含人工缺陷的C_f/Al复合材料压缩失效行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续碳纤维增强铝基复合材料(Cf/Al)具有高的比强度、比刚度等优异特性,在航空航天领域具有巨大的应用潜力。长纤维增强的机翼,机身,尾板等,均要求具有高压缩强度,然而相关研究却十分少见。复合材料中不同类型缺陷对性能的影响不尽相同,研究缺陷对性能的影响规律迫在眉睫。
     本试验在复合材料中人工制备了类型、尺寸确定的夹杂、分层、铝层缺陷,并通过电火花打孔来模拟结构孔洞。其中夹杂、分层和铝层缺陷的长度分别为2、4、6和8mm,厚度0.2mm,宽10mm;孔洞缺陷均为通孔,直径分别为0.3、0.45、0.55、0.8、1.4和1.8mm。研究缺陷厚度的影响时,铝层缺陷厚度分别为0.05、0.08、0.1和0.15mm,缺陷长4mm,宽10mm。缺陷经超声检测确认尺寸与位置。
     单向C_f/Al复合材料的纤维方向压缩强度为1337MPa,压缩模量245GPa,垂直于纤维方向的压缩强度为185MPa,压缩模量25GPa;0°/90°层合复合材料的压缩强度为584MPa,压缩模量为120GPa。±45°层合复合材料的压缩强度为200MPa,压缩模量70GPa。
     无缺陷复合材料的纵向压缩破坏主要由复合材料在压缩应力下的鼓起变形导致,纤维鼓出发生屈曲,进而扭折断裂引起复合材料的失效破坏;横向破坏取决于纤维/基体界面的开裂和铝基体屈服。0°/90°层合复合材料的压缩破坏取决于纵向纤维的失效破坏,不同铺层间发生层间开裂;±45°层合复合材料在压缩应力下出现层间剪切,一部分纤维沿界面发生剥离,整体滑移,另一部分纤维沿径向剪切断裂。缺陷对复合材料压缩断裂的影响主要在于纤维绕过缺陷时在边缘发生倾斜变形,在压缩应力下易于发生剪切扭折断裂,进而造成复合材料的整体破坏。
     层状缺陷的长度逐渐增大,复合材料的压缩强度先降后升,在单向复合材料中的降幅大于层合复合材料。拐点的位置由纤维倾斜变形和界面开裂共同决定。单向纤维增强复合材料的压缩强度对孔洞敏感,但孔洞直径的改变对压缩强度的影响较小。层合复合材料对孔洞缺陷不敏感,压缩强度随孔洞直径的增大线性下降。缺陷的厚度变化,压缩强度也随之发生改变,当厚度较小时,随着厚度的增加压缩强度线性下降。
Continuous carbon fiber reinforced aluminum matrix composite (Cf/Al) has high properties such as high strength and stiffness. Although the axial compressive strength is most important for long-fiber-reinforced wings and fuselage, the research on compression strength is very rare. Different defects have different influence on compressivon properties, and the influence need to be researched.
     Artificial defects were preset in composite, and holes were made by electrical spark perforation. The inclusion, aluminum congcentration and delamination defects were prepared with certain size. The length of these desrects varies, from 2mm to 8mm, 2mm each step. The holes were prepared by electrical sparkerosion perforation. The diameter contained 0.3, 0.45, 0.55, 0.8, 1.4 and 1.8mm. When the thickness changed, the length is 4mm, and thickness 0.05, 0.08, 0.1, 0.15mm.
     The longitudinal compressive strength of unidirectional Cf/Al composite is 1337MPa, compression modulus of 245GPa. The transversal compressive strength of unidirectional C_f/Al composite is 182MPa, compression modulus of 25GPa. The 0°/90°laminated composite compressive strength is 584MPa, compression modulus is 120GPa. The±45°laminated composite compressive strength is 200MPa, compression modulus is 70GPa.
     The failure of longitudinal composite with no defects was due to the fibre buckling under compress. The fibre fracted led to the composite failure. For transversal composite, the reason of failure was interface cracking and matix yielding. The 0°/90°composite fracture was similar to the longitudinal composite. The plies detach when fracted. The±45°composite showed interlaminar shearing under compressive. The influence of defects was declining the fibre, so the fibre was easy to fract by shearing.
