小电流脉冲TIG弧的高频特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲TIG焊在提高能量密度、热输入控制、焊缝成形以及焊接质量等方面具有独特的优点,近年来在制造业中的应用日益广泛。但目前脉冲电弧的应用频率一般在30kHz以下。论文针对脉冲频率提高以后,电弧可能出现的新现象、新特性以及对焊接工艺的影响进行深入研究,以期探求进一步改善脉冲TIG弧焊性能的技术措施。
     深入研究了TIG弧的电学特性。通过对弧-源系统的高频特性分析,建立了TIG弧动态阻抗模型,导出了传递函数,发现了高频电弧的二阶共振特征。围绕改善弧-源系统的高频特性,研制了TIG弧主电源,搭建了基于直流+高频交流的TIG电源、动态阻抗测试机构的实验平台,测试输入不同频率激励电流条件下的TIG弧电弧响应电压,分析电弧的动态阻抗。实验研究证明,小电流TIG弧的电特性具有明显的二阶惯性环节的振荡特征;电弧谐振点的频率与阻抗受到电流基值与弧长的影响;在电弧谐振点,电弧功率最大。
     采用电子密度作为研究电弧热力学状态的特征量,研究电弧的热力学特性,研究电弧电特性变化对电弧热力学特性的影响。构建了高频脉冲电弧发射光谱同步观测平台,利用Stark展宽原理和Griem公式,明确了电子密度基值和波动幅值随频率变化的规律,并将电弧热所产生的光谱信号与电弧的电压电流信号相对应,测试了不同频率下TIG弧的电子密度,验证了电子密度与电弧功率具有相同的变化特征,电弧电子密度的基值与波动幅值在谐振点处达到最大。明确了电弧功率、电弧谐振、电子密度三者之间的关系。
     研究了高频小电流脉冲TIG弧焊的工艺特性。经过对304不锈钢的实际焊接后发现:在电弧谐振频率上,焊缝的熔深、熔宽都为最大;与直流情况相比熔宽基本不变,而熔深却增大一倍以上;晶粒度在谐振点附近达到最细,结晶方向消失。这一实验结果充分体现了电弧谐振特性的工程意义与实用价值。
Pulsed TIG welding is an advanced technology on impoving energy density, controlling input energy, welding seam shape and metallurgy quality. It plays a unique and important role in engineering in resent years. However, the knowledge about the pulsed TIG arc plasma is very limited currently for the low pulsing frequency which is below 30KHz. This work focuses on studying the characteristics of pulsed TIG arc plasma and application of them when the pulsed frequency continues to increase in order to promote the development of pulsed TIG welding and deepen the understanding of plused TIG arc plasma.
     The electrical characteristics of pulsed TIG arc plasma is investigated. After analyzation, a new dynamic model of TIG arc is established, and a transfer function is deduced too. And then, some of the equipment are designed, including main power supply and power amplifier, as well as the platform. The dynamic impedance of TIG arc plasma is obtained through measuring the response voltage when input the different exciting current to the TIG arc plasma. The results show that the electrical characteristics of the low current high frequency TIG arc plasma is not first-order link, but second-order link with an obvious shock. Subsequently, the shock characteristic of TIG arc plasma is investigated under different based values of current and arc length. It is found that the frequency and impedance of resonant point on TIG arc plasma is influenced by base current and arc length. It also shows that the power of pulsed TIG arc is the highest at resonant point.
     Electron density is one of the most important thermodynamics quantities. The electron density is calculated using Griem’s method independent of the assumption of LTE (Local Thermodynamic Equilibrium), and the spectral line width at half maximum is got by Lorentz fitting. The electron density of pulsed TIG arc plasma under different frequency was tested using synchronizer designed on this work to make sure the synchronization of the spectral signal and the signals of arc voltage as well as current. The results show that the base value and fluctuation amplitude of electron density reach the maximum at the resonance point. It keeps a good agreement with the result derived from the arc power calculation.
