等径弯角挤压法制备的钛镍基合金的摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛镍基合金具有优良的形状记忆效应和伪弹性,在航天航空、机械、电子、化工、生物医学等领域获得了广泛的应用。随着应用领域的不断扩大,钛镍基合金的摩擦和磨损等问题越来越突出,极大地限制了其优异性能的发挥。因此,钛镍基合金的摩擦学性能研究逐渐成为摩擦学研究领域的热点之一。晶粒细化是提高钛镍基合金力学性能和摩擦学性能的有效手段。
     基于微观组织是影响合金材料综合性能的关键因素,根据钛镍基合金的加工特性,本论文利用先进的等径弯角挤压技术对钛镍基合金进行热加工处理,以有效地细化钛镍基合金的微观组织,进而提高钛镍基合金的力学性能和摩擦学性能,取得了原创性的研究成果。
     第一,采用高温ECAE工艺对钛镍基合金进行热加工处理,通过显微组织观察,研究了预热温度、挤压道次和退火处理对钛镍基合金显微组织的影响,确定了钛镍基合金的高温ECAE加工工艺,并且探讨了高温ECAE工艺细化钛镍基合金组织的作用机理。结果表明:钛镍基合金经过850℃第一道次挤压和750℃第二道次挤压后,形成了细长的纤维状组织;经400~600℃退火处理后,其纤维状组织得到回复,形成细小组织。
     第二,从热力学角度探讨了高温ECAE工艺对钛镍基合金马氏体相转变温度和伪弹性应变回复的影响,通过示差热(DSC)分析和伪弹性分析,阐明了高温ECAE工艺对钛镍基合金马氏体相转变行为和伪弹性的作用机理。结果表明,高温ECAE工艺降低了马氏体相转变温度和提高了钛镍基合金的伪弹性;且在500℃退火时,有大量细小的Ti3Ni4相析出,强化了基体,提高了母相强度,从而提高了合金的摩擦学性能。
     第三,系统地研究了钛镍基合金在干摩擦和油润滑条件下的摩擦学性能。结果表明,高温ECAE工艺大大提高了钛镍基合金的摩擦学性能,并且在相同的试验条件下,经过高温ECAE工艺处理的钛镍基合金的摩擦学性能显著优于未经过ECAE挤压处理的钛镍基合金的摩擦学性能,且经过ECAE挤压、500℃退火时的钛镍合金具有最优的摩擦学性能。
     第四,研究了钛镍基合金在干摩擦和油润滑条件下的磨损机理。干摩擦时,未经过ECAE挤压处理钛镍基合金的磨损形式主要为磨粒磨损、氧化和表面疲劳磨损,经过高温ECAE工艺处理后,钛镍基合金的组织细化、伪弹性和硬度提高,其主要的磨损形式为较轻微磨粒磨损和氧化磨损。油润滑时,在摩擦副表面形成了油膜,将合金与对摩件表面隔开,润滑油带走摩擦热,减轻了对摩件对合金表面的犁削作用,阻止了合金表面氧化,其主要的磨损形式为磨粒磨损。
     第五,探讨了高温ECAE工艺对钛镍基合金摩擦学性能影响的作用机理。高温ECAE工艺处理显著细化了钛镍基合金的微观组织,提高了钛镍基合金的伪弹性和显微硬度,在磨损过程中减小了塑性区域面积,增强了合金弹性变形能力,从而降低了合金的磨损;当退火温度为500℃时,钛镍合金的伪弹性和显微硬度达到了适当的平衡,从而获得最优的摩擦学性能。
     本论文首次利用高温ECAE工艺对钛镍基合金进行加工处理,研究了高温ECAE工艺对于钛镍基合金微观组织和摩擦学性能的影响,并采用示差热分析和拉伸实验等手段对钛镍基合金的马氏体相转变行为和伪弹性进行了表征,系统地研究了干摩擦和油润滑条件下钛镍基合金的摩擦磨损性能,获得了其摩擦磨损性能与试验参数之间的变化规律及其磨损机理。研究结果促进了高温ECAE工艺的研究,为提高钛镍基合金性能以及促进其在工程领域的应用提供了依据。
With shape memory effect and pseudo-elasticity, Ti-Ni based alloys are widely used in the fields of spaceflight, aviation, machine, electron, chemical industry, biomedicine, etc. With the spread of the application fields, friction and wear become more serious, and that may significantly influence the performance of Ti-Ni based alloys. Therefore, the tribological behavior of Ti-Ni based alloys becomes a hot spot for research. Grain refinement has been an effective way to improve the mechanical and tribological properties of Ti-Ni based alloys.
