半固态B_4C/Y112铝基复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金及其复合材料由于其优良的综合性能,广泛应用于汽车、航空航天等各个领域。其中,铝基复合材料是目前应用最为广泛的一种金属基复合材料,但由于受到制备工艺等诸多种因素的影响,铝基复合材料的强度、延伸率以及耐磨性等性能指标还不是十分理想,从而限制了其在一些领域上的应用。
     本文选用Y112铝合金作为基体材料,B4C颗粒作为外加增强相,采用机械搅拌法制备了半固态铝基复合材料,研究了不同的制备工艺和制备条件对半固态B4C/Y112铝基复合材料性能及组织的影响,并得出最佳的工艺参数。为进行性能比较,采用相同的工艺制备Y112铸态和半固态铝合金基体材料。
     对上述的制备的材料进行拉伸、硬度等力学性能测试,并采用扫描电镜观察拉伸断口,结果表明:半固态铝基复合材料的硬度随着加入B4C颗粒的质量分数增加而不断增大,12wt%-B4C/Y112复合材料硬度值最高,达到136HV;其抗拉强度,随着B4C含量的增加呈先上升后下降趋势;半固态复合材料的延伸率要高于铸态基体的延伸率,但总体来说,延伸率都偏低。半固态铝基复合材料的断口随着加入B4C颗粒的质量分数不同而呈现不同的形貌,多为脆性断裂。
     采用M-2000型磨损实验机对半固态基体和半固态复合材料进行干摩擦滑动磨损实验,分析了在相同滑动摩擦速度,不同B4C含量的复合材料的磨损性能,并探讨了复合材料的磨损机理,结果表明:材料的磨损都是若干种磨损机理的综合作用的结果;随着载荷的增加,材料的磨损率逐渐升高;在相同的摩擦条件下,半固态复合材料的磨损性能要优于半固态基体,且其抗磨损的能力随着加入B4C颗粒的质量分数增加而更趋明显。
Aluminum alloy and its Composites widely used in automotive, aerospace and other fields because of its excellent properties. Among them, aluminum matrix composite material is one of the most widely used of metal matrix composite materials,but due to the preparation technology, and many other kinds of factors, its strength,elongation and wear resistance performances is not quite ideal, thus limiting its application in some areas. In this research we chose Y112 alloy as the matrix and boron carbide (B4C) as the plus reinforcement, prepared semi-solid aluminum matrix composites by mechanical mixing method. We studied the microscopic structure and mechanical property of semi-solid B4C/Y112 aluminum matrix composites affected by different preparation process and condition,and found the optimum process technology. In the same way, Y112 cast alloys and Y112 semi-solid alloys were also prepared for the purpose of performance comparison investigation.
     Tested the tensile, hardness and other mechanical properties of materials, and observed tensile fracture by scanning electron microscopy. The results showed that: the hardness of semi-solid aluminum matrix composites increase with the concentration of B4C particles'rasied,12wt%-B4C/Y112 composite have the highest hardness, reached 136HV. With the B4C particles contents increaseing, its tensile strength first increased and then decreased. Semi-solid composites'elongation is higher than the elongation of the cast matrix, but overall, the elongation are low. The fracture surface of semi-solid matrix composites show different morphology because of different concentration of B4C particles, mostly are brittle fracture.
     Dry sliding wear behaviour of semi-solid matrix and semi-solid composites were investigated by M-2000 type wear test machine, analyzing the wear abilities of composite material which contains different concentration of B4C particles, exploring the wear mechanism of the composites. The results showed that:the abrasion of the materials is the result of several kinds of wear mechanism that have comprehensive impaction; with the increase of load, The material wear rate raised gradually. Under the same condition of friction, the wear abilities of semi-solid composite material is better than semi-solid matrix, even the ability of anti-wear-out is increased by the raising percentiges with adding the B4C paticles.
引文
[1]龙林.车身铝合金焊接及接头力学性能[D].2007.
    [2]Flemlngs M C. Behavior of Metal Alloys in the Semisolid State[J]. Metal Trans. A,1991, 22A(4):957-981.
    [3]罗守靖,杜之明,姜巨福.复合材料和半固态加工技术[J].特种铸造及有色合金,2003,244-246.
    [4]周冰峰.半固态镁合金及镁基复合材料制备和触变成形研究[D].2010.
    [5]张发云,闫洪,陈国香等SiCp/AZ61镁基复合材料制备工艺和性能的研究[J].2007(6):611-614.
    [6]冯小明,张崇才.复合材料[M].重庆大学出版社,2007.
    [7]董天顺,崔春翔.纤维增强铝基复合材料的发展现状[J].热加工工艺,2006,35(6):49-55.