     The existence of lamellar defects made the compression strength of composite first down then up. The level of the unidirectional composites was larger than laminated composite. The location of the turning point was decided by the slope of the fibre and interface cracking. Unidirectional fiber reinforced composite materials was sensitive to the hole, but the diameter changing had little effect on the compressive strength. Laminated composite was not sensitive to the hole defect.The strength decreased linearly with the pore diameter increasing. The thickness of defects changing, the compressive strength also changed, when the thickness is small, with the increase of the thickness of the compression strength decreases linearly.
引文
1吕一中.金属基复合材料的发展趋势.防灾技术高等专科学校学报. 2006, 8(2): 109-111
    2董天顺,崔春翔,刘双劲,薛海涛.纤维增强铝基复合材料的发展现状.热加工工艺. 2006, 35(6): 49-51
    3 D. B. Miracle. Metal Matrix Composites-From Science to Technological Significance. Composites Science and Technology. 2005, (65): 2526-2540
    4钟厉,韩西,周上祺.纤维增强铝基复合材料研究进展.机械工程材料.2002, 26(12)12-14
    5 J M Hodgkinson, Mechanical Testing of Fibre Composite. Woodhead publishing limited. 2000: 24-27
    6 J. E. Spowart, T. W. Clyne. The Axial. Compressive Failure of Titanium Reinforced with Silicon Carbide Monofilaments. Acta Materialia. 1999, 47(2): 671-687
    7 A. Jumahat, C. Soutis, F.R. Jones. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading. Composite Structures. 2010, 92: 295-305
    8李艳. Cf/Al复合材料的X射线无损检测研究.哈尔滨工业大学学士学位论文. 2007: 5-24
    9王峰,张扬.无损检测在复合材料中的应用.高科技纤维与应用. 2005, 30 (3): 26-28
    10王小勇,钱华.先进复合材料中的主要缺陷与无损检测技术评价.无损探伤. 2006, 30(4): 1-6
    11徐丽,张幸红,韩杰才.航空航天复合材料无损检测研究现状.材料导报. 2005, 19(8): 79-82
    12 H B Josep. Model Control of Voice and Product Thickness During Autoclave Curing of Carbon/Epoxy Composite Laminates. Journal of Composite Materials, 1995(8): 1000–1023
    13刘怀喜,张恒,马润香.复合材料无损检测方法.无损检测. 2003, 25(12): 631-634
    14蒋福棠,翟金玲,伍颂,胡欣华.金属基复合材料的无损检测.稀有金属. 1999, 23(3): 220-222
    15魏勤,张迎元,乐永康.超声C扫描成像系统在SiCp/Al复合材料无损检测中的应用.材料开发与应用. 2003, 18(4): 39-41
    16李艳. Cf/Al复合材料的缺陷表征与断裂机理研究.哈尔滨工业大学硕士学位论文. 2007: 5-24
    17顾红军,赵国志,陆廷金,等.轴向冲击下薄壁圆柱壳的曲屈行为的实验研究.震动与冲击, 2003, 23(4): 58-63
    18 J. M.Hedgepeth. NASA Technical Report D-822, 1961
    19 H. H. Toudeshky, B. Mohammadi, B. Hamidi. Analysis of Composite Skin/stiffener Debounding and Failure under Uniaxial Loading. Composite Structures. 2006, 75: 428-436
    20 H. J. Bohm. Numerical Investigation of Microplasticity Effects in UnidirectionalLong-fiber Reinforced Metal Matrix Composites. Material Science and Engineering. 1993, 1(5): 649-671.