     In this study, in view of the microstructure is a key factor which influences the performance of the Ti-Ni based alloys, and machining characteristic of Ti-Ni based alloys is poor at a low temperature, an advanced equal channel angular extrusion technology has been used to process Ti-Ni based alloys in order to refine the microstructure, and then improve the mechanical and tribological properties of the alloys. Some significant original results have been obtained.
     Firstly, high temperature ECAE processing was used for the microstructural refinement of Ti-Ni based alloys, the effects of preheating temperature, extrusion numbers and annealing treatment on the microstructure of Ti-Ni based alloys were analyzed by optical microstructure photographs, and the microstructural refinement mechanism produced by high temperature ECAE processing was discussed. The results showed that the elongated fibriform microstructure of Ti-Ni based alloys was obtained when the first preheating temperature was 850℃and the second was 750℃. After annealing at 400~600℃, the fibriform microstructure of the alloys was restored and refined microstructure was obtained.
     Secondly, the effects of high temperature ECAE processing on the phase transformation temperature and the pseudo-elastic strain recovery of Ti-Ni based alloys were analyzed from the thermodynamic point of view. In addition, different scanning calorimeter (DSC) and pseudo-elasticity were used to analyze the mechanism of high temperature ECAE processing for the phase transformation and the pseudo-elasticity of Ti-Ni based alloy. The results showed that high temperature ECAE processing reduced the martensitic phase transformation temperature and extended the range of pseudo-elasticity of Ti-Ni based alloy. Moreover, the second phase was precipitated during annealing at 500℃after ECAE, which strengthened the matrix, increased the parent strength, and then improved the friction and wear behaviors of Ti-Ni based alloys.
     Thirdly, the friction and wear behaviors of the Ti-Ni based alloys under both dry sliding and oil-lubricated conditions were investigated in detail. The results showed that the tribological properties of the alloys were greatly improved by high temperature ECAE processing. The Ti-Ni based alloys treated by high temperature ECAE processing registered the better tribological properties than untreated alloys, and the alloys treated by high temperature ECAE and annealing at 500℃showed the best tribological behaviors.
     Fourthly, the wear mechanisms of the Ti-Ni based alloys under dry sliding and oil-lubricated conditions were investigated. Under dry sliding condition, the main wear modes of untreated Ti-Ni based alloys are abrasive wear, oxidization and surface fatigue wear. When high temperature ECAE processing was used, the microstructure of Ti-Ni based alloys was refined, and the pseudo-elasticity and the hardness were increased, therefore, the main wear modes of the alloys were slightly abrasive wear and oxidization. Under oil-lubricated condition, the direct contact of the friction pair was reduced by the oil film. The friction heat was carried away by oil, resulting in a great decrease in plowing. The surface oxidization of the alloy was prevented, and the main wear mode was only abrasive wear.
     Fifthly, the mechanism of the influence of high temperature ECAE processing on the tribological properties of the Ti-Ni based alloys was discussed. High temperature ECAE processing refined the microstructure and increased the pseudo-elasticity and the hardness of Ti-Ni based alloys. It also reduced the plastic areas and strengthened the elastic deformation ability of the alloy, and then decreased the wear of the alloys. The superior tribological properties of Ti-Ni based alloy were obtained due to proper balance between the pseudo-elasticity and the hardness when the annealing temperature was 500℃.
     It is the first efforts to use high temperature ECAE processing for Ti-Ni based alloys, and investigate the influence of high temperature ECAE processing on the microstructure and tribological properties of the alloys. DSC and tensile test were used to characterize the martensitic phase transformation behaviors and the pseudo-elasticity. The friction and wear behaviors of the Ti-Ni based alloys under both dry sliding and oil-lubricated conditions were investigated in detail. The interrelationship between the friction and wear behaviors of the alloys and experimental conditions was obtained. The wear mechanism the alloys was analyzed. This study is promising to be improved in the properties of Ti-Ni based alloys and the application of the alloys.
