离子液体中CuO及配合物Cu(N-MeIm)_4(BF_4)_2的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体具有独特的结构和物理化学性质,近年来在无机纳米材料制备方面得到广泛的重视,尤其在纳米材料的微结构控制方面占有重要的地位,发挥了传统溶剂所不具备的优点,成为纳米材料制备领域中的研究热点之一。
     本论文以离子液体为介质,实现了CuO晶体在离子液体中的可控生长,合成了不同形貌的纳米材料,探讨了可控生长的机理,并剖析了纳米材料形貌与性能间的关系。通过离子液体的热分解,不但首次合成了配合物[Cu(N-MeIm)_4(BF_4)_2](N-MeIm=N-甲基咪唑),而且在不加入任何还原剂的条件下成功制备出Cu_2O、Cu和Ag,提出了可能的形成机理。
     采用一步法和两步法分别合成了离子液体[BMIM]Cl(1-丁基-3-甲基咪哗氯化物)、[BMIM]BF_4(1-丁基-3-甲基咪唑四氟硼酸盐)和[BMIM]PF_6(1-丁基-3-甲基咪唑六氟磷酸盐),借助红外光谱分析和热重分析表征了其化学结构和热稳定性。以离子液体[BMIM]BF_4为反应溶剂,采用溶剂热法在200℃反应20h,合成了空间群为P2_(1/n)的单斜晶系配合物[Cu(N-MeIm)_4(BF_4)_2];通过改变反应物浓度、反应温度和反应时间,进一步加强离子液体[BMIM]Cl和[BMIM]BF_4的热分解程度,使其发生碳化,以碳为还原剂将Cu(Ⅱ)和Ag(Ⅰ)还原,进而制备出氧化亚铜、单质铜和纳米银。
     采用微波-离子液体法在8min内实现了不同形貌CuO的可控合成。考察了铜源、离子液体种类、NaOH浓度、离子液体含量、微波加热功率以及反应时间等参数对纳米CuO形貌的影响。以硝酸铜为铜源,在[BMIM]BF_4中合成了由宽度约0.8μ,m、长度约4.5μm的纳米片交叉排列的十字状花形CuO,在[BMIM]Cl中合成直径约40nm的CuO纳米棒,在水溶液中合成了纳米片同向排列的蛹状CuO;以醋酸铜为铜源,在[BMIM]BF_4中合成了柳叶状CuO纳米片,延长反应时间合成了柳叶状纳米片聚集而成的菊花状CuO,增加离子液体含量合成了柳叶状纳米片分裂而成的CuO纳米棒。
     采用溶剂热-离子液体法在100~140℃实现了不同形貌CuO的可控合成。考察了铜源、反应物浓度、反应温度、反应时间、离子液体种类、表面活性剂及反应物加入顺序等参数对CuO形貌的影响。以醋酸铜为铜源,在[BMIM]Cl中140℃反应20h合成了长度70~100nm,直径15~20nm,两端为半球型CuO纳米棒。以氯化铜或硝酸铜为铜源,在[BMIM]BF_4和[BMIM]Cl中,合成了单斜相结构的CuO纳米片,添加表面活性剂聚乙二醇后,形成表面光滑的CuO微球。以硝酸铜为铜源,先后加入[BMIM]BF_4和NaOH溶液,合成了由厚度65~80nm、长度4~5μm、宽度约500nm、末端成60°尖角的纳米片在中间紧扎而形成的新型束状CuO。
     考察了不同形貌CuO对催化、电化学和光学性能的影响。研究表明,纳米CuO的尺度、比表面积、表面状态以及排列方式都将对高氯酸铵热分解反应和异丙苯氧化反应产生影响;柳叶状纳米CuO电极材料在Li/CuO半电池中具有良好的电化学性能;与体材料比较,CuO纳米棒、纳米片的光学禁带宽度均发生了不同程度的蓝移。
Ionic liquids with unique structure and outstanding physical and chemistry properties were widely used in the fabrication of inorganic nanomaterials, especially in the field of the control on microstructure. Ionic liquids with great advantage over the traditional solvents have been attractive for its abroad applications in the controlled synthesis of the inorganic nanomaterials.