    21 Y. Zhong, H. Chen, W. Hu, G. Gottstein. Fiber Damage and High Temperature Tensile Properties of Al2O3 Fiber Reinforced NiAl-matrix Composites with and without hBN-interlayer. Materials Science and Engineering:A. 2007, 464: 241-248
    22习年生,于志成,陶春虎.纤维增强复合材料的损伤特征及失效分析方法.航空材料学报. 2000, 20(2): 55-63
    23 J. C. Halpin. Primer on Composite Material: ANALYSIS. TECHNOMIC Publishing Co. 1984: 88-90
    24张旭,姚辉.纤维增强塑料的压缩试验.玻璃钢, 2008, 1:35-37
    25 C. Gonza′lez, J. Llorca. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling. Composites Science and Technology. 2007, (67): 2795-2806.
    26 E. Totry, C. Gonza′lez, J. Llorca. Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Composites Science and Technology. 2008, 68: 829-839
    27 H. Naji, S. M. Zebarjad, S. A. Sajjadi. The Effects of Volume Percent and Aspect Ratio of Carbon Fiber on Fracture Toughness of Reinforced Aluminium Matrix Composites. Materials Science and Engineering A. 2008, 486: 413-420
    28罗靓,沈真,杨胜春等.炭纤维增强树脂基复合材料层合板低速冲击性能实验研究.复合材料学报. 2008, 25(3): 22-27
    29李典森,刘子仙,卢子兴等.三维五向炭纤维/酚醛编织复合材料的压缩性能及破坏机制.复合材料学报. 2008, 25(1): 34-37
    30 H. J. Bohm. Numerical Investigation of Microplasticity Effects in Unidirectional Long-fiber Reinforced Metal Matrix Composites. Material Science and Engineering. 1993, 55: 649-671
    31 A. S. Chen, R. S. Bushby. V. D. Scott. Deformation and Damage Mechanisms in Fibre-reinforced Aluminium Alloy Composites under Tension. Composites. 1997, 28: 289-297
    32杨延清,陈彦,张清贵,张建民. SiC纤维增强Ti基复合材料的制备及性能.稀有金属材料与功能, 2002.31(3): 201-204
    33原梅妮,杨延清. SiC纤维增强钛基复合材料界面强度研究进展.稀有金属材料与功能. 2007, 36(6): 1115-1118
    34杨锐,南林,王玉敏. SiC纤维增强钛基复合材料研究进展.钛工业进展. 2005, 22(5): 32-36
    35张云鹤,武高辉.一种轻质高强碳纤维增强铝基复合材料.科技咨询导报. 2007,
    14(14): 256-258
    36刘松平,郭恩明.复合材料无损检测技术的现状与展望.第十三届国际复合材料学术会议专辑. 2001, 3: 30-32
    37魏勤,张迎元,乐永康.超声C扫描成像系统在SiCp/Al复合材料无损检测中的应用.材料开发与应用. 2003, 18(4): 39-41
    38 S. Sivashanker, S. O. Osiyemi. Uniaxial Compressive Failure of Unidirectional Composites with SmallImperfections. Metallurgical and Materials Transactions. 1999, 30:1867-1876
    39 J. M. Tang, I. W. Lee, G. S. Springer. Effects of Cure Pressure on Resin Flow, Voids, and Mechanical Properties. Journal of Composite. Materials. 1987, 21: 421-423
    40耳东.复合材料无损检测的新进展.航空制造工程, 1994, 5: 55-59
    41邱春图,樊尉勋,邹振民等.分层缺陷对复合材料加筋层压板压缩强度的影响.飞机设计. 2006, 2: 16-20
    42郭兆璞,陈浩然.含分层损伤复合材料层合板的压缩强度研究.固体力学学报.2000, 21(2): 117-121
    43皇甫劭炜,童小燕,姚磊江.编织型复合材料低速冲击损伤及剩余压缩强度研究.机械制造与设计. 2009, 3:120-122
    44 D. LIU. Impact-induced delamination-a view of bending stiffness mismatching, Journal of Composite. Materials. 1988, 22: 674-692
    45 M. Barbezat. The Influence of Loading Rate on the Response of Carbon Fibre Reinforced Epoxy Resins (in French), PhD Thesis, Ecole Polytechnique Federale de Lausanne, 1990: 45-48
    46 P. Davise. Delamination Behaviour of Thermoplastic Matrix Composites (in French), PhD Thesis, University of Compiegne, 1987: 84-87