     Low current pulsed TIG arc welding technology is studied. After 304-stainless steel is welded, it can be found that the welding penetration depth and bead width are the largest at the resonant frequency point on the pulsed TIG arc plasma. Compared to the DC TIG arc plasma, the weld penetration depth and bead width are increasing relatively, especially the former. It is twice as large as that by DC TIG arc plasma, and grain size is the smallest without directionality at resonant point. The whole study shows that the resonance phenomenon has engineering significance and practical value.
引文
[1]王宗杰,熔焊方法及设备,北京:机械工业出版社,2007:133-134
    [2]姜焕中,电弧焊及电渣焊,北京:机械工业出版社,1995,143~143
    [3]殷树言,气体保护焊工艺基础,北京:机械工业出版社,2007:144-145,174-175
    [4]周万盛姚君山,铝及铝合金的焊接,北京:机械工业出版社,2006.168-168
    [5] Lothongkum G, Chaumbai P, Bhandhubanyong P. TIG pulse welding of 304L austenitic stainless steel in flat vertical and overhead positions. Journal of Materials Processing Technology, 1999 (89): 410-414.
    [6] Rajesh Manti, D K Dwivedi, A Agarwal. Pulse TIG Welding of Two Al-Mg-Si Alloys. 2008, 17(5):667-673
    [7] R Manti, D K Dwivedi. Microstructure of Al-Mg-Si weld joints produced by pulse TIG welding, Materials and Manufacturing Processes. 2007, 22:57-61
    [8]庞梁,铝合金交流TIG焊接工艺研究,内蒙古石油化工,2009,No.7:27-35
    [9]廖平陈书杰杨文杰,薄板铝合金脉冲交流TIG焊工艺,焊接学报,2003,No.24(4):65-67
    [10]耿正殷树言,铝合金变极性TIG焊工艺特点,焊接学报,1997,No.18(4):232-237
    [11]耿正殷树言王其隆,铝合金TIG焊变极性电源,焊接学报,1994,No.15(3):179-184
    [12] G Lothongkum, E Viyanit, P Bhandhubanyong. Study on the effects of pulsed TIG welding parameters on delta-ferrite content, shape factor and bead quality in orbital welding of AISI 316L stainless steel plate. Journal of Materials Processing Technology, 2001, 110(2): 233-238
    [13] P C Gupta, P K Ghosh, M Breazu, R Kumar. Studies on the Effects of Welding Parameters on the Mechanical Properties of Pulsed Arc Welding Al-Zn-Mg Alloy. R&D Project Report, MIED, University of Roorkee, 1989, 208–224
    [14] Durgutlu A. The effect of current type on welded metal microstructure and impact strength in TIG welding of aluminum. Journal of the faculty of engineering and architecture of Gazi university, 2009, 24 (1): 155-160
    [15] Kumar A, Sundarrajan S. Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy. International journal of advanced manufacturing technology, 2009, 42 (1-2): 118-125
    [16] Kumar A, Sundarrajan S. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments. Materials & Design, 2009, 30 (4): 1288-1297
    [17] Manti R, Dwivedi DK, Agarwal A. Microstructure and hardness of Al-Mg-Si weldments produced by pulse GTA welding. International Journal of advanced manufacturing technology, 2008, 36 (3-4): 263-269
    [18] Kumar TS , Balasubramanian V , Sanavullah MY. Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy. Materials & Design, 2007, 28 (7): 2080-2092
    [19]赵家瑞,电流脉冲频率对TIG焊电弧影响机理的研究[J].电焊机,1993,2:16—18.