引文
[1] 阮海峰. 钛—走向 21 世纪的稀有巨人, 有色金属再生与利用, 2003, 7: 34-35.
    [2] 王宝云, 李争显, 马东康. 钛及钛合金表面强化技术, 稀有金属快报, 2005, 7: 6-11.
    [3] 张春辉, 马红岩, 王茂才. 钛合金表面强化技术新进展, 钛工业进展, 2003, 20(4): 49-52.
    [4] 熊信柏, 李贺军, 黄剑峰, 等. 钛基金属表面生物活性改性研究进展, 稀有金属快报, 2004, 23(3): 4-9.
    [5] 覃励明, 徐永清. 镍钛记忆合金骨科器械的基础研究及在手外科应用进展, 中华创伤骨科杂志, 2005, 7(11): 1082-1084.
    [6] 卢启明, 王海忠, 陈晓伯, 等. 骨科固定用镍钛形状记忆合金的摩擦磨损性能研究, 摩擦学学报, 2005, 25(2): 164-168.
    [7] Stolyarov V V, Zhu Y T, Lowe T C, etc. Microstructure and properties of pure Ti processed by ECAP and cold extrusion, Mater. Sci. Eng. A, 2001, 303: 82-89.
    [8] Yu S H, Chun Y B, Cao W Q, etc. Comparison of equal channel angular pressing and cold rolling in the evolution of microstructure and texture in zirconium, Metals and materials international, 2005, 11 (2): 101-111.
    [9]Shin D H, Kim I, Kim J, etc. Shear strain accommodation during severe plastic deformation of titanium using equal channel angular pressing, Mater. Sci. Eng. A, 2002, 334 (1-2): 239-245.
    [10] Li Z H, Cheng X H, ShangGuan Q Q. Effects of heat treatment and ECAE process on transformation behaviors of TiNi shape memory alloy, Materials Letters, 2005, 59 (6): 705-709.
    [11] Li Z H, Xiang G Q, Cheng X H. Effect of ECAE process on microstructure and transformation behavior of TiNi shape memory alloy, Materials and Design, 2006, 27(4): 324-328.
    [12] 陈彬, 林栋墚, 曾小勤, 等. 深度塑性变形法的研究现状和前景, 2006, 20(9): 73-76.
    [13] Huang X, Tsuji N, Hansen N, etc. Microstructural evolution during accumulative roll-bonding of commercial purity aluminum, Mater. Sci. Eng. A, 2003, 340 (1-2): 265-271.
    [14] Kolobov Yu R, Kieback B, Ivanov K V, etc. The structure and microhardness evolution in submicrocrystalline molybdenum processed by severe plastic deformation followed by annealing, Int J Ref rac Metals Hard Mater, 2003, 21: 69-73.
    [15] 魏伟, 陈光. 大塑性变形制备块体纳米材料, 机械工程学报, 2002, 38 (7): 1-5.
    [16] Genki Sakai, Katsuaki Nakamura, Zenji Horita, etc. Application of high pressure torsion to bulk samples, Mater. Sci. Forum, 2006, 503-504: 391-396.
    [17] Chen Bin, Lin Dongliang, Zeng Xiaoqin, etc. Single roll drive equal channel angular process-a potential severe plastic deformation ( SPD) process for industrial application, Mater. Sci. Forum, 2006, 503-504: 557-560.
    [18] Ai Dang Shan, Jong-Woo Park, In-Ge Moon. Principals of indirect equal channel angular drawing for processing of ultrafine grained materials, Mater. Sci. Forum, 2006, 503-504: 877-881.
    [19] Valiev R Z, Alexandrov I V, Zhu Y T, etc. Paradox of strength and ductility in metals processed by severe plastic deformation, J Mater Res, 2002,17 (1): 5-8.
    [20] Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process, Scripta Mater., 2002, 47 (2): 69-76.