     In this work, CuO crystals with various morphologies were controlled synthesized in ionic liquids system. The mechanisms for formations of controlled growth and the relationship between morphology and property were investigated. By the decomposition of ionic liquid, the novel complex [Cu(N-MeIm)_4(BF_4)_2] has been synthesized, and Cu_2O, Cu and Ag have been prepared. The possible mechanisms for formations were proposed.
     Ionic liquids of [BMIM]Cl.[BMIM]BF_4 and [BMIM]PF_6 were prepared through Direct Method and Two-step Method, respectively. The chemical structure and thermal stability of the final products were characterized by Infrared spectra and Thermogravimetry. The novel complex [Cu(N-MeIm)_4(BF_4)_2] has been synthesized successfully,which belonged to monoclinic with space group P2_1/n, by solvothermal method at 200℃for 20h in [BMIM]BF_4.The effect of reaction conditions such as the reagent concentration, reaction temperature and reaction time was discussed. [BMIM]Cl and [BMIM]BF_4 were carbonized to form carbon by enhancing the decomposition degree. The carbon was the reducing agent that converted Cu(Ⅱ) and Ag(Ⅰ) to Cu_2O, Cu and Ag.
     We adopted microwave-assisted ionic liquids method to controlled synthesize CuO nanomaterials with different morphology in 8min. The effect of reaction conditions such as copper sources, ionic liquids species, NaOH concentration, ionic liquids content, microwave power and reaction time were discussed. With copper nitrate as copper source, flower-like CuO has been synthesized in [BMIM]BF_4, which cross arranged with willow nanoplatelet of about 0.8@μm in width and 4.5μm in length;CuO nanorods have been synthesized in [BMIM]Cl;chrysalides-like CuO has been synthesized in H_2O,which arranged with nanoplatelet at the same direction. With copper acetate as copper source, we have prepared willow-like CuO nanoplatelet in [BMIM]BF_4,chrysanthemum-like CuO consisted of nanoplatelet by prolonging reaction time and CuO nanorods split from nanoplatelet by increasing ionic liquids content.
     We adopted solvothermal-assisted ionic liquids method to controlled synthesize CuO nanomaterials with different morphology at 100-140℃. The effect of reaction conditions such as copper sources, reagent concentration, reaction time, ionic liquids species, surfactants and the order of adding reagent was discussed. With copper acetate as copper source, CuO nanorods with 70-100nm in length and 15-20nm in diameter have been synthesized in [BMIM]Cl at 140℃for 20h. With copper nitrate or copper chloride as copper source, monoclinic CuO nanoplatelet or microspheres have been synthesized in [BMIM]Cl or [BMIM]BF_4.With copper nitrate as copper source and the adding of [BMIM]BF_4 before NaOH, we synthesized sheaf-like CuO consisting of nanoplatelets with lengths of 4-5μm, thickness of 65~80nm and end angle of 60°.
     Moreover, we study the relationship between property and the morphology of CuO nanomaterials. The effect of CuO morphology such as nano-scale, specific surface area, surface state and arrangement style on catalysis of ammonium perchlorate decomposition and the oxidation of cumene to cumene hydroperoxide was discussed. The willow-like CuO nanoplatelet had good electrochemical property as the electrochemical materials of Li/CuO cell. There were blue shifts of band gap energy for CuO nanorods and nanoplatelet.