    [20]张东元,矩形波高频脉冲TIG焊电弧稳定性及其电缆损耗的研究,天津:天津大学,1986
    [21]施秉周,不锈钢薄板高频脉冲氩弧焊的研究,电焊机,1980,No.2(2):7~12
    [22]邱灵范成磊林三宝等,高频脉冲变极性焊接电源及电弧压力分析,焊接学报,2007,No.11(28):81-84
    [23]邱灵杨春利林三宝,高频脉冲变极性焊接工艺性能的研究,焊接,2007,No.7:35-38Vol.6
    [24] Jin ONUKI1, Yoshisa ANAZAWA1, Masayasu NIHEI,Development of A New High-Frequency, High-Peak Current Power Sourcefor High ConstrictedArc Formation,The Japan Society of Applied Physics,Vol. 41 (2002) 5821–5826
    [25] W. Lucas, A review of recent advancements in arc welding power sources and welding processes in Japan, Welding Institute, Cambridge,MA, 1982
    [26] P. V. C. Watkins, The transistor controlled dc welding power source, Welding Inst, 1975, 35/10/75
    [27] W. Lucas, TIG and plasma welding in the 80s. Metal Construction, 1982, vol.14, 488-492
    [28] K. Born, Orbital welding of tubes, Developments and Innovations for Improved Welding Production, 1983, vol. 1, P47-1-P47-34.
    [29] A. A. Lopes, J. M. Cruz, J. A. Freitas, etc. Electronic arc welding power source for dc/ac/ac + dc:PULSARC Ill (MMA, TIG and MIG/MAG), Developments and InnovationsforImproved Welding Production, 1983, vol. 1, P30-1-P30-5
    [30] H. E. D. Eassa, George E. Cook, and A. Michael Wells, Jr., A high performance welding power source and its applications, Conf. Rec. IEEE-IAS-1983 Annu. Meeting, 1983, 1241-1244.
    [31] H. E. D. Eassa, Electric arc welding control with a high-performance power source, Ph.D. dissertation, Vanderbilt University, 1983.
    [32] A. H. Kuhne, B. Frassek, and G. Starke, "Components for theautomated GMAW process," Welding J., 1984, vol. 63, 31-34
    [33] T. Yamaoto, W. Shimada, and T. Gotoh, Characteristics of highfrequency pulsed dc TIG welding process, Int. Inst. Welding Document, 1976:XII-628-76-13.
    [34] G. E. Cook and G. J. Merrick, Arc energy relations in pulse current welding processes, Proc. 2nd Int. 1975, 10.
    [35]赵家瑞孙栋胡绳荪等,高频脉冲TIG焊电弧的阳极行为,焊接学报,1992,Vol.13,No1:59~66
    [36]赵家瑞张选明孙栋等,高频脉冲TIG焊电弧阳极行为的研究,电焊机,1991,No.1:9~13
    [37]张选明,高频脉冲TIG焊电弧阳极行为及其影响的研究,天津:天津大学,1988
    [38]李义丹,高频直流脉冲TiG焊的电弧控制及高频效应,天津:天津大学,1985
    [39]赵家瑞李义丹,高频脉冲TIG焊的电弧控制及高频效应,天津大学学报,1989,No.3:25-31
    [40]杨立军李俊岳李桓等,小电流TIG焊电弧动特性数字仿真的研究,第九次全国焊接会议论文集1999,2-526-2-529
