et al. Relation ships between sucrose corn content and resisitance of corn to stalk rot [J]. Jour.of Northwest Sci-Tech Univ.of Agri and for. 2003, 31(4):113-118.
    [185] Lunn JE and Furbank RT. Localisation of sucrose-phosphate synthase and starch in leaves of C4 plants [J]. Planta, 1997, 202: 106-111.
    [186] Marana C, Garcia-Olmedo F, Carbonero P. Differential expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light [J]. Gene, 1990, 88 (2): 167-172.
    [187] Marschnwe H. Mineral Nutrition of Higher Plants [M]. London: Academic Press, 1986. 341-368.
    [188] Martens JW and Arny DC. Nitrogen and Sugar Levels of Pith Tissue in Corn as Influenced by Plant Age and by Potassium and Chloride Ion Fertilization [J]. American Society of Agronomy, 1967, 59:332-334.
    [189] Mayer AM, et al. Polyphenol oxidases in plants [J]. Phytochemistry, 1979, 18: 193.
    [190] Mayer AM. Polyphenol oxidases in plant and fungi: Going places? A review [J]. Phytochemistry, 2006, 67: 2318-2331.
    [191] Mayr U, Michalek S, Treutter D, Feucht W. Phenolic compounds of apple and their relationship to scab resistance [J]. J. Phytopathol., 1997, 145(2-3): 69-75.
    [192] Mckeehen JD, Busch RH, Fulcher RG. Evaluation of wheat(Triticum aestivum L)phenolic acids during grain development and their contribution to Fuaarium resistance [J]. J. Agric. Food Chem, 1999, 47: 1476-1482.
    [193] Mehdy MC and Lamb CJ. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection [J].The EMBO Journal, 1987, 6(6): 1527-1533.
    [194] Miller SA, Maxwell DP. Ultrastructure of susceptible, host resistant, and nonhost resistantinteractions of alfalfa with Phytophthora megasperma [J]. Can. J. Bot. 1984, 62: 117-182.
    [195] Minami E, Ozeki Y, Matsuoka M, et al. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants [J]. Europe Journal of Biochemistry, 1989, 185: 18-25.
    [196] Moerschbachert BM, Nou UM, Flott BE, et al. Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near isogenic wheat lines [J]. Physiol. Mol. Plant Pathol, 1988, 33(1): 33-46.
    [197] Mohammadi M, Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance [J]. Plant Sci., 2002, 162: 491-498.
    [198] Moreno-Gonzalez J, Andres Ares JL, Alonso Ferro R, Campo Ram?rez L. Genetic and statistical models for estimating genetic parameters of maize seedling resistance to Fusarium graminearum Schwabe root rot [J]. Euphytica, 2004, 137: 55-61.
    [199] Morkunas I, Marczak L, Stachowiak J, Stobiecki M. Sucrose-induced lupine defense against Fusarium oxysporum Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum [J]. Plant Physiology and Biochemistry, 2005, 43: 363-373.
    [200] Nagarathna KC, Shetty SA, Shetty HS. Phenylalanine ammonia lyase activity in pearl millet seedlings and its relation to downy mildew disease resistance [J]. Journal of Experimental Botany, 1993, 44: 1291-1296.
    [201] Nicholson R L, Hammerschmidt R. Phenolic compounds and their role in disease resistance[J]. Ann. Rev. Phytpathol, 1992, 30: 369-89.
    [202] Obeso M, Caparro′s-Ruiz D, Vignols F, Puigdome`nech, Rigau J. Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues [J]. Gene, 2003, 309: 23-33.
    [203] Ohl S, et al. Functional properties of a phenylalanine ammonia-lyase promoter from Arabid opsis [J]. Plant Cell, 1990, 2(9): 837-848.
    [204] Ono K, Ishimaru K, Aoki N, et al. Characterisation of a maize sucrose-phosphate synthase protein and its effect on carbon partitioning in transgenic rice plants [J]. Plant Production Science, 1999, 2(3): 172-177.
    [205] Onuorah PE. Effect of Mineral Nutrition on the Fusarium Brown Foot-rot of Wheat [J]. Plant and Soil, 1969, 1:99-104.
    [206] Prabhu AS, Fageria NK, Huber DM (2007) Potassium nutrition and plant diseases. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral Nutrition and Plant Disease. The American Phytopathological Society Press, Saint Paul.
    [207] Prasad R, Prasad US, Sakal R. Effect of potassium and sulphur on juice quality of sugarcane grown on calcareous soil [J]. J. Indian Soc. Soil Sci. 1996, 44(1): 169-170.
    [208] Pretorius JC, Nieuwoudt DT and Eksteen D. Sucrose synthesis and translocation in Zea mays L.during early growth, when subjected to N and K deficiency [J]. South Africa journal of Plantand soil, 1999, 16(4):173-179.