    [8]S.C.Tjong, Z.Y.Ma. The high-temperature creep behaviour of aluminium-matrix composites reinforced with SiC, Al2O3, TiB2 particles[J]. Composites Science and Technology,1997, 57:697-702.
    [9]董天顺,崔春翔,刘双劲,薛海涛.纤维增强铝基复合材料的发展现状[J].热加工工艺,2006,35(6):49-55.
    [10]于琨.金属基复合材料发展的概况、特点与存在的问题[J].金属复合材料交流文集.863-715.
    [11]胡志,闫洪,凌李石保,聂俏,刘少平.纳米SiC颗粒增强AZ61镁基复合材料制备工艺的优化[J].热加工工艺,2009(9):903-906.
    [12]樊建中,桑吉梅,石力开.颗粒增强铝基复合材料的研制、应用与发展[J].材料导报,2005,15(10):55-57.
    [13]宋伟.金属基复合材料的发展与应用[J].铸造设备研究,2004(5):49-51.
    [14]侯丽丽,尹志新,樊新波.铝基复合材料的研究现状及发展[J].材料热处理技术,2008,27(10):84-88.
    [15]杨裕国.铝压铸成型及质量控制[M].北京化学工业出版社.2009
    [16]李荣德等.合金元素在压铸铝合金中的作用及研究现状[J].特种铸造及有色合金,2004,(1):18-20.
    [17]蒲泽林.颗粒增强金属基复合材料的制备方法综述[J].现代电力,2002,19(6):31.
    [18]宋伟.金属基复合材料的发展与应用[J].铸造设备研究,2004,10(5):48-50.
    [19]Vast N,Besson J M,Baroni S, et.al.Atomic structure and vi-brational properties of icosahedral α-boron and B4C boron carbide[J]. Comput Materi Sci,2000,17:127.
    [20]钦征骑等著.新型陶瓷材料手册[M].科学技术出版社.1996.
    [21]张佐光等.武装直升机轻型复合防弹装甲技术[J].航空制造工程,1995(11):33-36.
    [22]吕亮,朱华,FengTANG.碳化硼增强铝基复合材料的摩擦磨损性能[J].机械工程材料,2007,31(10):64-66.
    [23]Ogorkiewiz R.M. International Defense Review[M].1991(4):349-352.
    [24]Chapman T R, et al. Wear-resistant aluminum-boron-car-bide cermets for automotive brake applications[J]. Wear,1999,236:81.
    [25]张金咏,傅正义,王为民.陶瓷-金属复合材料制备与研究[J].武汉工业大学学报1999(02).
    [26]Jichun Ye,et al. A tri-modal aluminum based composite with super-high strength[J]. Scr Mater,2005,53:481.
    [27]Horowordi K M.et aL Microstructure and interface characteristics of B4C, SiC and Al2O3 reforced Al matrix composites:a comparative study[J]. J Mater Proe Techn,2003,142:738.
    [28]方园,丁华东,傅苏黎,马南钢等.碳化硼一金属复合材料的研究[J].材料导报,2008,5(22):400-403.
    [29]周冰锋,闫涛.机械搅拌法制备半固态铝合金的研究[J].特种铸造及有色合金.2009,29(7):625-628.
    [30]张友法,余新泉,陈锋,于良B4C/Al-Si复合材料的制备[J].特种铸造及有色合金,2010,30(4):367-369.
    [31]Quaak C J, Horsten M G, Kool W H. Mater Sci Eng,1994, A183:247.
    [32]S.Misra,P.D.Legreca.Damping Behaviour of MMCs.Vibration Damping[J].Workshop Proceedings,1984(11):3064.
    [33]Arslan.G. Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide-aluminum composites[J].Eur Cerain Soc,2003,23:1243.
    [34]Ehrstorn J.C.et al. J Mat Sci,1998(23):3195-3201.
    [35]王文明,潘复生,等.碳化硅颗粒增强铝基复合材料开发与应用的研究现状[J].兵器材料科学与工程,2004,27(3):61.
    [36]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002,6:3.
    [37]Miracle DB Aeronautical applications of metal-matrix conl-posites[J]. ASM Int,2001:1043.
    [38]潘复生,张于非.铝合金及应用[M].北京:化学工业出版社,2006.
    [39]J.Schoennahl, B.Willer, M.Daire. The mixd carbide Al4SiC4 preparation and structure data[J].Sotid State Chem,1984(52):163-173.
    [40]D.J.Lloyed. The solidification microstructure of particulate reinforced Aluminum/SiC composites[J]. Comp. Sci.Technol.1989(35):159-179.
    [41]王杨,杨立军等.A1203颗粒增强铝基复合材料激光与辅助切削的切削特性[J].中国机械工程.2003.