引文
[1] 徐国财,张立德.纳米材料制备技术[M].北京:化学工业出版社,2001:659-672页
    [2] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学工业出版社,2001:1-19页
    [3] Estroff L A,Hamilton A D.At the interface of organic and inorganic chemistry:bioinspired synthesis of composite materials[J].Chem Mater,2001.13:3227-3235P
    [4] 李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002:20-36页
    [5] 徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001:287-289页
    [6] Wasserscheid P,Keim W. Ionic liquids-new "solutions" for transition metal catalysis[J]. Angew Chem Int Ed,2000,39: 3772-3789P
    [7] Kubisa P,Polym Prog. Application of ionic liquids as solvents for polymerization processes[J]. Sci,2004,29: 3-12P
    [8] Dzyuba S V,Bartsch R A. Recent advances in applications of room-temperature ionic liquid/supercritical CO_2 systems[J]. Angew Chem Int Ed,2003,42: 148-150P
    [9] Huddleston J G,Willauer H D,Swatloski R P,et al. Room Temperature Ionic Liquids as Novel Media for 'Clean' Liquid-Liquid Extraction[J].Chem Commun,1998,24: 1765-1766P
    [10] Dupont J,Suoza R F,Suarez P A Z,et al. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis[J]. Chem Rev,2002,102: 3667-3692P
    [11] Sheldon R. Catalytic reactions in ionic liquids[J]. Chem Commun,2001,23:2399-2407P
    [12] Endres F, Abedin S Z E. Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid[J]. Chem Commun, 2002, 28:892-893P
    [13] Fuller J, Carkin R T, Osteryoung R A, et al. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: Electrochemical couples and physical properties[J]. J Electrochem Soc, 1997.144:3881-3886P
    [14] 邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社,2006:1-98页
    [15] Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methy-limidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals[J]. J Chem Soc, Dalton Trans, 1999, 13: 2133-2139P
    [16] Antonietti M, Kuang D B, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures[J].Angrew Chem Int Ed, 2004, 43: 4988-4992P
    [17] Mele A, Tran C D, Lacerda S H D. The structure of a room-temperature ionic liquid with and without trace amounts of water: The role of C-H center dot center dot center dot O and C-H center dot center dot center dot F interactions in l-n-butyl-3methylimidazolium tetrafluoroborate[J].Angew Chem Int Ed, 2003,42:4364-4366P
    [18] Saha S, Hayashi S, Kobayashi A, et al. Crystal structure of 1-butyl-3-methvlimidazolium chloride. A clue to the elucidation of the ionic liquid structure[J].Chem Lett, 2003, 32: 740-741P
    [19] 张萌,徐晓冬,张密林等.微波辅助离子液体法在液相合成中的应用[J].化学通报,2007,70(7):513-520页
    [20] Zhu Y J,Wang W W,Qi R J,et al.Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids[J]. Angew Chem Int Ed, 2004, 43: 1410-1414P
    [21] Wang W W, Zhu Y Y, Cheng G F, et al. Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers[J]. Mater Lett, 2006, 60:609-612P
    [22] Wang W W, Zhu Y J. Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt[J]. Inorg Chem Commun,2004,7: 1003-1005P
    [23] Wang W W, Zhu Y J. Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co_3O_4 rods[J]. Mater Res Bull,2005,40: 1929-1935P
    [24] Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M_2S_3(M=Bi, Sb) nanorods using an ionic liquid[J]. J Phys Chem B, 2005, 109: 4361-4364P