    [21] Ryu J R, Moon K I, Lee K S. Microstructure and mechanical properties of nanocrystalline Al–Ti alloys consolidated by plasma activated sintering. Journal of Alloys and Compounds, 2000, 296: 157-165.
    [22] 何世文, 欧阳鸿武, 刘咏, 等. 制备钛合金件的粉末冶金新技术, 粉末冶金工业, 2004, 14(2): 35-38.
    [23] Arcella F G, Froes F H. Producing Titanium Aerospace Components from Powder Using Laser Forming, JOM, 2000, 52(5): 28-30.
    [24] 王亮, 史鸿培. 高性能钛合金粉末冶金技术研究, 宇航材料工艺, 2003, 33(3): 42-44.
    [25] 梅本富, 吴炳尧. 开发新型合金的新工艺-机械合金化法. 材料科学与工程, 1992, 10: 1-5.
    [26] 任晓燕, 徐振佩, 何正明. 用机械合金化方法制备纳米晶 Ni-Zn 铁氧体, 材料研究学报, 2004, 18(3): 314-320.
    [27] 刘鹤, 周振华, 梁宝岩等. 机械合金化 Ti/Al 合金的制备, 粉末冶金业, 2005, 15(3): 6-9.
    [28] 张代东, 郑建玉. 机械合金化制备纳米材料, 铸造设备研究, 2004, 4: 18-20.
    [29] 安玉良, 袁霞, 邱介山. 化学气相沉积法碳纳米管的制备及性能研究, 炭素技术, 2006, 25(5): 5-9.
    [30] Lee S W. Growth of Nano-Crystalline Silicon Carbide Thin Films by Plasma Enhanced Chemical Vapor Deposition Deposition, J Korean Phys Soci, 1999, 34: 563-566.
    [31] Lee S H, Saito Y, Tsuji N, etc. Role of shear strain in ultragrain refinement by accumulative roll-bonding ( ARB) process, Scripta Mater.,2002, 46 (4): 281-285.
    [32] 赵新奇, 张俊宝, 徐政, 等. 累积叠轧焊制备超细晶 IF 钢微观组织与力学性能, 上海有色金属, 2002, 23 (3): 107-110.
    [33] 陈彬, 林栋, 曾小勤, 等. 累积轧合法的研究现状及存在的问题, 2005, 29(8): 4-6.
    [34] Lee S H, Saito Y, Sakai T, etc. Microst ructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding, Mater. Sci. Eng. A, 2002, 325(1-2): 228-235.
    [35] Salishchev G A, Valiakhmetov O R, Galeyev R M. Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, Journal of Materials Science, 1993, 28: 2898-2902.
    [36] Islamgaliev R K, Yunusova N F, Sabirov I N , etc. Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation. Mater. Sci. Eng. A, 2001, 319-321: 874-878.
    [37] Sergueeva A V, Stolyarov V V, Valiev R Z, etc. Advanced mechanical properties of pure titanium with ultrafine grained structure, Scripta Mater., 2001, 45 (7): 747-757.
    [38] 毕见强, 孙康宁, 王素梅. 大塑性变形法制备块体纳米材料, 金属成形工艺, 2002, 20(6): 43-45.
    [39] Sitdikov O S, Kaybyshev R O, Safarov I M, etc. Evolution of the microstructure and mechanisms of formation of new grains upon severe plastic deformation of the 2219 aluminum alloy, Physics of metals and metallography, 2001, 92 (3): 270-280.
    [40] Kim W J, Kim J K, Park T Y, etc. Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing, Metall. Mater. Trans. A, 2002, 33(10): 3155-3164.
    [41] Stolyarov V V, Zhu Y T, Lowe T C, etc. Microstructures and properties of ultrafine-grained pure titanium processed by equal-channel angular pressing and cold deformation, Journal of nanoscience and nanotechnology, 2001, 1 (2): 237-242 .
    [42] Zhao Y H, Liao X Z, J in Z, etc. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater., 2004, 52: 4589-4599.
    [43] Wang Z C, Prangnell P B. Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys, Mater. Sci. Eng. A, 2002, 328(1): 87-97.