    [209] Raj SN, Sarosh BR, Shetty HS. Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease [J]. Functional Plant Biology, 2006, 33: 563-571.
    [210] Ramamoorthy V, Raguchander T, Samiyappan R. Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. Lycopersici [J]. Plant and Soil, 2002, 239: 55-68.
    [211] Ray H, Douches DS, Hammerschmidt R. Transformation of potato with cucumber peroxidase: expression and disease response [J]. Physiol Mol Plant Pathol, 1998, 53 (2): 93-103.
    [212] Ricard B, VanToai T, Chourey P, and Saglio. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant [J]. Plant Physiol, 1998, 116: 1323-1331.
    [213] Roitsch T. Source-sink regulation by sugar and stress [J]. Curr. Opin. Plant Biol. 1999, 2137: 198-206.
    [214] Rosler J, Krekel F, Amrhein N and Schmid J. Maize phenylalanine ammonia-lyase has tyrosine ammonia- lyase activity [J]. Plant Physiol, 1997, 113: 175-179.
    [215] Ruan J, Wu X, Hardter R. Effects of potassium and magnesium nutrition on quality compoents of different types of tea [J]. J. Sci. Food. Agric. 1999, 79(1): 47-52.
    [216] Santiago R, Malvar RA, et al. Free phenols in maize pith and their relationship with resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) attact [J]. J Econ Entomol, 2005, 98(4): 1349-1356.
    [217] Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H, Ohashi Y. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus [J]. Plant Cell Physiology, 2004, 45: 1442-1452.
    [218] Shahar T Hennig N, Gutfinger T, Hareven D, Lifschitz E. The tomato 66. 3kD polyphenoloxidase gene: molecular identification and developmental expression [J]. Plant Cell, 1992, 4:135 -147.
    [219] Sharan M, Taguchi G, Gonda K, Jouke T, Shimosaka M, Hayashida N, Okazaki M. Effects of methyl jasmonate and elicitor on the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures [J]. Plant Science, 1998, 132: 13-19.
    [220] Sharer SR,Blum U. Influence of Phenolic acids on microbial populations in the rhizosphere of cucumber [J]. J. Chem. Eco1, 1991, 17: 369-389.
    [221] Sharma SR, Kolte SJ. Effect of soil - applied NPK fertilizers on severity of black spot disease (Alternaria brassicae) and yield of oilseed rape [J] . Plant and Soil, 1994, 167: 313-320.
    [222] Shawj R, Ferl RJ, Baier J, et al. Structural features of the maize sus1 gene and protein [J]. Plant Physiol, 1994, 106 (4): 1659-1665.
    [223] Shen B and Carneiro N, et al. Partial sequencing and mapping of clones from two maize cDNAlibrarie [J]. Plant Mol. Biol. 1994, 26: 1085-1101.
    [224] Signora L, Galtier N, Skot L, Lucas H, Foyer CH. Over-expression of sucrose-phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment [J]. Journal of Experimental Botany, 1998, 49, 669-680.
    [225] Smedegaard-Petersen V and Stolen O. Effect of energy requiring defense reactions on yield and grain quality in powdery mildew Erysiphe graminis sp. hordei resistant Hordeum vulgare cultivar Sultan [J]. Phytopathology, 1981, 71: 396-399.
    [226] Sonia S, Alberto C and Miguel L. Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): evidence for a nodule-enhanced sucrose synthase gene [J]. J. Exp. Bot., 2003, 54: 749-755.
    [227] Sugiharto B, Sakakibara H, Saumadi, Sugiyama T,Differential expression of two genes for sucrose-phosphate synthase in sugarcane: molecular cloning of the cDNAs and comparative analysis of gene expression [J]. Plant Cell Physiol. 1997, 38(8): 961-965.
    [228] Swarbrick PJ, Schulze-lefert P, Scholes JD. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew [J]. Plant Cell and Environment, 2006, 29: 1061-1076.
    [229] Tepper CS, Albert FG, AndersonAJ. Differential mRNA accumulation in three cultivars of bean in response to elicitors from Colletotrichum lindemuthianum [J]. Physiological and Molecular Plant Pathology, 1989, 34(1): 85-98.
    [230] Thipyapong P, Hunt MD, Steffens JC. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility [J]. Planta, 2004, 220: 105-117.
    [231] Thipyapong P, Hunt MD, Steffens JC. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase [J]. Phytochemistry, 1995, 40: 673-676.
    [232] Thipyapong P, Steffens JC. Tomato polyphenol oxidase (PPO): differential response of the PPO F promoter to injuries and wound signals [J]. Plant Physiology, 1997, 115: 409-418.
    [233] Thordal-Christensen H, Brandt J, Cho BH, Rasmussen SK, Gregersen PL, Semedegaard-Petersen V, Collinge DB. cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis [J]. Physiological and Molecular Plant Pathology, 1992, 40: 395-409.