    [42]仇庆根等.铸造铝硅颗粒氧化物复合材料的磨损性能研究[J],机械工程材料.1994,4
    [43]Gao Dongyun,Mussle B H. Advanced material Powder(AlN)[J]. Am. Ceram. Soc. Bull., 2000,79(4):45.
    [44]李超,刘靖等.ZrO2增强铝基复合材料的半固态组织与性能分析[J].有色金属,2007,59(4):1-3.
    [45]A R E. Singer Professor, J.M. Alexander. Spray Forming of Metals for Engineering Applications[S]. CIRP Annals-Manufacturing Technology,1983,32:145-149.
    [46]徐骏.半固态铝合金材料研究[D].2005.
    [47]DHKirkwood. European trends in semisolid processing[C], in:M Kiuchied. Proceedings of the 3rd Int. Conf. on Semisolid processing ofalloys and composites. Tokyo, Japan, 1994,6:19-23.
    [48]A I Nussbaum. Semi-solid forming of aluminum and magnesium[J], Light Metal Age, 1996,6:6-22.
    [49]Stephen P Midson. The commercial status ofsemi-solid casting in the USA[C], in:DH Kirkwood and P Kapranos eds. Proceedings of the 4th Int. Conf. on Semisolid processing ofalloys and composites[M], The University of Shefield, UK,1996,6:21-29.
    [50]毛卫民,赵爱民,钟雪友等.非枝晶半固态ZL101合金电磁搅拌及触变成形研究[J],铸造.1999,2:5-8.
    [51]刘洪伟,郭成等.半固态技术在材料连接和复合材料制备中的应用[J],焊接,2006(1):17-20.
    [52]谭建波,李迅等.半固态金属成形技术的发展及应用现状[J],河北科技大学学报,2003,24(3):24-28.
    [53]王羽,胡建华等.半固态成形技术及应用[J],中国机械工程,2006(17):223-226.
    [54]蒋鹏,贺小毛,张秀峰等.半固态金属成形技术的研究概况[J].塑性工程学报,1998,5(3):7-11.
    [55]尹洪峰,任耘,罗发.复合材料及其应用[M].陕西科技技术出版社,2003.
    [56]Zhang Z, Chen D.L. Consideration of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites:A model for predicting their yield strength[J]. Scripta Materialia,2006,54(7):1321-1326. Scripta Materialia,2006,54(7):1321-1326.
    [57]秦亮,耿小亮等.SiCp/Al材料力学行为研究的进展[J].航空制造技术.2010,16:79-82.
    [58]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.
    [59]Mille W S, Humphreys F J Strengthening mechanisms in particulate metal-matrix composites[J]. Scr Metall Mater,1991,25(11):2623-2626.
    [60]罗守靖,程远胜,杜之明.卫星角框件伪半固态触变成形及初步实验研究[J].塑性工程学报,2005,4(12):70-75.
    [61]Trojanova Z, Drozd Z, Kudela S, et al. Strengthening in Mg-Li matrix composites[J]. Composites Science and Technology,2007,(67):1965-1973.
    [62]傅雪莹.搅拌法制备B4C/A1复合材料的工艺研究[D].2005.
    [63]M.E. Smagorinski, P.G. Tsantrizos, S.Grenier, A.Cavasin,T.Brzezinski, G.Kim. The properties and microstructure of Al-based composites reinforced with ceramic particles[J]. Materials Science and Engineering,1998A(244):86-90.
    [64]吕亮,朱华,fengtang碳化硼增强铝基复合材料的摩擦磨损性能[J].机械工程材料,2007,31(10):64-66.
    [65]VOGEL A, DOHERTY RD, CANTOR B. Stiroast micro-structure and slow crack growth[R]. Proc of Inter Confon solidification, London:University of Sheffield,1979: 518-525.
    [66]中国机械工程学会铸造专业学会.铸造手册(第3卷)[M].机械工业出版社,1999年5月.
    [67]Modi O P.Prasad B K.Yegneswaran A H. Dry Sliding Wear Behavior of Squeeze Cast Aluminum Alloy-silicon Carbide Composites 1992, A151:235-237.
    [68]王磊等.材料的力学性能[M].东北大学出版社,2005.8.
    [69]聂俏.高能超声制备纳米镁基复合材料及其力学性能研究[D].2010.
    [70]T J F Quinn,The role of oxidation in the mild wear of steel[J]. Wear,.13(1962):33-37.
    [71]M.D.彼得森磷.D.怀纳.磨损控制手册[M].机械工业出版社,1994.
    [72]Subramanian C.Some Considerations Towards the Design of a Wear Resistant Aluminium Alloy [J].Wear.1992:155,193-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700