    47 J. M. Tang, I. W. Lee, G. S. Springer. Effects of Cure Pressure on Resin Flow, Voids, and Mechanical Properties. Journal of Composite. Materials. 1987, 21: 421-423
    48李顺林.复合材料力学与复合材料结构力学.机械工业出版社, 1990:50~57
    49 Y. C. Shiah, Y. H. Chen, W. S. Kuo. Analysis for the Inter Laminar Stresses of Thin Layered Composites Subjected to Thermal Loads. Composites Science and Technology. 2007, (67): 2485~2492
    50 M. Salehi, A.R. Sobhani. Elastic Linear and Non-linear Analysis of Fiber Reinforced Symmetrically Laminated Sector Mindlin Plate. Composite Structures. 2004, (65):65~79
    51张锦,张乃恭.新型复合材料力学机理及其应用.北京航空航天大学出版社. 1993. 71-79
    52矫桂琼,杜凯,杨成鹏,卢智先.含离散源损伤复合材料加筋板的压缩特性.航空学报. 2007, 28(6): 1383-1388
    53王新峰,周光明,王鑫伟.平面机织复合材料的压缩损伤.材料科学与工程学报. 2007, 25(5): 485-489
    54 Z. Xia, W. A. Curtin, P. W. M. Peters. Multiscale Modeling of Failure in Metal Matrix Composites. Acta Materialia. 49 (2001) 273-287
    55程小全,邹健,许延敏.含孔平面编织混杂铺层层合板压缩破坏仿真.力学学报. 2007, 39(6): 829-833
    56 L.C.Wu, C. Y. Lo, Nakamura. Identifying Failure Mechanisms of Composite Structures under Compressive Load. International Journal of Solids Structures. 1998, 35(12): 1137-1161
    57赵昌正.碳纤维和石墨纤维增强铝基复合材料界面反应与性能的关系.航空学报. 1985, 6(3): 267-271
    58王鸿华,李贤淦,张国定,吴人杰.基体和纤维的种类对复合材料热膨胀系数的影响.机械工程材料. 1990, 1: 14-19
    59王玉庆.金属基复合材料的仿生梯度界面及其效果.中科院金属所博士学位论文. 1993: 10-13
    60 W. S. Lee, W. C. Sue, S. T. Chou. Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite. Materials Transactions. 2000, 41(8): 1055-1063
    61蒋福棠,翟金玲,伍颂,胡欣华.金属基复合材料的无损检测.稀有金属. 1999, 23(3): 220-222
    62魏勤,张迎元,乐永康.超声C扫描成像系统在SiCp/Al复合材料无损检测中的应用.材料开发与应用. 2003, 18(4): 39-41
    63 ASTM D 3410 M-95. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading
    64赵昌正,刘欣祥.两种不同界面结合强度碳/铝复合材料的内耗特性.复合材料学报. 1993, 1: 51-56
    65 B. Budiansky, N. A. Fleck. Compressive Failure of Fiber Composites. Journal of Mechanical and Physical Solids. 1993, 41: 183–211 66 T. J. Vogler, S. Y. Hsu, S. Kyriakides. Composite Failure under Combined Compression and Shear. International Journal of Solids and Structures. 2000, 37: 1765-1791
    67 R. D. Kissinger, D. J. Deye, D. A. Anton. The Minerals Metals and Materials Society, Warrendale, PA, 1996: 579-585
    68 D. Liu, N. A. Fleck, M. P. F. Sutcilffe. Compressive Strength of Fiber Composites with Random Fiber Waviness. Journal of the Mechanics and Physics of Solids, 2004, 52: 1481-1505
    69李建辉,李春峰,雷廷权.金属基复合材料成形加工研究进展.材料科学与工艺. 2002, 10(2): 207-212
    70 Henrik Myhre Jensen. Modles of Failure in Compression of Layered Materials. Mechanics of Materials. 1999, 31: 553-564
    71 E. N. Buarque, J. R. M. d’Almeida. The Effect of Cylindrical Defects on the Tensile Strength of Glass Fiber/vinyl-ester Matrix Reinforced Composite Pipes. Composite Structures. 2007, 79: 270-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700