    [41]董天顺杨立军梁建军,小电流脉冲TIG焊电弧动态特性的MATLAB仿真,焊接技术,2003,6:11-13
    [42]殷树言王其隆李西恭等,小电流高频TIG焊电弧稳定性的研究,金属科学与工艺,1987,
    [43]后藤彻岛田弥高周波,パルス直流TIG熔接法そとの应用,熔接技术(1976),No5,63~67
    [44] J.R.罗思,工业等离子体工程,北京:科学出版社,1998:240-267
    [45] Richter J. Wulff P. , Non-LTE in Low Current Metal Arcs , 9th international conference on phenomena in ionized gases,1969: 604-610
    [46] Polak L.S. Slovetskii D.I.,Effect of Tracers of Molecular Gases on Deviations from Thermodynamic Equilibrium in Low-Current Electric Arcs in Argon,Teplofizika Vysokikh Temperatur,1974, 12(5): 921-930
    [47] Carter A.W. Street J.A. Reignition,Characteristics of Low Current A.C. TIG Welding Arcs,2nd International Conference on Gas Discharges,1972: 146-148
    [48] Reiche J. Konemann F. Mende W. etc.,Diagnostics of Discharge Modes of a Free-Burning Low-Current Argon Arc,Journal of Physics D:Applied Physics,2001,34(21): 3177-3184
    [49]宋永伦,焊接电弧等离子体的光谱诊断法及其应用的研究,天津:天津大学,1990
    [50]李俊岳宋永伦李桓等,焊接电弧光谱信息的基本理论和基本方法,焊接学报,2002,23(6): 5-8
    [51]宋永伦,李俊岳,焊接等离子体的平衡性质,焊接学报,1994,15(2): 138-145
    [52]宋永伦,李俊岳,弧焊区图像信息的光谱传感技术,焊接学报,1994,13(2): 127-132
    [53]李俊岳,焊接电弧信息测控技术及其应用,中国工程科学,2001,3(7):45-50
    [54]赵家瑞,微机图象处理法对高频脉冲TIG焊电弧的诊断研究,焊接学报,1987,Vol.8,No.4:213-219
    [55]徐晨明,氩氦电弧的光谱诊断及其应用,黑龙江:哈尔滨工业大学,2005:18-33
    [56]胡坤平,交流TIG电弧的过零现象及其特征,北京:北京工业大学,2008:17-37
    [57]胡坤平宋永伦夏源等,交流TIG电弧的过零过程及其状态特征,焊接学报,2006,27(12):29-33
    [58]胡坤平宋永伦夏源等,焊接电弧近零时的物理过程研究现状与进展,电焊机,2008,38(11):55-58
    [59]胡坤平宋永伦夏源等,焊接电弧发射光谱的动态诊断方法及其应用,焊接学报,2009,30(1):47-50
    [60]杨晓红宋永伦胡坤平等,交流TIG电弧过零时段的时间—能量分布特征,焊接学报,2009,30(2):21-23
    [61]卢本,焊接电弧的数学模型,电焊机,,1983(5): 18-20.
    [62]吴美湖,电弧数学模型的研究情况简述,高压电器,1985(05):64,59
    [63]熊翔葆,麦也尔电弧数学模型参数的数值计算及麦氏模型的校正,华东交通大学学报,1989,2(11):75-80
    [64]尚振球,麦也尔电弧数学模型的表达形式及其参数的确定方法,高压电器,西安交通大学,1985,No.6: 40-45
    [65]尚振球,描写电弧动态特性的通用黑盒模型及其参数的确定,高压电器,1987,02)14-17
    [66]张立斌,弧焊质量自动控制基础,黑龙江:哈尔滨工程大学出版社, 2007
    [67]安藤弘平长谷川光雄,焊接电弧现象(增补版)北京:机械工业出版社,1985:P56
    [68]周身林等,放电等离子固相烧结制备高密度LaB6阴极性能,强激光与粒子,2001, Vol.22 No.1 P171-175
    [69]杨运强等.不同窗口的电弧光谱信息与焊丝熔滴过渡.焊接学报. 2003,Vol.24 No.2: 67-71
    [70] H.R. Griem,Spectral Line Broadening by Plasma,New York: Academic Press,1974: 127-157
    [71]黄石生等,弧焊电源,北京:机械工业出版社,1990:8-11