    [44] Segal V M, Reznilkov V I, Drobyshekij A E, etc. Plastic metal working by simple shear, Russ. Metall. (Engl. Transl.), 1981, 1: 99-115.
    [45] Iwahashi Y, Wang J, Horita Z, etc. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Mater., 1996, 35: 143-146.
    [46] Park J W, Kim J W, Chung Y H. Grain refinement of steel plate by continuous equal-channel angular process, Scripta Mater., 2004, 51(2): 181-184.
    [47] Stolyarov V V, Zhu Y T, Alexandrov I V, etc. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling, Mater. Sci. Eng. A, 2003, 343: 43-50.
    [48] Kim W J, Kim JK, Choo W Y, etc. Large strain hardening in Ti-V carbon steel pressed by equal channel angular pressing, Materials Letters, 2001, 51: 177-182.
    [49] Furukawa M, Iwahashi Y, Horita Z, etc. The shearing characteristics associated withequal-channel angular pressing, Mater. Sci. Eng. A, 1998, 257: 328-332.
    [50] Shin D H, Kim B C, Kim Y S, etc. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing, Acta Mater., 2000, 48(9): 2247-2255.
    [51] Langdon T G, Furukawa M, Nemoto M, etc. Using equal channel angular pressing for refining grain size, JOM-Journal of the Minerals Metals & Materials Society, 2000, 52 (4): 30-33.
    [52] Mingler B, Karnthaler H P, Zehetbauer M, etc. TEM investigation of multidirectionally deformed copper, Mater. Sci. Eng. A, 2001, 319: 242-245.
    [53] Valiev R Z. Structure and mechanical properties of ultrafine-grained metals, Mater. Sci. Eng. A, 1997, 234-236: 59-66.
    [54] Segal V M. Materials processing by simple shear, Mater, Sci. Eng. A, 1995, 197: 157-164.
    [55] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation, Progress in materials science, 2000, 45: 103-110.
    [56] Shin D H, Kim B C, Park K T, etc. Microstructural changes in equal channel angular pressed low carbon steel by static annealing, Acta Mater., 2000, 48 (12): 3245-3252.
    [57] Ko Y G, Jung W S, Shin D H, etc. Effects of temperature and initial microstructure on the equal channel angular pressing of Ti-6Al-4V alloy, Scripta Mater., 2003, 48: 197-202.
    [58] Gholinia A, Prangnell P B, Markushev M V. The effect of strain on the development of deformation structures in severely deformed aluminum alloys processed by ECAE, Acta Mater., 2000, 48: 1115-1130.
    [59] Raghavan Srinivasan, Computer Simulation of the Equichannel Angular Extrusion (ECAE)Process,Scripta Mater., 2001, 44: 91-96.
    [60] Huang W H, Chang L, Kao P W, etc. Effect of die angle on deformation texture of copper processed by equal channel angular extrusion, Mater. Sci. Eng. A, 2001, 307: 113-118.
    [61] Nakashima K, Horita Z, Nemoto M, etc. Influence of channel angle on the development of ultrafine grains in equal channel angular pressing, Acta Mater., 1998, 46(5): 1589-1599.
    [62] Islamgaliev R K, Yunusova N F, Valiev R Z. Effect of regimes of equal-channel angular pressing on the superplasticity of aluminum alloy 1420, Physics of metals and metallography, 2002, 94 (6): 606-615.
    [63] Stolyarov V V, Brodova I G, Yablonskikh T I, etc. The effect of backpressure on the structure and mechanical properties of the Al-5 wt % Fe alloy produced by equal-channel angular pressing, Physics of metals and metallography, 2005, 100(2): 182-191.
    [64] Ferrasse S., Hartwig T., Goforth R.E., etc. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion, Metallurgical and materialsTransactions A, 1997, 28(4): 1047-1057.
    [65] Semiatin S L, Delo D P. Equal channel angular extrusion of difficult-to-work alloys, Materials and Design, 2000, 21: 311-322.
    [66] Yamashita A , Yamaguchi D , Horita Z,Langdon T G. Influence of pressing temperature on microstructural development in equal channel angular pressing, Mater. Sci. Eng. A, 2000, 287: 100-106.