    [234] Thygesen PW, Dry IB, Robinson SP. Polyphenol oxidase in potato.A multigene family that exhibits differential expression patterns [J] .Plant Physiol, 1995, 109: 525-531.
    [235] Valdez-Alarcon JJ, Ferrando M., Salermo G, Jimenez-Moraila B and Herrera-Estrella L. Characterization of a rice sucrose phosphate synthase encoding gene [J]. Genetics, 1996, 170: 217-222.
    [236] Valentinuz OR, Tollenaar M. Effect of genotype, nitrogen, plant density, and row spacing on the area-per-leaf profile in maize [J]. Agron J, 2006, 98(1): 94-99.
    [237] Valério L, Meyer MD, Penel C and Dunand C. Expression analysis of the Arabidopsisperoxidase multigenic family [J]. Phytochemistry, 2004, 65(10): 1331-1342.
    [238] Walker DJ, Leigh RA, Miller AJ. Potassium homeostasis in vacuolated plant cells [J]. Proceedings of the National Academy of Sciences,.1996. 93, 10510-10514.
    [239] Wang BC, Wang JB, Zhao HC, Zhao H (2006) Stress induced plant resistance and enzyme activity varying in cucumber [J]. Colloids and Surfaces B: Biointerfaces 48: 138-142.
    [240] Wang CZ, Ge HF, Yao G, et al. Studies on the effect of potassium fertilizer on dynamic model of N, P, K uptake by spring maize and its productivity [J]. J Inner Mongolia Agric Univ, 2000, 21: 148-152.
    [241] Wang F , Sanz A , Brenner ML , Smith A. Sucrose synthase, starch accumulation, and tomato fruit sink strength [J]. Plant Physiol, 1993, 101: 321-327.
    [242] Way HM, Kazan K, Mitter N, Goulter KC, Birch RG, Manners JM. Constitutive expression of phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth [J]. Physiol Mol Plant Pathol, 2002, 60 (6): 275-282.
    [243] Wehtje G, Little LJ, Zimmer DE. Ultrastructure of compatible and incompatible reaction of sunflower to Plasmopara halstedii [J]. Can. J. Bot. 1979, 57: 315-323.
    [244] Widstrom NW, Carr ME, Bagby MO, and Black LT. Distribution of sugar and soluble solids in the maize stalk [J]. Crop science, 1988, 28: 861-863.
    [245] Winter H, Huber SC. Regulation of metabolism in higter plant:localization and regulation of activity of enaymes [J]. Crit Rev Biochem Mol Biol, 2000, 35(4): 253-289.
    [246] Worrell AC, Bruneau JM, Summerfelt K, Boersig M, and Voelker TA. Expression of a maize sucrose phosphatesynthase in tomato alters leaf carbohydrate partitioning [J]. Plant Cell, 1991, 3: 1121-1130.
    [247] Wright D, Baldwin B, Shephard M, Scholes J. Source-sink relationships in wheat leaves infected with powdery mildew [J]. Physiol Mol Plant Pathol, 1995, 47: 237-253.
    [248] Wright PR. Premature senescence of cotton (Gossypium hirsutum L.)– Predominantly a potassium disorder caused by an imbalance of source and sink [J]. Plant Soil, 1999, 211: 231-239.
    [249] Wurms KV, George MP, Lauren DR. Involvement of phenolic compounds in host resistance against Botrytis cinerea in leaves of the two commercially important kiwifruit (Actinidia chinensis and A-deliciosa) cultivars [J]. New Zealand Journal of Crop and Horticultural Science, 2003, 31(3): 221-223.
    [250] Xiao WY, Sheen J and Jang JC. The role of hexokinase in plant sugar signal transduction and growth and development Cloning and characterization of cDNA clones encoding phenylalanine ammonia-lyase in barley [J]. Plant Molecular Biology, 2000, 44, 451-461.
    [251] Yang XE, Liu JX, Wang WM, et al. Potassium internal use efficiency relative to growth vigor, potassium distribution and carbohydrate allocation in rice genotypes [J]. Journal of plant nutrition, 2004, 27(5): 837-852.
    [252] Yurina TP, Yurina EV, Karavaev VA, Solntsev MK. Effect of mineral nutrition on wheat resistance to powdery mildew [J]. Fiziologiya Rastenii. (Moscow). 1997, 44(1): 66-67.
    [253] Zhao DL, Oosterhuis DM, Bednarz CW. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants [J]. Photosynthetica, 2001, 39(1): 103-109.
    [254] Zhao RF, Chen XP, Zhang FS, et al. Fertilization and nitrogen balance in a wheat-maize rotation system in north [J]. Agron J, 2006, 98(4): 938-945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700