    [25] Wang W W, Zhu Y J. Synthesis of PbCrO_4 and Pb_2CrO_5 rods via a microwave-assisted ionic liquid method[J]. Cryst Growth Des, 2005, 5(2):505-507P
    [26] Yang L X, Zhu Y J, Wang W W, et al. Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedra molecular sieve using an ionic liquid[J]. J Phys Chem B, 2006, 110: 6609-6614P
    [27] Wang J, Cao J M, Fang B Q, et al. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids[J].Mater Lett, 2005, 59: 1045-1048P
    [28] Cao J M, Wang J, Fang B Q, et al. Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid[J].Chem Lett, 2004, 33: 1332-1334P
    [29] Li Z H, Liu Z M, Zhang J L, et al. Synthesis of single-crystal gold nanosheets of large size in ionic liquids[J]. J Phys Chem B, 2005, 109:14445-14448P
    [30] Zhou Y,Antonietti M. Synthesis of very small TiO_2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates[J]. J Am Chem Soc,2003,125(49): 14960-14961P
    [31] Nakashima T,Kimizuka N. Interfacial synthesis of hollow TiO_2 microspheres in ionic liquids[J]. J Am Chem Soc,2003(21): 6386-6387P
    [32] Zhou Y,Jan H,Antonietti M. Room-temperature ionic monolithic mesoporous silica with wormlike pores via liquids as a sol-gel template to nanocasting technique[J]. Nano Lett,2004,4(3): 477-481P
    [33] Zhou Y,Antonietti M. Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique[J]. Adv Mater,2003,15(17):1452-1455P
    [34] Zhou Y,Antonietti M. A series of highly ordered,super-microporous,lamellar silicas prepared by nanocasting with ionic liquids[J]. Chem Mater,2004,16: 554-550P
    [35] Zhou Y,Antonietti M. A novel tailored bimodal porous silica with well-defined inverseopal microstructure and super-microporous lamellar nanostructure[J]. Chem Commun,2003,29: 2564-2565P
    [36] Li Z H.Zhang J L,Du J M,et al.Synthesis of LaCO_3OH nanowires via a solvothermal process in the mixture of water and room-temperature ionic liquids[J]. Mater Lett,2005,59(8-9): 963-965P
    [37] Jiang J,Yu S H,Yao W T,et al. Morphogenesis and crystallization of Bi_2S_3 nanostructures by an ionic liquid-assisted templating route: synthesis,formation mechanism,and properties [J]. Chem Mater,2005,17:6094-6100P
    [38] 王翠青.钛酸钡、二氧化钛、以及氧化铟纳米材料的溶液法合成与表征[D].山东大学硕士学位论文.2006:39-48页
    [39] Endres F,Abedin S Z E. Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid[J]. Chem Commun,2002,28:892-893P
    [40] Endres F,Abedin S Z E. Nanoscale electrodeposition of germanium on Au(111) from an ionic liquid: an in situ STM study of phase formation[J].Phys Chem Chem Phys,2002,4: 1640-1657P
    [41] Zell C A,Freyland W. In situ STM and STS study of Co and Co-A1 alloy electrodeposition from an ionic liquid[J]. Langmuir,2003,19: 7445-7450P
    [42] Huang J F,Sun I W. Formation of nanoporous platinum by selective anodic dissolution of PtZn surface alloy in a lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid[J]. Chem Mater,2004,16:1829-1831P
    [43] Scheeren C W,Machado G,Dupont J,et al.Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor,characterization,and catalytic properties in hydrogenation reactions[J]. Inorg Chem,2003,42: 4738-4742P
    [44] Itoh H,Naka K,Chujo Y,et al. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation[J]. J Am Chem Soc,2004,126: 3026-3027P