    [67] Shin D H, Pak J J, Kim Y K, etc. Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular pressing, Mater. Sci. Eng. A, 2002, 325 (1-2): 31-37.
    [68] Mukai T, Yamanoi M, Watanabe A, etc. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure, Scripta Mater., 2001, 45(1): 89-94.
    [69] [日] 舟久保, 熙康著, 千东范译. 形状记忆合金, 北京, 机械工业出版社, 1992.
    [70] Wayman C M. The premartensitic instability in near-equiatomic TiNi, Materials Science Forum, 1990, 1: 56-58.
    [71] 徐祖耀, 江伯鸿等. 形状记忆材料, 上海, 上海交通大学出版社, 2000.
    [72] 杨杰, 吴月华. 形状记忆合金及其应用, 中国科学技术大学出版社, 1993.
    [73] 文先哲, 张旋. 热处理工艺对 NiTi 形状记忆合金马氏体相变的影响, 湖南有色金属, 1998, 14(5): 21-25.
    [74] 栗华矗, 高宝东, 王江波. 热处理对 Ni47Ti44Nb9 记忆合金相变温度的影响, 稀有金属, 2004, 28(4): 794-796.
    [75] 刘琛, 贺志荣. 时效对 TiNi 形状记忆合金组织和相变行为的影响, 热加工工艺, 1997, 4: 6-8.
    [76] 张廷华, 郑玉峰, 蔡伟, 等. TiNi形状记忆合金的相变行为及其影响因素, 材料科学与工艺, 1997, 5(1): 80-85.
    [77] Hong Shulan, Yan Wen, Wang Ying. Effect of Ageing on TiNi Alloy Phase Transformation and Shape Memory Effect, Weapon Material Science and Engineering, 1996, 19(4): 30-34.
    [78] 李启全, 王兰英, 祁 珊, 等. 预变形和时效对NiTi合金相变的影响,上海有色金属, 2004, 25(2): 53-56.
    [79] 杨亚卓, 赵新青, 孟令杰. 低Nb含量Ni-Ti-Nb形状记忆合金的组织及相变特征, 金属学报, 2005, 41(6): 627-632.
    [80] 张婕, 姜东惠, 周东文. Ti-Pd-Fe合金形状记忆效应和组织结构, 有色金属, 2002, 54(1): 13-18.
    [81] Zhang C S, Zhao L C, Duerig T W, etc. Effects of deformation on the transformation hysteresisand shape memory effect in a Ni47Ti44Nb9 alloy, Scripta Metal. Mater., 1990, 24: 221-226.
    [82] Hara T, Ohba T, Okunishi E, etc. Mater Trans JIM, 1997, 38: 11-17.
    [83] 谢超英. 时效TiNi形状记忆合金的相变与力学行为:[博士学位论文]. 哈尔滨: 哈尔滨工业大学, 1990.
    [84] 李志云, 刘福顺, 徐惠彬. Fe元素对TiNi形状记忆合金相变点和力学性能的影响, 航空学报, 2004, 25(1): 84-87.
    [85] Honbashi, 日本金属学会志, 1991, 55(2): 132-140.
    [86] 徐祖耀. 马氏体相变与马氏体, 北京, 科学出版社, 1999.
    [87] 吴建新, 江伯鸿, 徐祖耀. 含硼的Cu-Zn-Al合金中母相晶粒度和有序度对Ms的影响, 金属学报, 1989, 25(2): A98-A104.
    [88] Wasilewski R J, Butler S R, Hanlon J E, etc. Homogeneity range and the martensitic transformation in TiNi, Metall. Trans. A, 1971, 2: 229-238.
    [89] Otsuka K, Sakamoto H, Shimizu K. Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-Al-Ni alloys, Acta Metall., 1979, 27: 585-601.
    [90] Nishida M, Wayman C M, Honma T. Precipitation processes in near-equiatomic Ti-Ni shape memory alloys, Metall. Trans. A, 1986, 17: 1505-1515
    [91] Eisenwasser J D, Brown L C. Pseudoelasticity and the strain-memory effect in Cu-Zn-Sn alloys, Metall. Trans., 1972, 3: 1359-1363.