    [72]刘竹等,弧焊整流器与现代电力电子器件,电焊机,1992, No.2:6-10
    [73]蔡国余,电焊机变压器设计,天津:天津大学出版社,1988:5-6
    [74]黄石生,逆变理论与弧焊逆变器,北京:机械工业出版社,1995:7
    [75]柳刚,新型逆变式空气等离子切割机的研制,天津大学硕士学位论文,1992
    [76]杨军,晶闸管弧焊逆变电源的单片机拉制,电焊机,1996, No.3:21-25
    [77]王志强等,绝缘门极双极晶体管的弧焊逆变器,焊接学报,1992,Vol.13,No.1:26-30
    [78]蒋志林等,弧焊逆变电源的研究与展望,电焊机,1996, No.6:12-15
    [79]陈一鹤,新型逆变弧焊电源的研制,天津大学硕士学位论文,1990
    [80]彭伟民等,IGBT逆变焊机的现状和未来,电焊机,1996, No.5:6-10
    [81]电力半导体器件标准行业信息网,绝缘栅双极晶体管(IGBT)的有关名称,电力电子技术,1993 ,No.4:27
    [82]韩红彪等,8098单片机控制的IGBT半桥式逆变弧焊电源的研制,第八次全国焊接会议论文集,H-Xila-007-97
    [83]韩赞东等,单片机控制IGBT逆变式脉冲TIG焊电源的研究,电焊机,1996, No.3:4-6
    [84]杜中义等,IGBT双逆变式多功能弧坪电源,电焊机,1994, No.1:19-21
    [85] Texas Instruments,TL494 datasheets,http://www.ti.com,2005,America
    [86]谢嘉奎宣月清,电子线路(非线性部分)北京,高等教育出版社,1988,
    [87]李伟文,晶体管功率放大电路分类探讨,湖南工业职业技术学院学报,2008,No.1:20- 22
    [88]孙霄霄,高频丙类功率放大电路的设计,牡丹江师范学院学报(自然科学版),2008,No.2:48- 49
    [89]鉴青田源,D类放大器的选型指南,电子设计应用,2008.7:59- 67
    [90]刘立军,功率放大器的分类及区别,科技信息,2009,No.28:497-49
    [91] STMicroelectronics,IRF640 datasheets,http://www.st.com,1999,Italy
    [92] STMicroelectronics,IRF9640 datasheets,http://www.st.com,1999,Italy
    [93]胡特生,电弧焊,北京:机械工业出版社,2007:6-27
    [94]周灿丰焦向东薛龙,高压空气环境钨极氩弧焊接电弧静特性,石油化工高等学校学报2008 Vol.21 No.1:66-69
    [95]杨春利,林三宝,电弧焊基础,黑龙江:哈尔滨工业大学出版社,2003:5-38
    [96]周玉生张文明,电弧焊,北京:机械工业出版社,1994:3-14
    [97]丘军林,气体电子学,湖北:华中理工大学出版社,1999:127-128
    [98]黄绍平杨青李靖,基于MATLAB的电弧模型仿真,电力系统及其自动化学报,2005,Vol.17,No.5:64-70
    [99] Shoichiro Nakamura,Numerical Analysis and Graphic Visualization with MATLAB,北京:电子工业出版社,2002,1-80
    [100]傅积和,孙玉林.焊接数据资料手册,北京:机械工业出版社,1997:129-13
    [101]吕德林李砚珠,焊接金相分析,北京:机械工业出版社,1987:1
    [102]崔忠圻,金属学与热处理,北京:机械工业出版社,2000:54
    [103]田志凌邹刚何长红等,超声捶击提高超细晶粒钢焊接接头的疲劳性能,材料科学与工艺,2002,Vol.10 No.1: 1-4
    [104]吴敏生张雁军李路明等,电弧超声对09MnNiDR钢焊接接头冲击性能的影响,清华大学学报(自然科学版),2006,Vol.46,No.2: 161-164
    [105]张雁军李路明吴敏生等,电弧超声对09MnNiDR钢焊接接头性能的影响,福州大学学报(自然科学版),2006,Vol.34,No.4: 533-537
    [106]何龙标郝红伟李路明等,电弧超声对Q235A的SMAW焊缝组织和性能的影响,热加工工艺,2006,Vol35,No.3: 11-13
    [107]张雁军周荣林吴敏生等,电弧超声改善Ti6Al4V焊接接头性能的研究,电焊机,2005,Vol.35,No.9:27-29
    [108]吴敏生何龙标李路明等,电弧超声焊接技术,焊接学报,2005,Vol26,No.6:40-44
    [109]杜敬磊李路明张雁军等,焊接过程中电弧超声对细化晶粒的影响,电焊机,2002,Vol.32,No.3:6-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700