    [45] Wei G T,Yang Z S,Lee C Y,et al. Aqueous-organic phase transfer of gold nanoparticles and gold nanorods using an ionic liquid[J]. J Am Chem Soc,2004,126:5036-5037P
    [46] 李健,张晟卯,吴志申等.功能化离子液体中Ag纳米微粒的制备及摩擦学性能研究[J].无机化学学报,2006,22(1):65-68页
    [47] 张晟卯,张春丽,吴志申等.室温离子液体介质中尺寸、结构可控Ni纳米微粒的制备及结构表征[J].化学学报,2004,62(15):1443-1446页
    [48] 李钟号.离子液体及微乳液中制备纳米材料的研究[D].中国科学院研究生院博士学位论文.2005:46-52页
    [49] Andreas T. CuCl nanoplatelets from an ionic liquid-crystal precursor[J].Angew Chem Int Ed,2004,43: 5380-5382P
    [50] Xu Y P,Tian Z J,Xu Z S,et al. Ionothermal synthesis of silicoalumino-phosphate molecular sieve in N-Alkyl imidazolium bromide[J]. Chin J Catal,2005,26(6): 446-448P
    [51] 胡玥,刘彦军,余加祐等.离子热合成磷铝分子筛[J].无机化学学报,2006,22(4):753-756页
    [52] 马英冲,徐云鹏,王少君等.室温离子液体中合成方钠石的研究[J].高等学校化学学报,2007,27(4):739-741页
    [53] 王莉,赵斌,袁忠勇等.离子液体中氧化铜纳米结构的合成[J].中国科学B辑化学,2006,36(5):386-392页
    [54] Ferey,G. Microporous solids: from organically templated inorganic skeletons to hybrid frameworks...ecumenism in chemistry[J]. Chem Mater,2001,13(10):3084-3098P
    [55] 孙为银.配位化学[M].北京:化学工业出版社,2004:34-41页
    [56] 李懋峰.离子液体中的晶体工程——有机-无机杂化材料的设计合成与表征[D].华东师范大学硕士研究生学位论文.2004:26-63页
    [57] Huddleston J G,Visser A E,Reichert W M,et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chem,2001,3: 156-164P
    [58] 张颖,王玉刚.苯酚丙酮装置CHP浓度测定方法评价[J].石化技术,2002,9(2):77-79页
    [59] 高会森,王鹏,董坤等.氯化烷基咪哗离子液体分子结构和红外光谱的模拟汁算[J].石油学报,2006,22(1):72-76页
    [60] Thomazeau C C,Olivier-Bourbigou H L,Magna L,et al.Determination of an acidic scale in room temperature ionic liquids[J]. J Am Chem Soc,2003,125(18):5254-5265P
    [61] Fredlake C P,Crosthwaite J M,Hert D G,et al.Thermophysical properties of imidazolium-based ionic liquids[J]. J Chem Eng Data,2004,49:954-964P
    [62] Sammes P G,Yahioglu G. 1,10-Phenanthroline: a versatile ligand[J]. J Chem Soc Rev,1994,23(5): 327-331P
    [63] Khan M F I,Norhayati Y,Ahmad P M K,et al.铜及其配合物在生物体系中的作用[J].无机化学学报,1998,14(1):29-39页
    [64] Wang J,Ye S J,Wen Y H,et al. Synthesis and structure of tetraploid (imidazole) copper terephthalate [Cu(Im)_4](teph)[J]. Chin J Chem,2003,21(11): 1458-1460P
    [65] 张萌,徐晓冬,张密林.在离子液体[BMIM]BF_4-水中制备 Cu_2O粒子[J].精细化工,2007,24(9):69-73页
    [66] Siegfried M J,Choi K S. Elucidating the effect of additives on the growth and stability of Cu_2O surfaces via shape transformation of pre-grown crystals[J]. J Am Chem Soc,2006,128: 10356-10357P
    [67] David S J,Genish I,Klein L,et al. Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid[J]. J Phys Chem B,2006,110(36): 17711-17714P
    [68] David S J,Liora B,Grinblat J,et al. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides[J]. Chem Mater,2006,18: 3162-3168P
    [69] Greenlerrg T,Rahn R R,Schwartz J P. The effect of indexo frefraction on the position,shape,and intensity of infrared bands inreflection absorption spectra[J]. J Catal,1971,23: 42-47P
    [70] Keeffwm O. Infrared optical properties of cuprous oxide[J]. J Chem Phys, 1963.39:1789-1793P
    [71] Gozzo F C,Santos L S,Augusti R,et al.Gaseous supramolecules of imidazolium ionic liquids: "magic" numbers and intrinsic strengths of hydrogen bonds[J]. Chem Eur J,2004,10: 6187-6193P
    [72] Bradley A E,Hardacre C,Holbrey J D,et al. Small angle X-ray scattering studies of liquid crystalline 1-Alkyl-3-methylimidazolium salts[J]. Chem Mater,2002,14: 629-635P