    [92] Patel J R, Cohen M. Criterion for the action of applied stress in the martensitic transformation, Acta Metall, 1953, 1(9): 531-538..
    [93] 赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性, 2002.
    [94] Otsuka K, Wayman C M. Reviews on the Deformation Behavior of Materials, (P. Feltham ed.), Israel, 1977, 81-172.
    [95] Saburi T, Yoshida M, Nenno S. Deformation behavior of shape memory Ti-Ni alloy crystals, Scr. Metall., 1984, 18: 363-366.
    [96] 黄兵民, 刘礼华. 热处理和冷变形对 Ti-Ni 合金非线性超弹性的影响, 宇航材料工艺, 1997, 27(5): 24-28.
    [97] 曹文涛, 王兰英, 伊胜宁, 等. 镍钛形状记忆合金超弹性的研究, 金属制品, 1997, 23(3): 13-17.
    [98] 黄兵民, 王永前, 程建霞, 赵连城. 近等原子比 NiTi 形状记忆合金的超弹性, 中国有色金属学报, 1996, 6(4): 136-13 9.
    [99] 张巽奇, 归军. Ni-Ti 合金的超弹性工艺研究, 上海钢研, 2000, 2: 33-37.
    [100] Miyazaki S, Kimura S, Otsuka K, etc. The habit plane and transformation strains associatedwith the martensitic transformation in Ti-Ni single crystals, Scr. Metall., 1984, 18: 883-888.
    [101] Saburi T, Tatsumi T, Nenno S. Effect of heat treatment on mechanical behavior of TiNi alloy, Journal de Physique, 1982, 43: 261-266.
    [102] 曹文涛, 王文英, 伊胜宁, 等. 镍钛形状记忆合金超弹性的研究进展, 金属制品, 1997, 6 (134): 13-16.
    [103] 谢超英, 赵连城, 雷廷权. TiNi 形状记忆合金中富镍相的析出及对机械行为的影响, 金属科学与工艺, 1990, 9(1): 118-123.
    [104] 黄学文, 董光能, 王慧, 等. 超弹 T iN i 合金的摩擦学特性研究, 摩擦学学报, 2002, 22 (6): 409-413.
    [105] 黄学文, 董光能, 周仲荣, 等. TiNi 合金的耐磨性及其摩擦学应用研究, 材料工程, 2004, 6: 41-46.
    [106] Wu S K, Lin H C, Yeh C H. A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy, Wear, 2000, 244: 85-93.
    [107] 董坤, 徐久军, 孙玉清. 镍钛形状记忆合金冲蚀磨损研究进展, 润滑与密封, 2006, 6: 172-175.
    [108] Zhang Tiancheng, Li D Y. An experimental study on the erosion behavior of pseudoelastic TiNi alloy in dry sand and in aggressive media, Mater. Sci. Eng. A, 2000, 293: 208-214.
    [109] Tan L, Dodd R A, Crone W C. Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation, Biomaterials, 2003, 24: 3931-3939.
    [110] Cui Z D, Man H C, Cheng F T, etc. Cavitation erosion-corrosion characteristics of laser surface modified NiTi shape memory alloy, Surface and Coatings Technology, 2003, 162: 147-153.
    [111] Jin J L, Wang H L. Research on Wear Resistance of NiTi Alloy, Acta Metallurgica Sinica, 1988, 24: A66-A69.
    [112] Li D Y, Liu R. The mechanism responsible for high wear resistance of Pseudo-elastic TiNi alloy -a novel tribo-material, Wear, 1999, 225-229: 777-783.
    [113] Li D Y. Development of novel Wear-resistant materials: TiNi-based pseudoelastic tribomaterials, Materials and Design, 2000, 21: 551-555.
    [114] Clayton P, Tribological behavior of a titanium-nickel alloy, Wear, 1993, 162-164: 202-210.
    [115] 金嘉陵, 王宏亮. TiNi 合金耐磨性研究, 金属学报, 1998, 24A: 66-68.
    [116]徐久军. TiNi 系形状记忆合金两体磨粒磨损机制研究, 大连理工大学学报, 1998, 38(6): 724-728.