    [73] Dupont J. On the Solid,Liquid and solution structural organization of imidazolium ionic liquids[J]. J Braz Chem Soc,2004,13: 341-350P
    [74] Dong K,Zhang S J,Wang D X,et al. Hydrogen bonds in imidazolium ionic liquids[J]. J Phys Chem A,2006,110,9775-9782P
    [75] Wang Z H,Chen X Y,Liu J W,et al. Room temperature synthesis of Cu_2O nanocubes and nanoboxes[J]. Solid State Commun,2004,130: 585-589P
    [76] Sun N,Guo Z X,Dai L M,et al. C60-Ag nanocomposite: fabrication and optical limiting effect[J]. Chem Phys Lett. 2002,356(12): 175-180P
    [77] Reitz J B,Solomon E I. Propylene oxidation on copper oxide surfaces:electronic and geometric contributions to reactivity and selectivity[J]. J Am Chem Soc,1998,120: 11467-11468P
    [78] Chang Y,Zeng H C. Controlled synthesis and self-Assembly of single-crystalline CuO nanorods and nanoribbons[J]. Cryst Growth Des,2004,4: 397-402P
    [79] Xu Y Y,Chen D R,Jiao X L. Fabrication of CuO pricky microspheres with tunable size by a simple solution route[J]. J Phys Chem B,2005,109:13561-13566P
    [80] Chowdhuri A,Gupta V,Sreenivas K. Response speed of SnO_2-based H_2S gas sensors with CuO nanoparticles[J]. Appl Phys Lett,2004,84:1180-1182P
    [81] Viano A,Mishra S,Lioyd R,et al. Thermal effects on ESR signal evolution in nano and bulk CuO powder[J]. J Non-Cryst Solids,2003,325: 16-21P
    [82] Zou G F,Li H,Zhang D W,et al. Well-aligned arrays of CuO nanoplatelets[J]. J Phys Chem B,2006,110: 1632-1637P
    [83] Welton T. Room-temperature ionic liquids,solvents for synthesis and catalysis[J],Chem Rev,1999,99: 2071-2081P
    [84] Wang H,Xu J Z,Zhu J J,et al. Preparation of CuO nanoparticles by microwave irradiation[J]. J Cryst Growth,2002,244: 88-94P
    [85] Liang Z H,Zhu Y J. Micowave-assisted sythesis of single-crystalline CuO nanoleaves[J]. Chem Lett,2004,33: 1314-1315P
    [86] Zhao Y,Zhu J J,Hong J M,et al. Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology[J]. Eur J Inorg Chem,2004,20: 4072-4080P
    [87] Zhang M,Xu X D,Zhang M L. Controlled synthesis and self-Assembly of flower-like CuO[J]. J Dispersion Sci,2008,29(4) (In press)
    [88] Xu X D,Zhang M,Zhang M L. Shape-controlled synthesis of single-crystalline CuO by microwave heating using an ionic liquid[J].Mater Lett,2007,61(In press)
    [89] Cudennec Y,Lecerf A. The transformation of Cu(OH)_2 into CuO,revisited[J]. Solid State Sci,2003,5: 1471-1474P
    [90] Kliche K,Popovic Z V.Far-infrared spectroscopic investigations on CuO[J].Phys Rev B,1990,42: 10060-10066P
    [91] 王文亮,李东升,王振军等.超细粉体的形貌与红外特性研究[J].无机化学学报,2002,18(8):823-826页
    [92] 任崇桂,徐建,贾晏金等.亚微米级多刺状星形氧化铜的制备[J].化学学报,2007,65(5):459-464页
    [93] 大连理工大学无机化学教研室编.无机化学(第四版)[M].北京:高 等教育出版社,2001:580-581页
    [94] Liu Y D,Zhang Y,Wu G Z,et al. Coexistence of liquid and solid phases of Bmim-PF_6 ionic liquid on mica surfaces at room temperature[J]. J Am Chem Soc,2006,128: 7456-7457P
    [95] 张汝冰,刘宏英,李凤生.复合纳米材料制备研究(Ⅱ)[J].火炸药学报,2000,23(1):59-61页
    [96] 江治,李疏芬,赵凤起等.纳米镍粉对高氯酸钱热分解的影响[J].推进技术,2003,24(5):460-463页
    [97] 马振叶,李凤生,崔平等.纳米Fe_2O_3的制备及其对高氯酸按热分解的催化性能[J].催化学报,2004,24(10):795-798页
    [98] 朱俊武,张维光,王恒志等.纳米CuO的形貌控制合成及其性能研究[J].无机化学学报,2004,20(7):863-867页
    [99] 郑振华,钟琳,谢均等.过氧化氢异丙苯催化合成工艺[J].精细化工,2002,19(11):669-671页
    [100] Ying F H,Chen P C. Mechanistic investigation of the autooxidation of cumene catalyzed by transiton metalsalts supported on polymer[J]. Mol Catal,1998,136:1-11P
    [101] 薛常海,王日杰,张继炎.碱土金属氧化物催化氧化异丙苯反应研究[J].石油学报,2002,18(3):30-35页
    [102] 王乐夫,张美英.片状纳米CuO的合成及用于异丙苯氧化反应的催化性能研究[J].茂名学院学报,2003,13(3):1-4页
    [103] Reedijk J.Pyrazoles and imidazoles as ligands.Ⅶ. Metal(Ⅱ) perchlorates and tetrafluoroborates containing 2-methylimidazole as ligands[J]. Recl Trav Chim Pays-Bas,1972,91(4): 507-516P
    [104] Henriksson H A. The crystal structure of bis(imidazole) copper(Ⅱ) diacetate[J]. Acta Sect B,1977,33(6): 1947-1950P
    [105] Abuhijleh A L,Woods C. Synthesis,spectroscopic and structural characterization of bis(acetato)tetrakis(imidazole) copper(Ⅱ): a model complex for DNA binding[J]. Inorg Chim Acta,1992,194(1): 9-14P
    [106] Wang D B,Mo M,Yu D B,et al.Large-Scale Growth and Shape Evolution of Cu_2O Cubes[J]. Cryst Growth Des,2003,3(5): 717-720P
    [107] Zhang J T,Liu J F,Peng Q,et al. Nearly monodisperse Cu_2O and CuO nanospheres: preparation and applications for sensitive gas sensors[J].Chem Mater,2006,18:867-871P
    [108] Xu H L,Wang W Z,Zhu W. Shape evolution and size-controllable synthesis of Cu_2O octahedra and their morphology-dependent photocatalytic properties[J]. J Phys Chem B,2006,110: 13829-13834P
    [109] Sun Y,Yin Y,Mayers B T,et al. Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(Vinyl Pyrrolidone)[J]. Chem Mater,2002,14:4736-4745P
    [110] Ikeda H,Narukawa S. Behaviow of various cathode materials for non-aqueous lithium cells[J]. J Power Sources,1983,9: 329-331P
    [111] Novak P. CuO Cathode in lithium cells: II. reduction mechanism of CuO[J].Electrochim Acta,1985,30: 1687-1691P
    [112] Grugeon S,Laruelle S,Dupont L,et al. Particle size effects on the electrochemical performance of copper oxides toward lithium[J]. J Electrochem Soc,2001,148: 285-287P
    [113] 范中丽,贾志杰.自分散、抗老化纳米氧化铜制备方法的研究[J].人工晶体学报,2003,32(4):256-360页
    [114] Zhang D W,Yi T H,Chen C H. Cu nano-particles derived from CuO electrode in lithium cells[J]. Nanotechnology,2005,16: 2338- 2341P
    [115] Aurbach D,Markovsky B,Weissman I,et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim Acta,1999,45: 67-86P
    [116] Huang L S,Yang S G,Li T,et al. Preparation of large-scale CuO nanowires by thermal evaporation method[J]. J Crystal Growth,2004,260(1-2):130-135P
    [117] Yin H B,Tetsushi Y,Wada Y,et al. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation[J]. Mater Chem Phys,2004,83:66-70P
    [118] Leontidis E,Kleitou K,Leodidou T K,et al. Gold colloids from cationic surfactant solutions.1. mechanisms that control particle morphology[J].Langmuir,2002,18(9):3659-3668P
    [119] Liu B,Zeng H C. Mesoscale organization of CuO nanoribbons: formation of "dandelions"[J]. J Am Chem Soc,2004,126(26): 8124-8125P
    [120] Lu C H,Qi L M,Yang J H,et al. Simple template-free solution route for the controlled synthesis of Cu(OH)_2 and CuO nanostructures[J]. J Phys Chem B,2004,108(46): 17825-17831P
    [121] Ocana M,Rodriguez-Clemente R,Serna C J. Uniform colloidal particles in solution: Formation mechanisms[J]. Adv Mater,1995,7(2): 212-216P
    [122] Liu Q,Liu H J,Liang Y Y,et al. Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process[J]. Mater Res Bull,2006,41:697-702P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700