    [117] 徐建军. TiNi 基形状记忆合金磨损性能研究, 北京, 北京有色金属研究总院, 2000.
    [118] Lin H C, Liao H M, He J L, etc. Wear Characteristics of TiNi Shape Memory Alloys,with the martensitic transformation in Ti-Ni single crystals, Scr. Metall., 1984, 18: 883-888.
    [101] Saburi T, Tatsumi T, Nenno S. Effect of heat treatment on mechanical behavior of TiNi alloy, Journal de Physique, 1982, 43: 261-266.
    [102] 曹文涛, 王文英, 伊胜宁, 等. 镍钛形状记忆合金超弹性的研究进展, 金属制品, 1997, 6 (134): 13-16.
    [103] 谢超英, 赵连城, 雷廷权. TiNi 形状记忆合金中富镍相的析出及对机械行为的影响, 金属科学与工艺, 1990, 9(1): 118-123.
    [104] 黄学文, 董光能, 王慧, 等. 超弹 T iN i 合金的摩擦学特性研究, 摩擦学学报, 2002, 22 (6): 409-413.
    [105] 黄学文, 董光能, 周仲荣, 等. TiNi 合金的耐磨性及其摩擦学应用研究, 材料工程, 2004, 6: 41-46.
    [106] Wu S K, Lin H C, Yeh C H. A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy, Wear, 2000, 244: 85-93.
    [107] 董坤, 徐久军, 孙玉清. 镍钛形状记忆合金冲蚀磨损研究进展, 润滑与密封, 2006, 6: 172-175.
    [108] Zhang Tiancheng, Li D Y. An experimental study on the erosion behavior of pseudoelastic TiNi alloy in dry sand and in aggressive media, Mater. Sci. Eng. A, 2000, 293: 208-214.
    [109] Tan L, Dodd R A, Crone W C. Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation, Biomaterials, 2003, 24: 3931-3939.
    [110] Cui Z D, Man H C, Cheng F T, etc. Cavitation erosion-corrosion characteristics of laser surface modified NiTi shape memory alloy, Surface and Coatings Technology, 2003, 162: 147-153.
    [111] Jin J L, Wang H L. Research on Wear Resistance of NiTi Alloy, Acta Metallurgica Sinica, 1988, 24: A66-A69.
    [112] Li D Y, Liu R. The mechanism responsible for high wear resistance of Pseudo-elastic TiNi alloy -a novel tribo-material, Wear, 1999, 225-229: 777-783.
    [113] Li D Y. Development of novel Wear-resistant materials: TiNi-based pseudoelastic tribomaterials, Materials and Design, 2000, 21: 551-555.
    [114] Clayton P, Tribological behavior of a titanium-nickel alloy, Wear, 1993, 162-164: 202-210.
    [115] 金嘉陵, 王宏亮. TiNi 合金耐磨性研究, 金属学报, 1998, 24A: 66-68.
    [116]徐久军. TiNi 系形状记忆合金两体磨粒磨损机制研究, 大连理工大学学报, 1998, 38(6): 724-728.
    [117] 徐建军. TiNi 基形状记忆合金磨损性能研究, 北京, 北京有色金属研究总院, 2000.
    [118] Lin H C, Liao H M, He J L, etc. Wear Characteristics of TiNi Shape Memory Alloys,116-123.
    [138] Liang Y N, Li S Z, Jin Y B, etc. Wear behavior of a TiNi alloy, Wear, 1996, 198: 236-241.
    [139] Yuichi Suzuki. Fabrication method of the Shape Memory Ti-Ni Alloys, Journal of Metal Academy, 1985, 24(1): 41-44.
    [140] Wang F E. Proc. Intern. Conf. on Fracture, Sendai Japan, 1965, BⅡ, 103.
    [141] 石德珂. 材料科学基础. 北京: 机械工业出版社, 1999.
    [142] Keh A S, Weissmann S, Proc. Electrion microscopy and strength of crystals, Intersc, Publ., John Wiley & Sons, New York, 1963, 231-300.
    [143] Beyer J, Brakel R A, Loyd J R. Precipitation process in TiNi near-equiatemic alloy. Proceeding of the internatianal conference on martensitic transformation, Nara Japan, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700